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Simple Summary: There is a lack of understanding of the pathogenesis and mechanisms accounting
for the large variability in tumor response to immune checkpoint inhibition. In this study, we
investigate the role and composition of the human gut microbiome in the clinical setting by integrating
shotgun metagenomics and quantitative texture analysis (QTA) of CT images in NSCLC patients
treated with anti-PD-L1 immunotherapy using a novel machine learning approach. Using all available
parameters, the XGB machine learning system predicted therapeutic response with an accuracy of
83% and correctly separated long-term survival patients from short-term survival patients with an
accuracy of 69%. Our findings show that an integrated signature of these characteristics may predict
outcomes more accurately than separate measures and may have potential therapeutic implications
in the future.

Abstract: This study aims to combine computed tomography (CT)-based texture analysis (QTA) and
a microbiome-based biomarker signature to predict the overall survival (OS) of immune checkpoint
inhibitor (ICI)-treated non-small cell lung cancer (NSCLC) patients by analyzing their CT scans
(n = 129) and fecal microbiome (n = 58). One hundred and five continuous CT parameters were
obtained, where principal component analysis (PCA) identified seven major components that ex-
plained 80% of the data variation. Shotgun metagenomics (MG) and ITS analysis were performed to
reveal the abundance of bacterial and fungal species. The relative abundance of Bacteroides dorei and
Parabacteroides distasonis was associated with long OS (>6 mo), whereas the bacteria Clostridium
perfringens and Enterococcus faecium and the fungal taxa Cortinarius davemallochii, Helotiales,
Chaetosphaeriales, and Tremellomycetes were associated with short OS (≤6 mo). Hymenoscyphus
immutabilis and Clavulinopsis fusiformis were more abundant in patients with high (≥50%) PD-
L1-expressing tumors, whereas Thelephoraceae and Lachnospiraceae bacterium were enriched in
patients with ICI-related toxicities. An artificial intelligence (AI) approach based on extreme gra-
dient boosting evaluated the associations between the outcomes and various clinicopathological
parameters. AI identified MG signatures for patients with a favorable ICI response and high PD-L1
expression, with 84% and 79% accuracy, respectively. The combination of QTA parameters and
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MG had a positive predictive value of 90% for both therapeutic response and OS. According to
our hypothesis, the QTA parameters and gut microbiome signatures can predict OS, the response
to therapy, the PD-L1 expression, and toxicity in NSCLC patients treated with ICI, and a machine
learning approach can combine these variables to create a reliable predictive model, as we suggest in
this research.

Keywords: computed tomography-based texture analysis; artificial intelligence; advanced NSCLC;
PD-L1; microbiome

1. Introduction

Immune checkpoint inhibitors (ICI) are frequently administered as first-line therapy
in non-small cell lung cancer (NSCLC). Notably, however, only 15–20% of the ICI-treated
tumors show stable disease (SD) or response to therapy, and only a portion of the patients
experience durable benefit [1–3]. To date, there are no other widely used reliable biomarkers
for ICI treatment eligibility in routine clinical practice. Understanding and non-invasively
assessing the host and tumor microenvironment might improve both therapeutic and
survival outcomes [4].

Computed tomography (CT)-based quantitative texture analysis (QTA) represents
a non-invasive diagnostic method in different cancer types; it converts digital images
into high-dimensional data, enabling the quantification of spectral properties, gray-level
patterns, and pixel interrelationships [5,6]. The CT image of the primary tumor can reveal
heterogeneity in the density that might be associated with distinct characteristics of the
tumor microenvironment (TME) or tumor-infiltrating immune cells [7]. T-cells represent a
hallmark of ongoing immune surveillance with potential therapeutic importance. Increased
tumor immune cell infiltration predicts survival in lung cancer [8]. Even though T-cell
infiltration of solid tumors is associated with favorable patient outcomes, the mechanisms
underlying variable immune responses between individuals are not well understood [9–11].
Therefore, QTA parameters might represent a prognostic and predictive biomarker for
ICI-treated patients.

Recent data report an association between the gut microbiome and ICI efficacy [12].
The immunology of the gut–lung axis is an emerging field and can be explained by antigen
mimicry or cross-reactivity [13]. Microbiota antigens that pass the intestinal barrier can
result in T-cell priming, stimulating cytokine and interferon production and eliciting an anti-
tumor immune response. Therefore, gut bacteria might regulate tumor-infiltrating immune
cells. Fungal species in the gut interact with bacterial growth and may also be associated
with lung diseases. Certain fungal species can direct immune cell trafficking, especially
the inflammatory or tolerant immune responses that can emerge or evolve [14–16]. Cancer
and chronic obstructive pulmonary disease (COPD) have recently been linked to dysbiotic
airway microbiota and commonly occur alongside gastrointestinal (GI) disorders [17].
Others report a key role for Bacteroidales in the immunostimulatory effects of the ICI
blockade [18,19]. Recent studies revealed a direct linkage between the gut microbiome’s
composition and ICI efficacy in malignant melanoma and NSCLC [20–23].

There is a lack of understanding of the pathogenesis and mechanisms accounting
for the large variability in tumor response to ICI. However, the clinical significance and
potential theranostic role of QTA and the gut mycobiome in lung cancer have not yet been
explored. Here, we investigate the role and composition of the human gut microbiome in
the clinical setting by integrating shotgun metagenomics (MG) and QTA in NSCLC patients
treated with anti-PD-L1 immunotherapy, using the novel XBoost machine learning (ML)
approach. Furthermore, we aimed to explore whether an ML-integrated signature obtained
from radiomics and metagenomics could provide a more reliable prognostic and predictive
nomogram than the analysis of these features separately.
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2. Materials and Methods
2.1. Ethical Statement

This current work was conducted in accordance with the Helsinki Declaration of the
World Medical Association study guidelines. The national ethics committee (Hungarian
Scientific and Research Ethics Committee of the Medical Research Council (ETTTUKEB-
50302-2/2017/EKU)) officially approved the study. All the patients involved/recruited
consented to the study. After the clinicopathological data were collected, the patient
identifiers were removed; so, the patients cannot be identified directly or indirectly.

2.2. Study Population and Treatments

A total of 129 advanced stage NSCLC patients treated with ICI were enrolled in our
study; they received standard-of-care nivolumab or pembrolizumab treatments (46% re-
ceived first-line and 54% second-line ICI) between 2017 and 2018 at the National Koranyi
Institute of Pulmonology, Budapest, Hungary, and at the County Hospital of Pulmonology,
Torokbalint, Hungary. All the patients included were diagnosed with advanced-stage
disease (Stage IIIB/IV). We included patients with histologically confirmed adenocarci-
noma (ADC), squamous cell carcinoma, and non-small cell lung carcinoma not otherwise
specified (NSCLC-NOS). The clinical TNM (tumor, node, metastasis) stage according to
the Union for International Cancer Control (8th edition) and age at the time of diagnosis
were recorded. CT scans of all 129 patients and stool samples from 58 of these patients
were available and analyzed. The clinicopathological data included gender, age, stage,
and PD-L1 tumor proportion score (TPS); the COPD stages according to the Global Ini-
tiative for Chronic Obstructive Lung Disease (GOLD) criteria; forced expiratory volume
in 1 s (FEV1); medications, including proton pump inhibitors (PPIs), steroids, antibiotics,
antifungals, and supplements before and after treatment; response to therapy; and overall
survival (OS). The patients were classified according to PD-L1 TPS with a cutoff of 50%
(high vs. low) and a cutoff of 1% (positive vs. negative). Immunotherapeutic agents were
administered as first-line therapy if the PD-L1 tumor proportion score (TPS) was ≥50%
and second-line therapy if the PD-L1 TPS was <50%. Before second-line immunotherapy,
the patients received standard-of-care platinum-based chemotherapy. Responders were
distinguished from non-responders according to the RECIST criteria, where patients with
complete response (CR), partial response (PR), or stable disease (SD) were assessed as
responders and patients with progressive disease (PD) were assessed as non-responders
after 12 weeks of ICI treatment. OS was calculated from the time of diagnosis to death
or the last available follow-up. Smoking was scored from 1 to 4 (never, passive, former,
current) and defined in pack years (PY). Any type of immune-related adverse event (irAE)
reported after ICI treatment was graded based on the ESMO clinical practice guidelines,
and the data were analyzed according to the presence of any type of irAE vs. no-irAE
reported. Each irAE was characterized either as a binary variable (toxicity—no toxicity)
or as a continuous variable (grade). COPD severity was also determined according to
the COPD Assessment Test (CAT) score. The date of the last follow-up included in this
analysis was February 2021. The therapeutic approaches across all the centers were con-
ducted in line with the current National Comprehensive Cancer Network guidelines. The
patients were classified based on their OS into short-term (≤6 months) versus long-term
(>6 months) survivors.

2.3. QTA and Principal Component Analysis

QTA was applied for pretreatment CT images of primary NSCLC tumors in the lung
(n = 129).

Based on a standard-of-care standardized radiology report using RECIST 1.1 criteria
in the reporting, a board-certified radiologist had a second look and checked the tumor
region of interest. The radiologist selected the primary tumor, the most extensive diameter
lesion surrounded by lung parenchyma and not centrally located, directly infiltrating, or
connected with other tissue compartments in the mediastinal area or chest wall. CT scans
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were excluded that did not meet these criteria. Three-dimensional tumor segmentation was
performed using the 4.10 version of the 3D Slicer, and a total of 105 CT parameters from each
CT image were obtained. The 3D segmentation was performed using an automated (Fast
GrowCut), which is an in-built robust algorithm to segment the volume fully. We used Label
1 as the foreground (tumor) and Label 2 as the background (lung parenchyma). Multiple
label colors can be used to define regions representing parts of anatomical structures.
The algorithm finds the best labeling for an adjacent pixel to match the tumor volume.
Next, we used the Pyradiomics software package (https://pyradiomics.readthedocs.io/
en/latest/features.html, accessed on 1 March 2022) to obtain the QTA parameters from the
segmentation masks and the CT scans.

We used the Sklearn machine learning library in Python for data preprocessing and
standardization, reducing the number of CT parameters by principal component analysis
(PCA), which identified seven primary components (PCs) that explained 80% of the data
variation. The components thus obtained were further analyzed with hierarchical cluster
analysis. Long-term versus short-term survivors, responders versus non-responders, and
patients with PD-L1 expression (<50% vs. ≥50%) were analyzed based on naïve Bayes and
k-means clustering, and the seven principal components (PCs) were incorporated into the
machine learning models. We verified the accurateness of the machine learning algorithms
with leave-one-out cross-validation.

2.4. PD-L1 Immunohistochemistry and TPS Scoring

For PD-L1 immunohistochemistry (IHC) analysis, the tumor samples obtained through
lung biopsy were accessible for n = 125 advanced-stage NSCLC patients. To perform the
IHC staining, 4 µm sections were cut from formalin-fixed paraffin-embedded (FFPE) blocks.
Utilizing a rabbit monoclonal antibody for PD-L1 diluted at 1:300 (CST, cat: 13684S), stain-
ing was executed on a Leica Bond RX autostainer. A Bond Polymer Refine Detection
kit (#DS9800) was used and followed Leica IHC Protocol F, while epitope retrieval was
performed for twenty minutes under low pH conditions. Afterwards, the slides were
subjected to clearing and dehydration on a Tissue-Tek Prisma platform before being cov-
erslipped with Tissue-Tek Film. Next, a proficient histopathologist evaluated the PD-L1
expression using the FDA-approved TPS scoring system. All n = 125 patients received a
positive (TPS ≥ 1%) or negative (TPS < 1%) classification and n = 71 patients were assessed
and categorized as PD-L1-high (TPS ≥ 50%) or -low (TPS < 50% percentile) based on
further scoring.

2.5. DNA Extraction from Stool Samples

Baseline stool samples were obtained simultaneously within seven days, before or
after the first cycle of ICI administration and after signed informed consent was obtained.
All the samples were placed on the day of collection in the −80 ◦C freezer until the
isolation and sequencing steps. The stool samples were processed according to Novogene
protocol, as previously described [24]. In brief, after thorough mixing with CTAB lysis
buffer, the samples were incubated at 65 ◦C and centrifuged at 12,000× g for 5 min at 4 ◦C.
Nine hundred microliters of phenol:chloroform:isoamyl alcohol (25:24:1, pH = 6.7; Sigma-
Aldrich, Taufkirchen, Germany) was added to the supernatants and mixed thoroughly prior
to incubation at room temperature for 10 min. After phase separation, the samples were
centrifuged at 12,000× g for 10 min at 4 ◦C. DNA precipitation was obtained by adding
450 µL of isopropanol (Sigma-Aldrich) containing 50 µL of 7.5 M ammonium acetate
(Thermo Fisher, Waltham, MA, USA) to the upper phase from the last extraction step. After
being washed in 70% ethanol, the DNA pellets were air-dried and re-suspended in 200 µL
of 75 mM TE buffer (pH = 8.0; Sigma-Aldrich).

2.6. Library Preparation and MG Sequencing

The generation of the sequencing library was based on Illumina technologies, follow-
ing the manufacturers’ recommendations. Briefly, genomic DNA was randomly fragmented
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to a size of 350 bp, and the fragments were carefully size-selected with sample purification
beads. Next, the selected fragments were A-tailed, end-polished, and ligated with an
adapter. After one more sequence of bead purification, the fragments were amplified by
PCR reaction. After analysis for size distribution by real-time PCR, the library was se-
quenced on an Illumina platform Novaseq 6000 (Novogene, Beijing, China) with paired-end
reads of 150 bp.

2.7. Internal Transcribed Spacer (ITS2) Sequencing

For ITS2 sequencing, genomic DNA concentration was determined by Qubit. Two
hundred nanograms of DNA was used as an input for the PCR reaction with the corre-
sponding primer set, specifically binding to different hypervariable regions, where a unique
barcode was assessed for each primer. The purified PCR product was then utilized as a
template to create a library. The PCR products were pooled together in equal proportions
before they were A-tailed, end-polished, and adapter-ligated. The library was analyzed for
size distribution and quantified using real-time PCR after bead filtering and PCR amplifica-
tion (to make the library entirely double-stranded). As previously disclosed [24], library
sequencing was carried out on a Hiseq2500 platform.

2.8. Quality Control

The Sunbeam 2.1 pipeline was used to perform the quality control of the raw reads, as
previously described [25]. Briefly, „cutadapt” version 2.8 was used to remove the universal
adapter sequences, and „trimmomatic” version 0.36 [26] was used to perform Illumina-
specific adapter trimming, window quality trimming (Q5 over 25 nt), and 3’ and 5’ clipping
(Q < 6). Reads shorter than 36 nt were removed. To remove contamination from the
host-derived human reads, BWA version 0.7.17 was used [27] against a masked human
reference genome (GRCh38-89). Reads with 99% coverage and >97% identity with the
human reference were removed.

2.9. Microbial Taxonomic Profiling

High-quality reads were taxonomically annotated using MetaPhlAn2 (version 2.7.7)
with default parameters to determine relative abundances of bacterial species. The PIPITS
pipeline (version 2.4) with default parameters was utilized for taxonomic annotation of
fungal ITS, as previously described [24,28]. The remaining reads were binned using the
mothur classifier and aligned to the UNITE fungus database based on 97 percent similarity
as operational taxonomic units [29].

The differentially abundant taxa were identified using the Wald test implemented in
the R package DESeq2 v1.22.2 on the unrarefied relative abundance data. The statistical
significance was filtered with FDR-corrected p <0.05, unless otherwise stated. Logarithmic
normalization was used to overcome extensive variations in the MG expression data.
We conducted a Student’s t-test to analyze the difference between the log-normalized
expression distributions in each species’ long OS and short OS groups. Among the patients
with MG data available, 44 long OS and 14 short OS groups were identified. For each
species, we conducted a Student’s t-test to find out whether the difference between the
distributions of the log-normalized expressions in the long OS and short OS groups were
significant with p = 0.01. Amongst the 901 species, we found significant differences in 22,
and the log-normalized expressions of these species were incorporated into the machine
learning models. Due to multiple testing, we adjusted the Benjamini–Hochberg false
discovery rate correction; with FDR = 0.25, we found that the 6 most substantial results
from the 22 selected species were still significant. For these species, we calculated and
plotted the log fold change between the groups.

2.10. XGBoost Models for Classification

XGBoost, or extreme gradient boosting, is a decision tree-based gradient boosting
algorithm used for our machine learning approach to generate predictive values for clinical
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outcomes. Many examples show that XGBoost can outperform other decision tree-based
learning algorithms (https://github.com/dmlc/xgboost/tree/master/demo#machine-
learning-challenge-winning-solutions, accessed on 1 May 2022). The XGBoost is simi-
lar to the random forest algorithm, which is an ensemble version of the decision tree
(https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm, ac-
cessed on 1 May 2022). The prediction of a random forest algorithm is based on the sum
of the individual decision tree predictions. Gradient boosting means that the model not
only selects a random set of weights for each of the decision trees but trains them in a
sequence: after the first tree is created, it calculates the error for the predictions with a
loss function. After that, each new tree trains to predict the errors of the previous one by
assigning higher weights or importance for the mislabeled entries. XGBoost is a C++-based
implementation of gradient boosting, with additional weight regularization to prevent
overfitting and parallelization for multiple CPU cores.

The regressor version of the XGBoost algorithm was used to handle the categorical
and continuous data (relative occurrence of bacterial and fungal species in patients and
QTA signatures). This also provided numerical prediction values, which we then cast
into the numerical categories of the predicted property. Training and prediction were also
performed using the incomplete dataset. Filling the incomplete dataset was conducted by
the XGBoost regressor algorithm by predicting the missing values for a property from a
model trained on the subset of the incomplete dataset. In the first experiment, we used all
the available features of the data to create a single model, and we trained it with the missing
values. Then, in the second experiment, we applied an iterative method, where we started
with the patients with all the available features; then, we predicted the missing features with
different XGBoost models. This method is prone to overfit because it uses the predictions of
predictions for training; so, we tested it with multiple pseudo-random training-validation
splits, but on average, it achieved better results than the first experiment.

3. Results

A total of 129 NSCLC patients with CT scans were included in our analysis. MG data
were available for 44 long-term and short-term survivors. The study design, patient cohorts,
and availability of clinical and treatment data are shown in Figure 1. A summary of the
clinical data of the patients is shown in Table 1.
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Table 1. Clinical parameters of patients according to OS group. p-values represent comparison
between long OS and short OS patient groups, where a chi-squared test was used in the case of
categorical variables and the Mann–Whitney U test was used in the case of continuous variables.
Toxicity = occurrence of any kind of irAE during ICI-treatment. CR = complete response; PR = partial response;
SD = stable disease; PD = progressive disease. Statistical significance ** p < 0.01, *** p < 0.001.

Clinical Parameter Long OS Patients Short OS Patients p-Value

gender
0.802male 41% 45%

female 59% 55%

age (years, mean) 65.07 61.5 0.086

PD-L1 expression
0.798TPS ≥ 50% 41.1% 36.8%

TPS < 50% 58.9% 63.2%

Smoking (PY, mean) 39.45 37.53 0.658

BMI (kg/m2, mean) 25.95 24.67 0.395

COPD-comorbidity
>0.999yes 32.7% 30.8%

no 67.3% 69.2%

CAT score (mean) 10.96 19.07 0.0056 **

FEV1% (mean) 69.93 64.7 0.54

Pseudoprogression
0.718yes 18.1% 21.4%

no 81.9% 78.6%

Toxicity
>0.999yes 65.7% 80%

no 34.3% 20%

Toxicity grade (mean) 1.06 0.778 0.157

Line of IT (mean) 1.85 1.5 0.088

Line of IT binary
0.123first line 29% 47%

subsequent line 71% 53%

ICI Response at 3 months
<0.001 ***Response (CR, PR, SD) 92% 26%

Non-response (PD) 8% 74%

3.1. QTA Parameters Can Predict OS, Response to Therapy and PD-L1 Expression

First, we performed principal component analysis (PC) on the 105 QTA features and
visualized patient groups (OS, response, and PD-L1 expression) according to PC1 and PC2
(Figure 2A–C). Next, we assessed individual QTA parameters to evaluate their association
with OS, the response to therapy, and PD-L1 expression. Between the long- and short-term
survivors, five QTA parameters showed significant differences. Coarseness was increased
in patients with long OS (p < 0.001, Figure 2D), whereas Energy (p = 0.04, Figure 2E),
Kurtosis (p = 0.048, Figure 2F), and Surface Area (p = 0.019, Figure 2G) were increased
in individuals with short OS. Regarding the therapeutic response, parameters such as
ClusterTendency (p = 0.019, Figure 2H), Complexity (p = 0.049, Figure 2I), and Variance
(p = 0.045, Figure 2J) showed significantly increased values in responder patients. Inter-
estingly, the parameters Coarseness (p = 0.006, Figure 2K), Energy (p = 0.011, Figure 2M)
and Kurtosis (p = 0.038, Figure 2O) also showed a significant difference in terms of PD-L1
expression (50%) (similar to that of OS). In addition, Contrast (p = 0.033, Figure 2L) was sig-
nificantly higher in PD-L1-high patients, whereas GrayLevelVariance (p = 0.044, Figure 2N)
was significantly increased in PD-L1-low (<50%) patients.
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p = 0.0190 (G) were increased in short OS compared to long OS patients. In responder pa-
tients, the value of QTA parameters ClusterTendency (42.83 vs. 28.82, p = 0.0194 (H), Complexity
(822.3 vs. 579.7, p = 0.049, (I), and Variance (11379 vs. 8152, p = 0.0453 (J) were significantly in-
creased (vs. non-responders). In PD-L1-high (≥50%) patients, Coarseness (0.0007438 vs. 0.0003818,
p = 0.0069 (K) and Contrast (0.08508 vs. 0.05354, p = 0,0335 (L) showed increased values, whereas
Energy (143,577,510 vs. 241,900,299, p = 0.0111 (M), GrayLevelVariance (23.44 vs. 28.52, p = 0.0442,
(N), and Kurtosis (6.232 vs. 8.222, p = 0.038 (O) showed decreased values compared to PD-L1-low
patients. Mann–Whitney U test was used to compare individual QTA parameters in different patient
groups. Metric data were shown as median and corresponding standard deviation (SD), and graphs
indicate the corresponding 95% CI. Statistical significance * p < 0.05; ** p < 0.01, *** p < 0.001.
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3.2. Microbial Taxonomic Profiling Reveals Associations with OS, Response to Therapy, PD-L1
Expression, and Toxicity

Next, we analyzed the associations of microbial species, principal components, clini-
copathological parameters, and drugs administered before or after the first ICI cycle, as
described in the methods. Figure 3A shows microbial taxa that significantly correlate with
OS. Interestingly, Bacteroides dorei and Parabacteroides distasonis were negatively corre-
lated with other significant species included in our analysis. Also, Bacteroides dorei and
Parabacteroides distasonis were more abundant in patients with long OS (vs. short-term
survivors) (Figure 3A, Table 1). In contrast, the bacterial species Clostridium perfrin-
gens and Enterococcus faecium; the fungal species Cortinarius davemallochii, Helotiales,
and Chaetosphaeriales; and the fungal class Tremellomycetes showed significantly in-
creased abundance in patients with short OS compared to those with long OS (Figure 3A,
Table S1) In patients with high-PD-L1-expressing tumors, Dorea formicigenerans and
Lachnospiraceae bacterium showed significantly decreased relative abundances, whereas
bacteria Enterococcus avium and Streptococcus tigurinus and fungi Hymenoscyphus im-
mutabilis and Clavulinopsis fusiformis showed significantly increased relative abundances
(Figure 3B, Table S2). The Bacterial species Lachnospiraceae and the fungal family Thele-
phoraceae were the most abundant in patients with treatment-related toxicities, while the
fungal taxa Cutaneotrichosporon cutaneum and Rozellomycota were the most abundant in
the AE-free patients (Figure 3C, Table S3).

3.3. Correlation of Clinicopathological Parameters with Metagenome and Principal Components of
QTA Analysis

Figure 4A shows the correlation between the clinicopathological parameters, OS, and
microbial taxa, along with the p-values indicated for each association (Figure 4B). There
was a negative correlation between the patients with COPD and those with high PD-L1
(≥50%) expression (r = 0.26; p = 0.029). FEV1% showed a significant negative correlation
with the Clostridium celatum (r = 0.54; p = 0.006), Cortinarius davemallochii (r = 0.57;
p = 0.004), Thelephoraceae (r = 0.44; p = 0.034), and Helotiales species (r = 0.43; p = 0.036).
There were no significant associations between smoking and species that were associated
with OS, but there was a significant positive correlation between smoking and treatment-
related toxicity (r = 0.39; p = 0.003).

Further analysis revealed a negative correlation between steroid use and any toxicity
grade (r = 0.27; p = 0.041). Pseudoprogression, an initial increase in tumor size followed
by a decrease in tumor burden due to reactive immune cell infiltration following ICI
administration [30], was associated with body mass index (BMI) (r = 0.33; p = 0.005) and
the line of ICI (r = 0.31; p < 0.007). Interestingly, BMI was also associated with Enterococcus
faecium, which showed a significant negative correlation with the parameter (r = 0.32;
p = 0.018) that was confirmed by other studies [31,32]. The fungal taxa Serendipitaceae
(r = 0.37; p = 0.046) and Hyphodiscus (r = 0.41; p = 0.022) showed significant association
with proton pump inhibitor (PPI) or H blocker use before or after therapy initiation at
any time point. The antibiotics administered both before and during therapy showed no
significant correlation with response to ICI treatment. Supplementary Table S4 shows the
correlation coefficients (r) and p-values for all the parameters.

To create a compressed representation of the QTA parameters, PCA was performed,
where seven PCs were identified. The seven components are linear combinations of the
original CT features. The 105 QTA parameters and their contribution to the seven PCs
are shown in Supplementary Table S5. The visual representation of the PCs according to
the QTA parameters is shown in Supplementary Figure S1. PC5 showed association with
pseudoprogression (r = 0.39; p = 0.004), gender (r = 0.2; p = 0.021), and the presence of
COPD (r = 0.28; p = 0.045). PC7 showed association with response to therapy (r = 0.423;
p = 0.0015) and BMI (r = 0.31; p = 0.026). Among the microbial taxa, Clostridium perfrigiens
was associated with PC1 (r = 0.32; p = 0.047) and the fungal order Helotiales showed
significant correlation with PC3 (r = 0.35; p = 0.026).
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Figure 3. Abundant bacterial and fungal species according to overall survival (OS), PD-L1 expression,
and toxicity. Heatmaps and bar plots represent abundant bacterial and fungal taxa enriched in
patients according to OS (A), PD-L1 expression (<50% vs. ≥50%) (B), and toxicity (C). A total of
492 bacteria and 1364 fungi species were analyzed. From these, 901 species were present in both
the long OS and the short OS groups. Heatmaps demonstrate taxonomic units with a significantly
different abundance according to OS, PD-L1 expression, or toxicity. The range of the expressions was
from 0 to 100. In bar plots, the X axis represents log fold change values for microbial taxa associated
with different parameters. The Y axis represents p-values.
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Figure 4. Correlation of abundant bacterial and fungal species, PCAs, clinicopathological parameters,
prescribed other drugs, and response to therapy. Heatmaps show the distribution of correlation
coefficients according to Spearman’s rank correlation (A) and the presence of statistical significance
in a binary fashion (B), p-value < 0.05.
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3.4. Outcomes Predicted by the XGB Machine Learning Algorithm

The machine learning algorithm extreme gradient boosting (XGB) identified, with 84%
and 81% accuracy, an MG signature for patients with a favorable response to ICI and long
OS, and it had 79% accuracy in the prediction of high PD-L1 expression (≥50%). The QTA
signature had 72% accuracy in predicting OS and 62% accuracy in predicting high PD-L1
(≥50%) expression (Figure 5A).
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Figure 5. The accuracy, PPV, and NPV of the XGB machine learning algorithm used in predict-
ing outcomes according to clinicopathological signatures of patients. The label “Other” (Y axis,
A–C) means other key clinical parameters, including age, gender, smoking, PY, CAT score, FEV1%,
COPD, line of ICI. The label “Drugs” (Y axis, A–C) means all kinds of administered drugs pooled
together before or during therapy. Fractions in colored cells of matrices represent accuracy, NPVs, or
PPVs (A–C). PPV (positive predictive value), NPV (negative predictive value).

Next, we analyzed the role of the drugs and the outcomes, including PPIs and H
blockers, steroids, antibiotics, antifungals, and supplements. Due to case numbers, we
could not analyze the role of any of the drugs individually; instead, we pooled the drugs
together in the machine learning algorithm, as mentioned above. Accordingly, XGB could
predict OS with 61% accuracy, response to therapy with 71% accuracy, and toxicity with
70% accuracy from the data on the drugs prescribed before or during ICI administration.
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(Figure 5A). Consequently, we did not see a clinically relevant difference in the drug-
related effect of timing. Figure 5B shows the negative predictive values (NPVs), while
Figure 5C shows the positive predictive values (PPVs) generated by the XGB algorithm for
different parameters separately and in combination. We included other clinicopathological
parameters, such as age, gender, smoking (1–4), smoking pack year (PY), CAT score,
FEV1, COPD, and line of ICI (Figure 5A–C, and others). The XGB algorithm was able to
predict PD-L1 (≥50%) expression and response to ICI from these parameters with 83% and
76% accuracy.

The PPVs for the responses to ICI therapy derived from the QTA and MG signatures
were 76% and 87%, respectively. In contrast, the NPVs for the same parameters reached
only 29% and 58%, respectively (Figure 5B). The PPVs for OS from the QTA and MG
signatures were 81% and 86%, respectively (Figure 5C). In contrast, The NPV for OS from
MG was 62%; when combined with QTA, it was 45%, and when combined with the drugs,
it was 65% (Figure 5B). Of note, the NPV of QTA and MG was the highest for PD-L1 (≥50%,
80%) and pseudoprogression (79%). The highest PPV was measured for MG and QTA to
predict OS (86% and 81%, Figure 5C). Additionally, when combining MG and QTA, the
PPV for the response to ICI therapy and OS was 90%.

The combination of three or more parameters further increased the PPVs for survival.
MG, QTA, and the drug PPVs for the response to ICI therapy reached 91% and 86% for OS
(Figure 5C). Combining all the parameters (MG, QTA, the drugs, and others) gave a PPV of
86% for the response to ICI therapy and 72% for OS. In contrast, the NPVs for OS in the
latter three- or fourfold combinations only reached 45% and 31%, but for PD-L1 (≥50%,
80%, and 93%, respectively) and pseudoprogression (74% and 69%, respectively) it reached
higher values (Figure 5C). The accuracy, PPVs, and NPVs not filled with the XGB algorithm
are shown in Supplementary Figure S2.

4. Discussion

The TME and immune cell infiltration in primary and metastatic tumors are key factors
for ICI efficacy. Non-invasive assessment of the TME is an emerging field and may help
in selecting patients for immunotherapy [33]. QTA can be used to quantitatively analyze
the texture and heterogeneity of primary tumors [34,35] and lymph nodes [36]. To our
knowledge, this is the first study investigating the associations of ICI outcomes and the
integrated signature of microbial species, QTA, and other clinicopathological parameters.

The correlation of bacterial taxa with ICI efficacy was reported by multiple studies
in recent years [20–23], possibly as part of an intricate crosstalk through the gut–lung
axis [37,38]. Here, we show that Bacteroides dorei and Parabacteroides distasonis were
associated with long OS in advanced-stage NSCLC patients. The increased abundance of
Bacteroides species, including B. dorei, have been implicated in inflammation in several gut
diseases, such as ulcerative colitis, irritable bowel disease [39], and celiac disease [40]. In
contrast, B. dorei was also reported to reduce LPS production and inhibit atherosclerosis in
a cohort of patients with coronary disease [41]. Interestingly, the same species was shown
to increase ICI efficacy in colorectal cancer [42] but was associated with decreased survival
time in melanoma [4]. A microbiome study on a multi-cancer patient cohort revealed
that phylogenetically related species to B. dorei, B. xylanisolvens, and B. ovatus were
significantly enriched in ICI responders and showed a synergistic effect with a combination
erlotinib treatment [43]. A possible explanation for this contradiction might be the difference
in cancer phenotype or the disparate average age of the patients at the time of diagnosis,
since melanoma patients represent a relatively younger population. According to the
latest research, P. distasonis is implicated in the pathogenesis of obesity and metabolic
dysfunctions via bile acid and succinate production [44], but no association has been
revealed so far with malignant diseases.

In contrast, C. perfringens, E. faecium, and C. celatum showed increased abundances
in short OS patients. Clostridium species were reported to promote the accumulation
of CD4+ T regulatory cells (Tregs) in colonic mucosa and were associated with Treg cell
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accumulation in colon cancer (CRC) [45,46]. Interestingly, while Treg cells were reported
as positive prognostic factors in CRC, they are negative prognosticators in lung cancer [8],
which may explain the diverse role of the taxon.

A unique feature of our study is the implementation of the mycobiome in ICI-related
MG analysis, where we revealed a number of fungal taxa associated with OS and other clini-
cal parameters. Cortinarius davemallochii, Helotiales, Chaetosphaeriales, Tremellomycetes
and other fungal taxa were more abundant in patients with short OS. Also, in comparison,
more fungal than bacterial taxa were associated with short OS, indicating that intestinal
over-colonization of fungi might lead to decreased ICI efficacy.

In our study, antibiotic usage (either before or after ICI) did not contribute to a
detriment in the ICI response or OS. This is in contrast with the studies of Derosa et al. [47]
and Pinato et al. [48], but in line with other studies, where multivariate analysis could not
underpin the significant negative effect of antibiotic usage on response or OS [23,49–51].
The toxicity of ICI was associated with the fungal taxon Thelephoraceae [52,53] and the
bacterial genus Lachnospiraceae. The latter was reported to produce a considerable amount
of short-chain fatty acids and to be associated with diabetes, metabolic syndrome [54,55],
and inflammatory bowel disease [56]. When analyzing PD-L1 expression, we found
associations with Dorea formicigenerans and Lachnospiraceae bacterium among other
taxa correlating negatively with PD-L1. In contrast, other species, including the fungal
taxa Hymenoscyphus immutabilis, Clavulinopsis fusiformis were associated with high
PD-L1 expression.

Multiple research groups thoroughly studied the pulmonary mycobiome and identi-
fied Saccharomyces and Aspergillus fungi associated with a higher frequency of exacer-
bations and mortality in COPD patients [57,58]. In contrast, little is known about the gut
mycobiome in COPD patients. In our study, the value of FEV1 showed a significant negative
correlation with Clostridium celatum and multiple fungal species, including Cortinarius
davemallochii, Thelephoraceae and Helotiales. Clostridium celatum is a Gram-positive
anaerobic bacterium whose intestinal over-colonization with other Clostridium species
frequently occurs after the antibiotic use that is broadly administered during COPD’s acute
exacerbations [59]. The rudimental effects of PPI and H-blocker administration on the gut
microbiome have been extensively studied [60,61]. However, while most studies focus on
bacteria, the enrichment of fungal species, such as Serendipitaceae and Hyphodiscus, is a
novel and intriguing finding in the field that might have future clinical implications.

From the individual QTA parameters, the value of Coarseness was significantly in-
creased in the long OS and PD-L1-high patients, while the values of Energy and Kurtosis
were significantly increased in the short OS and PD-L1-low patients, which may provide a
rationale for selecting patients for immunotherapy. The multiple variables subtracted from
QTA can be compressed to more manageable data components through PCA. PCs represent
CT-derived key parameters that store valuable information that can be cost-effectively
integrated into the clinical practice. In our study, seven PCs were identified, assembled
from variations of the 105 measured QTA parameters. PC5 showed the highest number
of associations with other parameters, apart from gender and COPD; PC5 was also associ-
ated with pseudoprogression. PC7 was significantly associated with the prediction of the
response to ICI therapy. To underpin the role of QTA in predicting response, OS, and other
clinical parameters, correlation studies in larger numbers of patient cohorts and in vivo
validation in animal models, such as fecal microbiota transplantation (FMT), are required
in the future [62].

To generate predictions for survival, response to ICI therapy, and other clinicopatho-
logical parameters, we used a novel machine learning approach, along with MG and QTA
signatures. A peculiar advantage of the XGB algorithm is that, unlike all the other learning
algorithms, XGB can account for missing data to enhance prediction. As the datasets
usually include missing values, this innovative methodology increased the proportion
of data included in the analysis. Using all the available parameters, the XGB machine
learning algorithm showed therapy response associations with an accuracy of 83%, and
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distinguished long-term survival from short-term survival patients with an accuracy of
69%. While the filled XGB algorithm worked with peculiarly high PPVs for parameters like
toxicity, PD-L1 expression (≥1%), response to therapy, and OS, it worked with relatively
low NPVs for both ICI response and OS.

A chest CT scan is a routine examination at the time of NSCLC diagnosis. Therefore,
it is a widely accessible data type that can, by using ML models, add predictive value to
routine biomarker evaluation, such as PD-L1 expression, the tumor mutation burden (TMB),
or the Immunoscore, in predicting ICI response. Despite being biologically intriguing, QTA
features alone do not represent reliable predictive power in the clinical setting to assess
ICI response or OS as they have accuracies of only 69% and 72%, respectively, based on
the ML model. However, together with the Metagenome and other clinical parameters,
a much more accurate predictive and prognostic nomogram could be established, with
accuracies of up to 87% and 83%, respectively, further strengthening the narrative that
assessing isolated biomarkers alone is not as effective as combining the predictive power of
multiple biomarkers, using advanced algorithms.

The limitations of this study include the relatively low number of patients and the
amount of available data. Furthermore, we did not have information on the immune
microenvironment of the tumor samples, only the PD-L1 expression. Also, the patients
were not assessed separately with regard to whether they received first-line ICI or a
subsequent line, but the line of therapy did not show a correlation or significant association
with response, OS, or a distinct metagenomic signature. The algorithm, however, was able
to validate its accuracy through a training and prediction dataset. Thus, the present study
is mainly for the generation of a hypothesis that needs further validation.

5. Conclusions

Our study reports significant associations of ICI efficacy and specific gut microbial
species, QTA features, and clinicopathological parameters. Our data suggest that an inte-
grated signature of the variables might predict outcomes with higher accuracy compared
to the individual parameters in possible future therapeutic applications. Evaluating the
machine learning algorithms based on contrast CT images and naïve Bayes and k-means
clustering may predict the outcomes of immunotherapy. Further studies on “Big Data”
are needed to define the exact prognostic value of QTA in NSCLC patients receiving
ICI therapy.
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QTA features to principal components generated by PCA, Figure S2: Accuracy, PPV, and NPV of
the XGB machine learning algorithm used in predicting outcomes according to clinicopathological
signatures of patients: not-filled data, Table S1: Most abundant OTUs in long vs. short OS patients,
Table S2: Most abundant OTUs in PD-L1-high vs. PD-L1-low patients, Table S3: Most abundant
OTUs in toxicity vs. no-toxicity patients, Table S4: Spearman’s correlation coefficients and p-values of
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