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Table S1. Formulae for the calculation of primary radiomic features. 

Intensity-based features (first-order statistics) 

X denotes the intensity vector with N voxels of the tumor ROIs; X̅, the mean of X; P, the first-order histogram with Nl discrete intensity levels. 

Feature Formula Feature Formula 

1. Energy ∑ 𝐗(𝑖)2𝑁
𝑖=1   2. Entropy ∑ 𝐏(𝑖)𝑙𝑜𝑔2𝐏(𝑖)

𝑁𝑙
𝑖=1   

3. Kurtosis 

1

𝑁
∑ (𝐗(𝑖)−𝑋̅)4𝑁
𝑖=1

(√
1

𝑁
∑ (𝐗(𝑖)−𝑋̅)2𝑁
𝑖=1 )

2 − 3  4. Maximum max(𝐗) 

5. Mean 
1

𝑁
∑ 𝐗(𝑖)𝑁
𝑖=1   

6. Mean absolute de-

viation 

1

𝑁
∑ abs(𝐗(𝑖) − 𝑋̅)𝑁
𝑖=1   

7. Median median(𝐗) 8. First quartile 
Value that splits off the lowest 25% of data from the 

highest 75% 

9. Third quartile 
Value that splits off the highest 25% of data from the 

lowest 75% 
10. Minimum min(𝐗) 

11. Range max(𝐗) −min⁡(𝐗) 
12. Root mean 

square (RMS) 
√
∑ 𝐗(𝑖)2𝑁
𝑖=1

𝑁
  

13. Skewness 

1

𝑁
∑ (𝐗(𝑖)−𝑋̅)3𝑁
𝑖=1

(√
1

𝑁
∑ (𝐗(𝑖)−𝑋̅)2𝑁
𝑖=1 )

3  14. Standard devia-

tion 
√

1

𝑁
∑ (𝐗(𝑖) − 𝑋̅)2𝑁
𝑖=1   

15. Uniformity ∑ 𝐏(𝑖)2
𝑁𝑙
𝑖=1   16. Variance 

1

𝑁
∑ (𝐗(𝑖) − 𝑋̅)2𝑁
𝑖=1   

Shape- and Size-based features 

V, tumor volume; A, surface area of the volume 

17. Compactness 1 
𝑉

√𝜋𝐴3 2⁄
  18. Compactness 2 36π

𝑉2

𝐴3
  

19. Maximum 3D di-

ameter 

The largest pairwise Euclidean distance between 

voxels on the surface of the tumor volume. 

20. Spherical dispro-

portion 

𝐴

4𝜋𝑅2
  

21. Sphericity 𝜋
1
3(6𝑉)

2
3

𝐴
  22. Surface area 

A = ∑
1

2
|𝑎𝑖𝑏𝑖 × 𝑎𝑖𝑐𝑖|

𝑁𝑠
𝑖=1   

Ns, total number of triangles covering the surface; a, 

b, and c, triangle vertices 

23. Surface to vol-

ume ratio 

𝐴

𝑉
 24. Volume 

Number of pixels in the tumor region multiplied by 

the voxel size  

Textural features (gray-level co-occurrence matrix–based features) 

𝐏(δ, α), co-occurrence matrix for an arbitrary distance δ and direction α; Ng , number of discrete intensity levels in the image; px(i), marginal row 

probabilities; py(i), marginal column probabilities; μx, mean of px; μy, mean of py; σx, standard deviation of px; σy, standard deviation of py; HXY, 

entropy of P; HX, entropy of px; and HY , entropy of py; 

𝑝𝑥+𝑦(𝑘) = ∑ ∑ 𝐏(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

, 𝑖 + 𝑗 = 𝑘, 𝑘 = 2,3,… ,2𝑁𝑔; 

𝑝𝑥−𝑦(𝑘) = ∑ ∑ 𝐏(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

, |𝑖 − 𝑗| = 𝑘, 𝑘 = 0,1, … , 𝑁𝑔 − 1; 

HX = −∑ 𝑝𝑥(𝑖)
𝑁𝑔
𝑖=1

log2(𝑝𝑥(𝑖)), HY = −∑ 𝑝𝑦(𝑖)
𝑁𝑔

𝑖=1
log2 (𝑝𝑦(𝑖));  

HXY1 = −∑ ∑ 𝐏(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

log2(𝑝𝑥(𝑖)𝑝𝑦(𝑗)) ⁡, HXY2 = −∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

log2(𝑝𝑥(𝑖)𝑝𝑦(𝑗)) ⁡ 

25. Autocorrelation ∑ ∑ 𝑖𝑗𝐏(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  
26. Cluster Promi-

nence 
∑ ∑ [𝒊 + 𝒋 − 𝝁𝒙 − 𝝁𝒚]

𝟒
𝐏(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  

27. Cluster Shade ∑ ∑ [𝒊 + 𝒋 − 𝝁𝒙 − 𝝁𝒚]
𝟑
𝐏(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  
28. Cluster Ten-

dency 
∑ ∑ [𝒊 + 𝒋 − 𝝁𝒙 − 𝝁𝒚]

𝟐
𝐏(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  

29. Contrast ∑ ∑ |𝒊 − 𝒋|𝟐𝐏(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

   30. Correlation ∑ ∑
𝑖𝑗𝐏(𝑖,𝑗)−𝜇𝑥(𝑖)𝜇𝑦(𝑗)

𝜎𝑥(𝑖)𝜎𝑦(𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  

31. Difference en-

tropy 
∑ 𝑝𝑥−𝑦(𝑖)𝑙𝑜𝑔2[𝑝𝑥−𝑦(𝑖)]
𝑁𝑔−1

𝑖=0
  32. Dissimilarity ∑ ∑ |𝒊 − 𝒋|𝐏(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  

33. Energy ∑ ∑ [𝐏(𝑖, 𝑗)]𝟐
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  34. Entropy (HXY) −∑ ∑ 𝐏(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

log2⁡(𝐏(𝑖, 𝑗))  

35. Homogeneity 1 ∑ ∑
𝐏(𝑖,𝑗)

1+|𝑖−𝑗|

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  36. Homogeneity 2 ∑ ∑
𝐏(𝑖,𝑗)

1+|𝑖−𝑗|2

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  

37. Informational 

measure of correla-

tion 1 

𝐻𝑋𝑌−𝐻𝑋𝑌1

max⁡(𝐻𝑋,𝐻𝑌)
  

38. Informational 

measure of correla-

tion 2 

√1− 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌)  



39. Inverse Differ-

ence Moment Nor-

malized 

∑ ∑
𝐏(𝑖,𝑗)

1+(
|𝑖−𝑗|2

𝑁2 )

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  40. Inverse Differ-

ence Normalized 
∑ ∑

𝐏(𝑖,𝑗)

1+(
|𝑖−𝑗|

𝑁
)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  

41. Inverse variance ∑ ∑
𝐏(𝑖,𝑗)

|𝑖−𝑗|2
, 𝑖 ≠ 𝑗

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

  
42. Maximum Prob-

ability 
max(𝐏(𝑖, 𝑗))  

43. Sum average ∑ [𝑖𝐏𝒙+𝒚(𝑖)]
2𝑁𝑔
𝑖=2

  44. Sum entropy −∑ 𝐏𝒙+𝒚(𝑖)𝑙𝑜𝑔2[𝐏𝒙+𝒚(𝑖)]
2𝑁𝑔
𝑖=2

  

45. Variance ∑ ∑ (𝑖 − 𝜇)2𝐏(𝐢, 𝐣)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

    

Textural features (gray-level run-length matrix–based features) 

𝑝(𝑖, 𝑗|𝜃), (i,j)th entry in the given run-length matrix p for a direction θ; Ng, number of discrete intensity levels in the image; and Nr, number of 

different run lengths 

46. Short Run Em-

phasis 

∑ ∑ [
𝑝(𝑖,𝑗|𝜃)

𝑗2
]

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  
47. Long Run Em-

phasis 

∑ ∑ 𝑗2𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  

48. Gray Level Non-

Uniformity 

∑ [∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1 ]

2𝑁𝑔
𝑖=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  
49. Run Length 

Non-Uniformity 

∑ [∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑔
𝑖=1 ]

2
𝑁𝑟
𝑗=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  

50. Run Percentage ∑ ∑
𝑝(𝑖,𝑗|𝜃)

𝑁𝑝

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  
51. Low Gray Level 

Run Emphasis 

∑ ∑ [
𝑝(𝑖,𝑗|𝜃)

𝑖2
]

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  

52. High Gray Level 

Run Emphasis 

∑ ∑ 𝑖2𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  

53. Short Run Low 

Gray Level Empha-

sis 

∑ ∑ [
𝑝(𝑖,𝑗|𝜃)

𝑖2𝑗2
]

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  

54. Short Run High 

Gray Level Empha-

sis 

∑ ∑ [
𝑝(𝑖,𝑗|𝜃)𝑖2

𝑗2
]

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  

55. Long Run Low 

Gray Level Empha-

sis 

∑ ∑ [
𝑝(𝑖,𝑗|𝜃)𝑗2

𝑖2
]

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

  

56. Long Run High 

Gray Level Empha-

sis 

∑ ∑ 𝑖2𝑗2𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑝(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

    

Textural features (local binary pattern–based features) 

X denotes the vector of the local binary pattern with N voxels in tumor ROIs. The local binary pattern was estimated on the basis of the relations of 

the center pixel with eight neighbors; X̅ is the mean of X, and P is the first-order histogram with Nl discrete intensity levels. Equations (1)–(16) (first-

order statistics) were then applied to yield 16 local binary pattern–based features. 

Table S2. CT Manufacturer and Model of TVGH dataset. 

 CT Manufacturer Model n 

Before 

GE MEDICAL SYSTEMS BrightSpeed 2  

GE MEDICAL SYSTEMS Brivo CT385 Series 1  

GE MEDICAL SYSTEMS Discovery CT 1 

GE MEDICAL SYSTEMS Discovery STE 1  

GE MEDICAL SYSTEMS LightSpeed VCT 12  

GE MEDICAL SYSTEMS Optima CT660 4  

GE MEDICAL SYSTEMS Revolution HD 2  

Hitachi Medical Corporation SCENARIA 1  

Philips Brilliance 64 32  

Philips iCT 256 31  

SIEMENS Emotion 16 1  

SIEMENS Emotion 16 (2010) 4  

SIEMENS Perspective 1  

SIEMENS SOMATOM Definition 1  

SIEMENS SOMATOM Definition AS 5  

SIEMENS SOMATOM Definition AS+ 5  

SIEMENS SOMATOM Definition Flash 18  

SIEMENS Sensation 16 14  

SIEMENS Sensation 64 1  

SIEMENS syngo.via.VB20A 1  

TOSHIBA Aquilion 33  

TOSHIBA Aquilion ONE 1  

TOSHIBA Aquilion PRIME 14  

TOSHIBA Aquilion Prime SP 3  

Missing 61 

 GE MEDICAL SYSTEMS LightSpeed VCT 17  

Follow 

Philips Brilliance 64 4 

Philips iCT 256 68  

SIEMENS Perspective 1  

SIEMENS SOMATOM Definition AS 9  

SIEMENS SOMATOM Definition Flash 29  



SIEMENS Sensation 16 16  

TOSHIBA Aquilion 39  

TOSHIBA Aquilion PRIME 16 

TOSHIBA Aquilion Prime SP 18  

Missing 33 

Table S3. CT Manufacturer and Model of TCGH dataset. 

 CT Manufacturer Model n 

Before GE MEDICAL SYSTEMS LightSpeed VCT 2  
 GE MEDICAL SYSTEMS LightSpeed16 2 
 GE MEDICAL SYSTEMS Optima CT660 8  
 GE MEDICAL SYSTEMS Revolution CT 6  
 INFINITT INFINITT PACS 1  
 Philips Brilliance 64 36  
 Philips iCT 256 29  
 SIEMENS SOMATOM Definition AS 2  
 SIEMENS SOMATOM Definition AS+ 2  
 TOSHIBA Aquilion 3 
 TOSHIBA Aquilion ONE 1  
 TOSHIBA Aquilion PRIME 3 
 TOSHIBA Asteion 1  

Follow 
GE MEDICAL SYSTEMS Revolution CT 14  

Philips Brilliance 64 22  
 Philips iCT 256 60  

 

Exclusion criteria:  

In studies focusing on NSCLC (non-small cell lung cancer) treatment, patient selection is vital. This is primarily due 

to the highly heterogeneous nature of lung cancer, especially at the molecular level. The exclusion criteria detailed 

below ensure the results obtained are specific to the target patient group, eliminating potential confounders. 

 

1. Molecular Mutations: 

Patients were excluded if they had mutations other than: EGFR (Epidermal Growth Factor Receptor) mutations, 

ALK (Anaplastic Lymphoma Kinase) fusions, KRAS (Kirsten Rat Sarcoma Viral Oncogene Homolog) mutations, 

BRAF (B-Raf Proto-Oncogene, Serine/Threonine Kinase) mutations 

Explanation: Different molecular mutations have different roles in the pathogenesis and progression of NSCLC. 

These mutations also affect how a patient responds to treatment. For instance: 

EGFR mutations are common in NSCLC and have been linked to increased sensitivity to EGFR-TKIs. They are found 

in 10-15% of Caucasian and up to 50% of Asian patients with NSCLC. 

ALK fusions represent another targetable mutation, with specialized ALK inhibitors available for treatment. They 

occur in about 3-7% of NSCLC patients. 

KRAS mutations are seen in 25-30% of NSCLC and historically have been challenging to target directly. 

BRAF mutations occur in about 2-4% of NSCLC and can be targeted with BRAF inhibitors. 

Patients with these other mutations may not benefit from the specific treatments under study or may confound the 

results due to variable responses. 

 

2. EGFR-TKI Treatment: 

Patients who received third-generation EGFR-TKIs as first-line therapy were excluded. 

Explanation of EGFR-TKI Technology: EGFR-TKIs (Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors) 

are a class of targeted therapies designed to inhibit the EGFR tyrosine kinase, a protein that promotes cancer cell 

growth. 

First-generation EGFR-TKIs (e.g., erlotinib, gefitinib): These are non-selective and bind reversibly to the ATP pocket 

of the tyrosine kinase domain. They have been shown to improve response rates and progression-free survival in 

patients with EGFR-mutant NSCLC. 



Second-generation EGFR-TKIs (e.g., afatinib, dacomitinib): They bind irreversibly to the ATP pocket and have activ-

ity against first-generation TKI-resistant mutations. However, they still have limited activity against the T790M re-

sistance mutation. 

Third-generation EGFR-TKIs (e.g., osimertinib): They are designed to overcome resistance due to the T790M muta-

tion, which emerges in many patients treated with first or second-generation TKIs. 

Excluding patients who already received third-generation TKIs ensures the study can evaluate the efficacy of these 

drugs as a later line of therapy. 

 

3. Imaging and Follow-Up Data: 

Patients with no visible tumor lesions on images, insufficient follow-up information, or who had a follow-up CT 

scan not between 6-16 weeks were excluded. This ensures that there's measurable disease to evaluate the re-

sponse to treatment and that follow-up data is available and consistent for analysis. 

 

4. Additional Exclusions: 

Patients with missing dosing time or clinical data, those who were lost to follow-up, had no lesion, experienced 

early death, or had early progression disease were also excluded to ensure data accuracy and integrity. 

 

In conclusion, these exclusion criteria ensure that the patient group under study is homogenous, which is crucial for 

producing reliable and interpretable results in clinical research. 

 

Summary of feature selection algorithms: 

KBest: Select features according to the k highest scores. 

LASSO: Linear Model trained with L1 prior as regularizer 

Ridge: Linear least squares with l2 regularization. 

Elastic net: Linear regression with combined L1 and L2 priors as regularizer. 

 

Summary of machine learning algorithms: 

CoxPH: The Cox proportional hazard model [1] incorporates elastic net regularization and is a semiparametric ap-

proach that models the hazard function by assuming a proportional relationship between its time component and 

feature component. Elastic net penalty combines the LASSO's subset selection property with the Ridge penalty's reg-

ularization strength [2]. 

Survival tree: A survival tree [3] is a tree-based technique for handling censored survival data, focusing on maximiz-

ing the survival difference between patient groups represented by nodes in a binary tree. 

Random survival forest: The random survival forest [4] is an adaptation of the random forest method tailored for 

right-censored survival data analysis. 

gradient-boosting machine A gradient-boosting machine [5] is a nonparametric model that employs an ensemble of 

regression trees to determine the hazard function's variation concerning associated covariates. The ensemble model 

is trained using a gradient-boosting technique to optimize the concordance index's smoothed approximation. 

Fast support vector machine: The fast support vector machine [6] optimizes in the primal domain using truncated 

Newton optimization and leverages order statistic trees to reduce training's computational cost. 
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