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Simple Summary: The Internet of Things (IoT) uses connected devices and sensors, like high-
resolution cameras and specific sensors in wearable devices, for the collection of skin images with
abnormalities. Skin cancer detection is difficult because of differences in lesion size, shape, and
lighting conditions. To address this, an innovative approach called “ODL-SCDC”, combining deep
learning with IoT technology, is developed. The proposed model uses advanced techniques like
hyperparameter selection and feature extraction to improve skin cancer classification. The results
show that ODL-SCDC outperforms other methods in accurately identifying skin lesions, which could
have a significant impact on early cancer detection in the medical field.

Abstract: Internet of Things (IoT)-assisted skin cancer recognition integrates several connected
devices and sensors for supporting the primary analysis and monitoring of skin conditions. A prelim-
inary analysis of skin cancer images is extremely difficult because of factors such as distinct sizes and
shapes of lesions, differences in color illumination, and light reflections on the skin surface. In recent
times, IoT-based skin cancer recognition utilizing deep learning (DL) has been used for enhancing
the early analysis and monitoring of skin cancer. This article presents an optimal deep learning-based
skin cancer detection and classification (ODL-SCDC) methodology in the IoT environment. The goal
of the ODL-SCDC technique is to exploit metaheuristic-based hyperparameter selection approaches
with a DL model for skin cancer classification. The ODL-SCDC methodology involves an arithmetic
optimization algorithm (AOA) with the EfficientNet model for feature extraction. For skin cancer
detection, a stacked denoising autoencoder (SDAE) classification model has been used. Lastly, the
dragonfly algorithm (DFA) is utilized for the optimal hyperparameter selection of the SDAE algo-
rithm. The simulation validation of the ODL-SCDC methodology has been tested on a benchmark
ISIC skin lesion database. The extensive outcomes reported a better solution of the ODL-SCDC
methodology compared with other models, with a maximum sensitivity of 97.74%, specificity of
99.71%, and accuracy of 99.55%. The proposed model can assist medical professionals, specifically
dermatologists and potentially other healthcare practitioners, in the skin cancer diagnosis process.

Keywords: Internet of Things; skin cancer diagnosis; dermoscopic images; deep learning; metaheuristics

1. Introduction

The Internet of Things (IoT) is designed by interconnecting devices to the Internet
using modern communication technology for sharing data [1]. Recently, IoT has been
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popularly implemented in various appliances such as vehicular ad hoc networks, smart
grids, body sensor networks, smart cities, and smart homes [2,3]. The IoT development
depends on diverse advanced technologies, namely, wireless sensor networks (WSNs),
cloud computing (CC), and information sensing [4]. The IoT is usually exploited to en-
hance and develop medical systems due to its effective power for integrating with the
resources of substructures and offering essential data to users [5]. The medical system
puts a considerable quantity of data through WSNs when distributing various e-health
services, namely, electronic health records, remote monitoring for patients, and medical
platforms [6]. Skin cancer is considered the sixth major cancer variety, which could be im-
proved around the world. The skin layer comprises three forms of cells, melanocytes, basal
cells, and squamous cells, in which cells are responsible for tissues to induce cancer [7,8].
Hence, there are different skin tumors, namely, basal cell carcinoma (BCC), melanoma,
and squamous cell carcinoma (SCC), which can be a serious variety of cancers. People
are mainly affected by skin cancer in Australia and the United States [9]. Diagnosis of
skin cancer at an earlier phase is challenging for dermatologists, which stimulates research
workers to develop a simplified and automated cancer detector for identifying skin cancer
at an earlier phase [10].

Dermoscopy improves melanoma diagnostic accuracy; however, it can be quite diffi-
cult to accurately analyze some cancers, and especially earlier melanomas have insufficient
special dermoscopic features [11]. Although dermoscopy analyzes skin cancers with bet-
ter accuracy, it is not appropriate for identifying featureless melanoma, and it requires
increased accuracy to improve the patient’s survival rates [12,13]. The difficulties with
dermoscopy and the requirement to enhance the identification accuracy of skin tumors
then positions the substructure for emerging computer-aided detection (CAD) techniques
for analyzing skin cancers [14]. In general, there have been five stages in computer-aided
skin cancer analysis such as feature extraction, segmentation, classification, preprocessing,
and image acquisition [15]. The important stages in the CAD of skin cancers are classifica-
tion and segmentation [16]. But, identifying skin cancer employing CAD is simple, and
we should consider numerous aspects for accurate identification, for instance, artefacts
like ruler signs, dark corners, ink marks, water bubbles, hairs, and marker signs, which
may lead to incorrect segmentation and misclassification of skin cancers [17,18]. In sev-
eral computer-aided techniques, deep learning (DL)-based algorithms provide optimistic
outcomes for the classification and segmentation of skin cancers due to their capability
for extracting complex features from skin cancer images for extremely specific diagno-
sis [19]. Also, DL methods learn function-specific features and are more effective than other
techniques.

This article presents an optimal deep learning-based skin cancer detection and clas-
sification (ODL-SCDC) algorithm in the IoT environment. The goal of the ODL-SCDC
technique is to exploit metaheuristic-based hyperparameter selection approaches with a
DL model for skin cancer classification. To achieve this, the ODL-SCDC technique un-
dergoes preprocessing using a Wiener filtering (WF) system. Moreover, the ODL-SCDC
algorithm involves an arithmetic optimization algorithm (AOA) with an EfficientNet model
for feature extraction. For skin cancer detection, a stacked denoising autoencoder (SDAE)
classification model has been used. Lastly, the dragonfly algorithm (DFA) is utilized for
the optimal hyperparameter selection of the SDAE algorithm. The simulation validation
of the ODL-SCDC algorithm can be tested on a benchmark skin lesion database. The key
contributions of the paper are summarized as follows.

• Develop an automated ODL-SCDC technique comprising WF-based preprocessing,
AOA with EfficientNet-based feature extraction, SDAE classifier, and DFA-based
hyperparameter tuning. To the best of our knowledge, the proposed ODL-SCDC
technique never existed in the literature.

• Propose AOA with the EfficientNet model for feature extraction, a critical aspect of
skin cancer classification. The AOA-based fine-tuning process is crucial for optimizing
the performance of the classification model.
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• Present an SDAE classifier for skin cancer classification and DFA is employed for
optimal hyperparameter selection of the SDAE model. Hyperparameter optimization
of the SDAE model using DFA using cross-validation helps to boost the predictive
outcome of the proposed model for unseen data.

2. Related Works

In [20], a powerful skin cancer identification model was presented for enhancing accu-
racy by learning and extracting significant image representations through a MobileNetV3
framework. Subsequently, the removed features were employed as input to an adapted
Hunger Games Search (HGS) based on Dynamic-Opposite Learning (DOLHGS) and PSO.
Ramya and Sathiyabhama’s [21] primary aim was creating an ensemble ML with an
improved genetic algorithm (GA) method for attaining high-level accurateness in the
prognosis of skin cancers at an early phase by comparison with other present methods.
Then, the feature selection (FS) was implemented by utilizing an Enhanced-GA (EGA)
that generates enhanced solutions through processes such as ensemble, mutations, and
crossover with ELM (EGA-ELM) for classifying the images as non-cancerous or cancer-
ous. Abd Elaziz et al. [22] designed a robust technique for skin cancer diagnosis with a
DL-based algorithm as the extracted features support that a diagnosis could be attained
by employing the MobileNetV3 framework. Further, an innovative technique named the
Improved Artificial Rabbits Optimization (IARO) was presented that exploits the crossover
operator and Gaussian mutation to avoid the irrelevant features from the feature extraction
by the MobileNetV3 framework.

Khamparia et al. [23] introduced a new DL Internet of Health and Things (IoHT)-
determined model for classifying skin cancers in skin images by implementing the TL
method. In this developed model, automated features are removed from images employing
various pretrained frameworks, namely, SqueezeNet, VGG19, Inception V3, and ResNet50,
that were provided in the fully connected layer (FCL) of a CNN for the classification of ma-
lignant and benign skin cells utilizing a dense and max pooling process. The authors of [24]
suggested a novel skin cancer detection technique named DL with Evolutionary Algorithm
Image Segmentation (DL-EAIS) for IoT and cloud-based smart medical fields. Firstly,
dermoscopic images could be taken by employing IoT devices that must be transferred
to cloud servers for additional identification. Secondly, the shallow CNN (SCNN) frame-
work was exploited for feature extraction. Moreover, the Deep-Kernel-ELM (D-KELM)
algorithm has been utilized as a classification technique for identifying the class labels of
dermoscopic images. In [25], the DL technique (CNN) was utilized to develop a computer
technique to forecast novel conditions of skin cancers. Later, this developed method made
a CNN approach that contains four fully connected layers, three convolution layers, and
three max pooling layers. Adjobo et al. [26] implemented a Gabor Convolutional Network
(GCN) method to enhance the effectiveness of the automatic method of analysis for skin
tumors. This algorithm integrates a CNN and Gabor filtering (GF) and supports three
operations such as the collection of GF banks, a CNN model, and filter injection. In [27],
a DL-assisted hybrid optimizer was employed to identify skin cancer and segmenting
lesions. Two optimization techniques have been implemented for diagnosing cancers and
segmenting skin lesions. MultiScale Residual Fusion Network (MSRFNet) was exploited for
the segmentation of skin cancer and could be trained by the developed Average Subtraction
Student Psychology-Based Optimizer (ASSPBO) technique.

3. The Proposed Model

In this article, we have designed and developed an automated skin cancer classi-
fication and detection model using the ODL-SCDC technique in the IoT environment.
The goal of the ODL-SCDC technique is to exploit metaheuristic-based hyperparame-
ter selection approaches with a DL model for skin cancer classification. To achieve this,
the ODL-SCDC technique performs a series of processes such as WF-based processing,
EfficientNet-based feature extraction, AOA-based hyperparameter tuning, SDAE-based
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classification, and DFA-based parameter tuning. Figure 1 depicts the entire process of the
ODL-SCDC approach.
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3.1. Image Preprocessing

To preprocess the input images, the WF approach is used. The WF is named after
Norbert Wiener, and it is a mathematical model for signal processing and filtering [28].
It is mainly utilized in the domains of statistics, engineering, and image processing for
estimating an unknown signal or system by decreasing the mean squared error (MSE)
among the evaluated signal and true signal. The WF is extremely beneficial if dealing with
noisy signals or once the features of noises are known. Mathematically, the WF can plan
for minimizing the MSE among the estimation signal and true signal. It usually contains
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convolutional, spectral analysis, and statistical estimates. The filtering is executed in either
the time or frequency domains, based on the nature of the problems and the existing data.

3.2. Feature Extraction Using EfficientNet Model

In this work, the EfficientNet approach is applied for feature extraction. A model
scaling algorithm is used to enhance the accuracy and speed of the model. To accomplish
this, different sizes of scaling models can be re-examined as suggested by the predecessors,
involving the width, depth, and resolution of the network [29]. The researchers recognized
that the dimension is mutually influential and EfficientNet was proposed through experi-
ments, while earlier research had focused typically on expanding one of these dimensions
to enhance performance. Figure 2 represents the architecture of EfficientNet. Particularly,
they formulated the problem description for exploring the relationships between the width,
depth, and resolution of the network to achieve model accuracy. Consider the entire net
as N, and the ith layer is formulated by Yi = Fi(Xi), where Fi represents the operator, Yi
denotes the output tensor, and Xi indicates the input tensor. Where N has k convolution lay-
ers, = Fk � . . .� F2 � F1(X1) = �j=1...,kFj(Xi). The convolution layer is generally divided
into similar architecture phases, hence N is formulated as:

N = �i=1...sFLi
i

(
X〈Hi , Wi ,Cj〉

)
(1)

In Equation (1), i refers to the stage index, FLi
i denotes the convolution layer of ith

stages, Fi repeats Li times, and 〈Hi, Wi, Ci〉 shows the shape of the input images.
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The research workers established some constraints involving fixing the fundamen-
tal architecture of the network, which imposes equivalent scaling on each layer and in-
corporates computation and memory constraints to decrease the search range. Conse-
quently, the scaling of the network is enhanced by multiplying the baseline network as
F̂i, L̂i, Ĥi,̂ ̂Wi, and Ci with the constant magnification:

max
d,w,r

Accuracy(N(d, w, r))

s.t.N(d, w, r) = �i=1,...s F̂L̂i
i

(
X〈r×Ĥi ,r×Ŵi ,r×Ĉi〉

)
(2)

Memory (N)≤ target_memory

FLOPS (N)≤ target_flops

In Equation (2), w, d, and r signify the coefficients for scaling the width, depth, and
resolution of the network.
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The authors presented a compound scaling method after conducting an experiment
that involved modifying only one dimension simultaneously, along with adjusting each
of the three dimensions at a time. This technique includes a compound co-efficient φ to
equally scale the resolution, width, and depth of the network:

depth : d = αφ

width : w = βφ

depth : r = γφ

s.t.α · β2 · γ2 ≈ 2, where α, β, γ ≥ 1 (3)

In Equation (3), α, β, and γ are the constants representing a small grid search.

3.3. Hyperparameter Tuning Using AOA

To adjust the parameters related to the EfficientNet, the AOA is used. The concept
behind the AOA technique is to perform mathematical operations such as addition, divi-
sion, subtraction, and multiplication operators [30]. AOA is a basic structure with lower
computation difficulty, and it can be associated with a sine-cosine algorithm (SCA). Assume
that M&D companies are turning out large phases in each iteration; the exploration stage is
where most of the work is performed.

Xi(l + 1) =
{

Xb(t)/(MOP + eps).((UB− LB)µ + LB), rand < 0.5
Xb(t)MOP.((UB− LB)µ + LB), rand ≥ 0.5

(4)

where eps referring to the simple positive number and the constant coefficient represented
as 1 (0.499) are two factors from the proposal model. MOP includes a nonlinear reduction
from 0 to 1 as the iterations progress.

MOP = 1−
(

t
T

) 1
α

(5)

where α is a constant value fixed as 5. Note that both the M and D operators in Equation (5)
generate a high random starting point for the best search agent. At the same time, the S and
A operators are employed to devote greater attention to local exploitation, thus decreasing
the count of stages beneath the search space.

The right equilibrium between use and discovery is critical to the accomplishment of
maximum efficiencies in any model. The AOA parameter was utilized to switch between
exploitation and exploration at each iteration.

MOA(t) = Min + t
(Max−Min

T
)

(6)

In Equation (6), Min and Max indicate constant values. According to Equation (6),
MOA enhances Min to Max. Thus, the search agent has an additional chance to conduct
exploration in the searching range; then, the search agent is very likely to conduct a search
near the optimal position.

The AOA technique produces an FF to enhance classification accuracy. It shows a
positive integer for describing the real-time accuracy of the possible performance. The
classifier error rate is supposed to be FF, and its minimization is the goal.

f itness(Xi) = Classi f ierErrorRate(Xi)

= No. o f misclassi f ied instances
Total no. o f instances ∗ 100

(7)
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3.4. Skin Cancer Detection Using Optimal SDAE Model

For skin cancer classification, the SDAE model is applied. Autoencoders (AEs) are
allowed to convert high-dimension input data into low-dimension feature representa-
tions [31]. For improved robustness of AE, the DAE is capable of mapping real data
instances xi for corrupted instances

∼
x i. Stacking multiple DAEs allows the input data that

were compressed as distinct hidden spaces to be extracted for in-depth features. Therefore,
the resultant layer zL

i of the SDAE is expressed as Equation (8):

zL
i = φL

(
WL
(
· · · φ1

(
W1∼x i + b1

)
. . .
)
+ bL

)
(8)

where ∗i denotes the corrupted input for xi, W1, W2, . . . , WL implies the weighted matrix,
b1, b2, . . . , bL represents the bias vectors, and φ1, φ2, . . . , φL stands for the activation func-
tions like Relu, Sigmoid, and Tanh. L signifies the count of hidden layers (HLs), with L = 1
for the input layer and L = L for the resultant layer. By diminishing the error among the
original input and reconstructed output, the main function of the SDAE is expressed as
Equation (9):

ζ =
1
n

n

∑
i=1
‖xi − φL(WL(· · · φ1(W1∼x i + b1) . . .) + bL)‖

2
(9)

Compared to the simple AE and DAE, the SDAE is a specific hierarchical model for
learning the feature representation from depth in the corrupted input.

Finally, the DFA is utilized for the hyperparameter selection of the SDAE model. DFA
is a recent metaheuristic technique that drew its inspiration from the static and dynamic
strategies of crowding [32]. Both steps in the metaheuristic algorithm are called exploitation
and exploration. DFs form small groups and fly in dissimilar regions as a static group. In
the static group, DFs fly in one direction and in large groups, which are desired behaviors
from the exploitation stage. To inspire the behaviors of DFs, five fundamental rules, three
of which are developed by Reynold and two novel concepts, are discussed in detail:

Separation, which represents the avoidance of people’s contact with others, is given
as follows.

Si = −
N

∑
j=1

X− Xi (10)

where the measured tap of transformer X signifies the individual location, Xj refers to the
amount of power of resources in the jth location, and N shows the number of measurements.

Alignment: Compared to the total tap transformer measurement, this implies the
amount of the tap transformer at different hours.

Aj =
∑N

j=1 Vj

N
(11)

In Equation (11), Vi denotes the number of transformer j and N refers to the amount
of transformer tap measurements.

Cohesion: This implies the quantity of passing power measured in relation to the
overall amount of measured powers in various hours.

Cj =
∑N

j=1 Xj

N
− X (12)

In Equation (12), Xj denotes the amount closer to the reference value and X shows
the transformer tap rate.

Attraction: The principal objective is to maintain survival; consequently, each individ-
ual should be attracted to the food sources:

Fi = X+ − X (13)
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In Equation (13), X denotes the reduction in transformer tap loss and X+ is the power
transmission from the network.

Distraction: This means staying away from the enemy that is shown below.

Ei = X− − X (14)

In Equation (14), X denotes the location of the enemy and X shows the location of
individuals.

Position vector X and the step length vector are the two vectors considered for updat-
ing the location of artificial DFs and simulating their movement.

∆Xt+10 =

(
sSi + aAi + cCj+

f Fi + eEi

)
+ w∆Xt (15)

In Equation (15), the ∆x step length vector is the same as the speed vector in PSO,
and based on the PSO technique, the DFA is developed. A denotes the alignment value
based on the ith load and A indicates the co-efficient related to the direction; s denotes
the number of transformer taps from the presence of scattered production; Si denotes the
separation rate compared with the ith loss; the value f represents the nutrition factor; and
fi indicates the food source for the ith load. The conditions of the tap transformer regarding
the passing power are noted by i, w implies the inertia weight, and t shows the repetition
count of the model. c shows the cohesion coefficient and Ci denotes the cohesion value
connected to i. e indicates the deviation of power transmitted, Ei. After evaluating the step
vector, the position vector is evaluated using the following expression.

∆Xt+1 = Xt + ∆Xt+1 (16)

4. Results Analysis

The proposed model is simulated using the Python 3.8.5 tool on a PC with the follow-
ing specifications: i5-8600k, GeForce 1050 Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD.
The parameter settings are given as follows: learning rate: 0.01, dropout: 0.5, batch size: 5,
epoch count: 50, and activation: ReLU. For experimental validation, 80:20 and 70:30 ratios
of training/testing data are used.

In this study, the performance validation of the ODL-SCDC algorithm has been tested
on the ISIC database including distinct classes, namely, Angioma (ANG) (21 images), Nevus
(NEV) (46 images), Lentigo NOS (LNOS) (41 images), Solar Lentigo (SLG) (68 images),
Melanoma (MEL) (51 images), Seborrheic Keratosis (SKT) (54 images), and Basal Cell
Carcinoma (BCC) (37 images). Table 1 represents the details of the database.

Table 1. Database details.

Class No. of Images

Angioma 21

Nevus 46

Lentigo NOS 41

Solar Lentigo 68

Melanoma 51

Seborrheic Keratosis 54

Basal Cell Carcinoma 37

Total Number of Images 318
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Figure 3 exhibits the confusion matrices attained by the ODL-SCDC methodology at
80:20 and 70:30 of the TR phase/TS phase. The outcome inferred the effective recognition
and classification of all seven classes.
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The skin cancer classification result of the ODL-SCDC technique is provided at 80:20 of
the TR phase/TS phase in Table 2 and Figure 4. The experimental values inferred that
the ODL-SCDC technique gains enhanced performance under all classes. With 80% of
the TR phase, the ODL-SCDC technique offers average accuy, sensy, specy, and Fmeasure of
96.55%, 97.74%, 99.71%, and 98.33%, respectively. Additionally, with 20% of the TS phase,
the ODL-SCDC system gains average accuy, sensy, specy, and Fmeasure of 98.66%, 94.05%,
99.14%, and 95.28%, correspondingly.

The skin cancer classification outcome of the ODL-SCDC technique is provided at
70:30 of the TR phase/TS phase in Table 3 and Figure 5. The simulation values implied that
the ODL-SCDC method obtains higher outcomes under all classes. With 70% of the TR
phase, the ODL-SCDC system attains average accuy, sensy, specy, and Fmeasure of 99.36%,
96.82%, 99.61%, and 97.41%, correspondingly. Furthermore, with 30% of the TS phase, the
ODL-SCDC algorithm gains average accuy, sensy, specy, and Fmeasure of 98.51%, 93.73%,
99.10%, and 94.37%, correspondingly.
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Table 2. Skin cancer classifier outcome of ODL-SCDC algorithm at 80:20 of TR phase/TS phase.

Class Accuy Sensy Specy FMeasure

TR Phase (80%)

Angioma 99.61 92.31 100.00 96.00

Nevus 100.00 100.00 100.00 100.00

Lentigo NOS 100.00 100.00 100.00 100.00

Solar Lentigo 98.43 100.00 98.00 96.43

Melanoma 100.00 100.00 100.00 100.00

Seborrheic Keratosis 99.21 95.12 100.00 97.50

Basal Cell Carcinoma 99.61 96.77 100.00 98.36

Average 99.55 97.74 99.71 98.33

TS Phase (20%)

Angioma 96.88 75.00 100.00 85.71

Nevus 100.00 100.00 100.00 100.00

Lentigo NOS 100.00 100.00 100.00 100.00

Solar Lentigo 95.31 100.00 94.00 90.32

Melanoma 100.00 100.00 100.00 100.00

Seborrheic Keratosis 100.00 100.00 100.00 100.00

Basal Cell Carcinoma 98.44 83.33 100.00 90.91

Average 98.66 94.05 99.14 95.28
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Figure 4. Average of ODL-SCDC algorithm at 80:20 of TR phase/TS phase.

To calculate the performance of the ODL-SCDC approach at 80:20 of the TR phase/TS
phase, TR and TS accuy curves are determined, as revealed in Figure 6. The TR and TS
accuy curves establish the performance of the ODL-SCDC model over several epochs. The
figure provides meaningful details regarding the learning task and generalisation abilities
of the ODL-SCDC model. With an enhanced epoch count, it is noticed that the TR and TS
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accuy curves are improved. It is experimental that the ODL-SCDC algorithm obtains better
testing accuracy which has the capability of recognizing the patterns in the TR and TS data.

Table 3. Skin cancer classifier outcome of ODL-SCDC algorithm at 70:30 of TR phase/TS phase.

Class Accuy Sensy Specy FMeasure

TR Phase (70%)

Angioma 99.10 86.67 100.00 92.86

Nevus 100.00 100.00 100.00 100.00

Lentigo NOS 99.55 96.67 100.00 98.31

Solar Lentigo 99.55 100.00 99.43 98.95

Melanoma 99.10 97.30 99.46 97.30

Seborrheic Keratosis 98.20 97.14 98.40 94.44

Basal Cell Carcinoma 100.00 100.00 100.00 100.00

Average 99.36 96.82 99.61 97.41

TS Phase (30%)

Angioma 98.96 83.33 100.00 90.91

Nevus 97.92 100.00 97.59 92.86

Lentigo NOS 100.00 100.00 100.00 100.00

Solar Lentigo 97.92 100.00 97.33 95.45

Melanoma 100.00 100.00 100.00 100.00

Seborrheic Keratosis 97.92 89.47 100.00 94.44

Basal Cell Carcinoma 96.88 83.33 98.81 86.96

Average 98.51 93.73 99.10 94.37
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Figure 7 exhibits the overall TR and TS loss values of the ODL-SCDC algorithm at
80:20 of the TR phase/TS phase over epochs. The TR loss exhibits that the method loss is
minimal over epochs. Primarily, the loss values are lesser as the model modifies the weight
to minimize the prediction error on the TR and TS data. The loss curves demonstrate the
extent to which the model fits the training data. It is detected that the TR and TS loss is
steadily decreased and depicted that the ODL-SCDC system effectually learns the patterns
exhibited in the TR and TS data. It is also observed that the ODL-SCDC methodology
modifies the parameters to decrease the discrepancy between the prediction and the original
training label.
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The precision–recall curve of the ODL-SCDC system at 80:20 of the TR phase/TS phase
is demonstrated by plotting precision against recall as defined in Figure 8. The outcome
confirms that the ODL-SCDC approach reaches higher precision–recall outcomes under
all classes. The figure represents that the model learns to recognize various classes. The
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ODL-SCDC model accomplishes improved results in the recognition of positive instances
with minimal false positives.
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The ROC curves offered by the ODL-SCDC model at 80:20 of the TR phase/TS phase
are illustrated in Figure 9, which have the ability the discriminate the class labels. The
figure implies valuable insights into the trade-off between the TPR and FPR rates over
distinct classification thresholds and varying numbers of epochs. It presents the accurate
predictive performance of the ODL-SCDC system on the classification of various classes.
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In Table 4, a comprehensive comparison study of the ODL-SCDC technique is made [1].
Figure 10 represents the comparative results of the ODL-SCDC technique in terms of accuy.
Based on accuy, the ODL-SCDC technique gains an increasing accuy of 99.55%, whereas
the IIOT-DLSLD, DLCAL-SLDC, DL-ANFC, SVM, CDNN, DLN, and DCCN-GC models
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obtain decreasing accuy values of 99.20%, 98.50%, 97.90%, 74.30%, 93.40%, 93.20%, and
93.40%, respectively.

Table 4. Comparative outcome of ODL-SCDC algorithm with other approaches.

Methods Sensy Specy Accuy

ODL-SCDC 97.74 99.71 99.55

IIoT-DLSLD Technique 97.30 99.50 99.20

DLCAL-SLDC 94.50 99.10 98.50

DL-ANFC 93.40 98.70 97.90

SVM Model 73.20 75.40 74.30

CDNN Model 82.50 97.50 93.40

DLN Algorithm 82.00 97.80 93.20

DCCN-GC 90.80 92.70 93.40
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Figure 11 signifies the comparative outcomes of the ODL-SCDC approach in terms of
sensy and specy. Based on sensy, the ODL-SCDC technique gains a higher sensy of 97.74%,
whereas the IIOT-DLSLD, DLCAL-SLDC, DL-ANFC, SVM, CDNN, DLN, and DCCN-GC
systems obtain decreasing sensy values of 97.30%, 94.50%, 93.40%, 73.20%, 82.50%, 82%,
and 90.80%, correspondingly. Based on specy, the ODL-SCDC methodology achieves a
higher specy of 99.71%, whereas the IIOT-DLSLD, DLCAL-SLDC, DL-ANFC, SVM, CDNN,
DLN, and DCCN-GC algorithms obtain lesser specy values of 99.50%, 99.10%, 98.70%,
75.40%, 97.50%, 97.80%, and 92.70%, correspondingly.

Lastly, the computation time (CT) results of the ODL-SCDC technique are compared
with recent models in Table 5 and Figure 12. The experimental outcomes infer the lowest
CT value of the ODL-SCDC technique with 1.30 s. On the other hand, the IIoT-DLSLD,
DLCAL-SLDC, DL-ANFC, SVM, CDNN, DLN, and DCCN-GC models obtain increasing
CT values. Therefore, the ODL-SCDC technique exhibits effectual performance of skin
cancer classification.
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Table 5. CT outcome of ODL-SCDC algorithm with other approaches.

Methods Computational Time (s)

ODL-SCDC 1.30

IIoT-DLSLD Technique 2.85

DLCAL-SLDC 4.80

DL-ANFC 4.43

SVM Model 3.93

CDNN Model 3.80

DLN Algorithm 4.82

DCCN-GC 3.87
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5. Conclusions

In this article, we have designed and developed an automated skin cancer classification
and detection model using the ODL-SCDC technique in the IoT environment. The goal
of the ODL-SCDC technique is to exploit metaheuristic-based hyperparameter selection
approaches with a DL model for skin cancer classification. To achieve this, the ODL-SCDC
technique performs a series of processes such as WF-based processing, EfficientNet-based
feature extraction, AOA-based hyperparameter tuning, SDAE-based classification, and
DFA-based parameter tuning. In addition, the ODL-SCDC system involves the AOA
with the EfficientNet algorithm for feature extraction. For skin cancer detection, the
SDAE classification model has been used. Lastly, the DFA is utilized for the optimal
hyperparameter selection of the SDAE algorithm. The simulation validation of the ODL-
SCDC algorithm has been tested on a benchmark skin lesion database. The extensive results
reported the enhanced performance of the ODL-SCDC technique with other approaches
with respect to distinct measures.
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