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Simple Summary: This review systematically evaluated radiomics analysis procedures for charac-
terizing salivary gland tumors (SGTs) on magnetic resonance imaging (MRI). Radiomics analysis
showed potential for characterizing SGTs on MRI, but its clinical application is limited due to complex
procedures and a lack of standardized methods. This review summarized radiomics analysis proce-
dures, focusing on reported methodologies and performances, and proposed potential standards for
the procedures for radiomics analysis, which may benefit further developments of radiomics analysis
in characterizing SGTs on MRI.

Abstract: Radiomics analysis can potentially characterize salivary gland tumors (SGTs) on magnetic
resonance imaging (MRI). The procedures for radiomics analysis were various, and no consistent
performances were reported. This review evaluated the methodologies and performances of studies
using radiomics analysis to characterize SGTs on MRI. We systematically reviewed studies published
until July 2023, which employed radiomics analysis to characterize SGTs on MRI. In total, 14 of
98 studies were eligible. Each study examined 23–334 benign and 8–56 malignant SGTs. Least
absolute shrinkage and selection operator (LASSO) was the most common feature selection method
(in eight studies). Eleven studies confirmed the stability of selected features using cross-validation or
bootstrap. Nine classifiers were used to build models that achieved area under the curves (AUCs)
of 0.74 to 1.00 for characterizing benign and malignant SGTs and 0.80 to 0.96 for characterizing
pleomorphic adenomas and Warthin’s tumors. Performances were validated using cross-validation,
internal, and external datasets in four, six, and two studies, respectively. No single feature consistently
appeared in the final models across the studies. No standardized procedure was used for radiomics
analysis in characterizing SGTs on MRIs, and various models were proposed. The need for a standard
procedure for radiomics analysis is emphasized.

Keywords: radiomics; texture analysis; salivary glands tumor; magnetic resonance imaging; systematic
review

1. Introduction

Salivary gland tumors (SGTs) constitute approximately 2–6.5% of all head and neck
tumors, with about 80% originating from the parotid gland [1–3]. The most prevalent
parotid tumors are benign salivary gland tumors (BSGTs), primarily pleomorphic adenoma
(PA) and Warthin’s tumor (WT) [4]. The remaining tumors are malignant salivary gland
tumors (MSGTs) [4]. The treatment decisions and prognosis for parotid tumors vary
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depending on their diverse subtypes [5]. Therefore, accurate pre-operative diagnosis
is crucial for clinical decision-making in patients with SGTs. Ultrasound-guided fine-
needle aspiration cytological (US-guided FNAC) examination is most commonly used
for identifying the nature of SGTs [6]. However, this examination is invasive, and due to
the heterogeneity of the SGTs, the accuracy of FNAC in the characterization of SGTs only
ranges from 86–95%, with 5–14% remaining unknown, leading to repeating FNAC [6–8].

Magnetic resonance imaging (MRI) is widely employed in mapping the SGTs for
treatment plans because it provides detailed information on soft tissue. MRI has also
demonstrated comparable efficacy to FNAC in characterizing SGTs [9–11]. More recently,
the introduction of radiomics analysis to medical imaging has brought new approaches for
quantitative imaging analysis [12], so it is not surprising that researchers have investigated
the performance of radiomics analysis in characterizing SGTs on MRI [13–27]. Although
these studies showed that radiomics analysis offers great potential for characterizing SGTs
on MRI, variations in the proposed radiomics models limit its application in clinical practice.
A significant challenge hindering further development in this field is the complexity of the
radiomics analysis procedures. Subtle differences in each step may lead to variant results.
However, a consensus regarding the standardized procedures for radiomics analysis in this
context has not yet been reached.

This systematic review aims to evaluate studies that have assessed the performance of
radiomics analysis in characterizing benign and malignant SGTs or PA and WT on MRI.
The primary focus is analyzing the methodologies and performances reported in each
eligible study to provide a comprehensive summary of the approaches employed during
the radiomics analysis procedure. The aim is to contribute to the standardization of a
radiomics analysis procedure for characterizing SGTs on MRI, which may facilitate its
translation into clinical practice.

2. Materials and Methods
2.1. Research Strategy

The analysis and inclusion criteria methods were pre-defined and documented for
this systematic review. The review protocol was registered at PROSPERO International
Prospective Register of Systematic Reviews (ID: CRD 42023446728). This review followed
the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020
statement [28].

A systematic literature search was conducted through PubMed, Embase, Web of Sci-
ence, Scopus, and Cochrane Library. The search encompassed studies published from
the inception of the electronic databases up to 20 July 2023. The search terms used were
“(salivary gland tumor OR parotid gland tumor) AND radiomics AND (MRI OR magnetic
resonance imaging)”. These terms were chosen to ensure the inclusion of all salivary gland
tumors and to summarize the methodologies and diagnostic performance of radiomics
analysis in characterizing SGTs on MRI. The search results were stored in an Excel spread-
sheet (Microsoft 365, Microsoft, New York, NY, USA). Duplicate titles were screened and
removed. As the data for this review were obtained solely from previously published
studies, Institutional Review Board approval or written patient consent was not required
and, therefore, waived.

2.2. Literature Selection Criteria

The inclusion criteria were as follows:

1. Original articles published in English.
2. Participants: studies involving patients with SGTs who underwent pre-treatment

head and neck MRI scans, including at least T1-weighted (T1W), T2-weighted (T2W),
contrast-enhanced T1W (CE-T1W), CE-T2W, or diffusion-weighted imaging (DWI).

3. Comparison: studies reporting the performance of radiomics analysis in characteriz-
ing SGTs on MRI.
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4. Outcomes: the primary outcome was the performance of radiomics analysis in charac-
terizing benign and malignant SGTs on MRI; the second outcome was the performance
of radiomics analysis in characterizing PA and WT on MRI.

The exclusion criteria were as follows:

1. Articles in the form of reviews, guidelines, conference proceedings, or case reports/series.
2. Studies that did not report the area under the curve (AUC) of the radiomics models in

characterizing SGTs.
3. Studies with patient populations overlapped with previous studies conducted in the

same investigated institution for assessing the same outcomes. The exclusion criteria
were based on the publication time, with later studies being excluded.

Two observers (QYHA and KFH) independently screened the records based on the
title and abstract, and full-text evaluation was performed for selected records. Any dis-
agreements were resolved through discussion or consultation with a third observer (TYS).

2.3. Data Extraction

One observer (KM) extracted the following data from the included studies:

1. Study characteristics: first author, journal name, year of publication, city, patient
recruitment period, and study design (prospective or retrospective).

2. Patient characteristics: number of patients in the training, testing, and external
datasets, methods for diagnosis of the nature of salivary gland tumors.

3. MRI characteristics: MRI sequences used for analysis.
4. Radiomics analysis procedure: segmentation method, number of features extracted,

feature categories, methods for feature selection, number and categories of the selected
features, names of the selected features, classifiers used for model build-up, and
final model.

5. Outcomes: model performance in training, testing, and external datasets.

A second observer (QYHA) verified the received data in an Excel spreadsheet.

2.4. Assessment of Study Quality

All of the eligible studies underwent assessments of study quality by one observer
(KM) using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool
and The Radiomics Quality Score (RQS). The QUADAS-2 evaluates four domains: patient
selection, index test, reference standard, and flow and timing [29]. Each domain will be
rated as low risk, high risk, or unclear risk of bias according to pre-defined criteria [29].
The RQS evaluates radiomics studies based on 16 components, with a score range of 0 to
36 [12].

2.5. Statistical Analysis

The inter-observer agreements for article selection based on titles and abstracts were
calculated using Cohen’s kappa coefficients.

3. Results
3.1. Literature Selection

Figure 1 illustrates the study selection process for the systematic review. The initial
search of electronic databases yielded 98 titles. After excluding 56 duplicate titles, 42 titles
remained for screening. The relevance and quality of these 42 records were assessed based
on pre-defined criteria by reviewing their titles and abstracts. At this stage, 24 records were
excluded, leaving 18 for full-text assessment. The agreement between the two reviewers
who conducted the title and abstract screening was high, with kappa coefficients of 0.95
and 1, respectively. Subsequently, the full texts of the remaining 18 records were obtained
and thoroughly reviewed. Four additional records were excluded for specific reasons: one
study did not report AUC [30]; three studies reported an overlapping cohort [26,31,32].
Finally, 14 studies were included in the analysis.
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Figure 1. Flowchart of study selection.

3.2. Characteristics of the Eligible Studies

Table 1 and Table S1 provide detailed characteristics of the 14 eligible studies. All
studies were retrospective evaluations conducted by 12 institutions (8 located in China,
3 in Italy, and 1 in Iran). They were published from 2020 onward. The number of patients
in each study ranged from 31 to 334, in a total of 2122, including 339 who had malignant
tumors (286 carcinomas, 19 lymphomas, 6 metastases, 20 other types, and 8 uncategorized
classifications) and 1802 had benign tumors (977 PA, 681 WT, 55 adenomas, 66 other types,
and 23 uncategorized classifications). The majority of tumors observed in the parotid gland
were benign, accounting for 85.57% (1690 out of 1975), while all tumors in the sublingual
gland were malignant, representing 100% (8 out of 8) of cases (Table 2). Among the
14 studies, 8 (57.1%) reported that the diagnostic gold standard was based on examinations
of surgical specimens or fine-needle aspiration cytology.
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Table 1. The characteristics of each included study.

Study ID Year Number of
Cases (n)

Number of
External Cases (n)

Number of Features for
Different Tasks

(Selected/Extracted)
Final Models

BT
vs. MT
(AUC)

PA
vs. WT
(AUC)

1 [13] 2022 130 NA BT vs. MT 8/944
PA vs. WT 13/944

BT vs. MT: the LDA model based on 8 features on DWI,
PA vs. WT: 13 features on DWI 0.7637 0.925

2 [14] 2020 75 NA BT vs. MT 5/29
PA vs. WT 4/29

BT vs. MT: SVM with a radiomics signature with
5 features on T2WI

PA vs. WT: SVM with 4 features on T2WI
0.7365 0.8179

3 [15] 2021 127 52 PA vs. WT 12/1702
The radiomics nomogram incorporating the age and

radiomics signature with 12 radiomics features on T1WI
and FS-T2WI

NA 0.953

4 [16] 2021 57 NA
BT vs. MT
PA vs. WT
NA/289

BT vs. MT: radiomics models based on texture analysis
through manual segmentation on T1-T2WI; PA vs. WT:

radiomics models based on texture analysis through
manual segmentation on T2WI

0.927 0.802

5 [17] 2020 269 NA BT vs. MT 8/396 Eight features with LR or SVM models on DWI 0.893 NA

6 [18] 2022 298 NA BT vs. MT 6/3396 Six features with XGBoost on the combination of T2WI,
T2WI, and CE-T1WI 0.857 NA

7 [19] 2021 109 NA BT vs. MT 5/1059 Model with clinical data + 2D and 3D biomarkers
(5 features) on T1-T2WI 0.85 NA

8 [20] 2021 115 35 BT vs. MT 17/1702
Radiomics nomogram incorporating the clinical factors

and radiomics signature (17 features from T1WI and
FS-T2WI)

0.952 NA

9 [21] 2022 31 NA BT vs. MT 8/77
Radiomics analysis of the combination of T2WI,

ADC-map, and DCE-MRI
parametric maps with SVM or LDA with 8 features

1 NA

10 [22] 2021 252 NA

PA vs. WT
7/429 T1WI
8/414 T2WI

8 T1-2WI

T1-2WI radiomics model using MLR with selected features NA 0.952

11 [23] 2022 91 NA BT vs. MT
4/1015

A combination of T1WI + logarithm and
FS-T2WI + exponential features with LR classifier 0.846 NA
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Table 1. Cont.

Study ID Year Number of
Cases (n)

Number of
External Cases (n)

Number of Features for
Different Tasks

(Selected/Extracted)
Final Models

BT
vs. MT
(AUC)

PA
vs. WT
(AUC)

12 [24] 2021 334 NA PA vs. WT
NA/30 NA NA 0.911

13 [25] 2022 117 NA PA vs. WT
8/971 The radiomics–clinical model with 8 features on T2WI NA 0.962

14 [27] 2023 117 NA BT vs. MT 2/851 SVM with 2 radiomics features on T2WI and
4 inflammatory biomarkers 0.79 NA

ADC: apparent diffusion coefficient, AUC: area under curve, BT: benign tumors, CE: contrast-enhanced, DCE: dynamic contrast-enhanced, DWI: diffusion-weighted imaging, FS: fat
saturation, LDA: linear discriminant analysis, LR: logistic regression, NA: not available, MT: malignant tumors, PA: pleomorphic adenoma, SVM: support vector machine, T1WI:
T1-weighted image, T2WI: T2-weighted image, WT: Warthin’s tumor.
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Table 2. Distribution of malignant and benign tumors across different salivary glands.

Salivary Gland MT BT

Parotid 285 1690
Submandibular 14 21

Sublingual 8 -
Minor 4 1

Uncategorized 28 89
BT: benign tumors, MT: malignant tumors.

3.3. Characteristics of the Radiomics Analysis Procedures in the Eligible Studies

Table 3 summarizes the characteristics of the radiomics analysis process in all eligible
studies. Overall, the analysis was performed to assess the performances of radiomics
analysis in characterizing benign and malignant tumors in 10/14 (71.43%) studies (8 on
T1W or T2W images, 4 on CE images, and 3 on DWI) and for PA and WT in 7/14 (50%)
studies (6 on T1W or T2W images, 1 on CE images, and 1 on DWI). In total, 5/14 studies
(35.71%) reported performing image preprocessing, while only 1 study (7.14%) reported
employing data augmentation prior to feature extraction. The region or volume of interest
(ROI/VOI) was delineated on the whole tumor in 10 out of 14 studies (71.43%), on 2 tumor
slices in 1 study (7.14%), and was not reported in 3 studies. The number of features
extracted from the ROIs/VOIs varied across studies, ranging from 29 to 3396.

Table 3. Overview summary of the included studies.

Characteristics Number of Studies
(Percentage)

MRI
sequence

BT vs. MT(10)

T1WI or T2WI 8 (80% for BT vs. MT)

CE 4 (40% for BT vs. MT)

FS 2 (20% for BT vs. MT)

DCE 1 (10% for BT vs. MT)

DWI 3 (30% for BT vs. MT)

PA vs. WT(7)

T1WI or T2WI 6 (85.71% for PA vs. WT)

CE 1 (14.29% for PA vs. WT)

FS 1 (14.29% for PA vs. WT)

DWI 1 (14.29% for PA vs. WT)

Segmentation
Manual segmentation 12 (85.71%)

Semi or automatic
segmentation 3 (21.43%)

Region/volume of interest

Two slices 1 (7.14%)

Whole tumor 10 (71.43%)

Not reported 3 (21.43%)

Image
preprocessing Reported 5 (35.71%)

Data
augmentation Reported 1 (7.14%)

Inter-observer agreement
for feature
selection

Reported 7 (50%)

Validation for feature
selection Reported 11 (78.57%)

BT: benign tumors, CE: contrast-enhanced, DCE: dynamic contrast-enhanced, DWI: diffusion-weighted imaging,
FS: fat saturation, MT: malignant tumors, PA: pleomorphic adenoma, T1WI: T1-weighted image, T2WI: T2-
weighted image, WT: Warthin’s tumor.
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Inter-observer agreement for the extracted features was assessed in 7/14 studies (50%),
with all studies using an intra-class correlation coefficient (ICC) threshold of >0.75 to
indicate high repeatability. The most common method for feature selection was the least
absolute shrinkage and selection operator (LASSO), used in 8/14 studies (57.14%), followed
by analysis of variance (ANOVA) in 3/14 studies (21.43%). Cross-validation or bootstrap
techniques were applied in 11/14 studies (78.57%) to enhance the stability of the selected
features. Logistic regression was the most commonly employed classifier for building the
radiomics model, used in 7/14 studies (50%), followed by support vector machine (SVM)
in 6/14 studies (42.86%).

Nine studies reported the final selected features for characterizing benign and ma-
lignant SGTs. The number of features selected for building the final model ranged from
3 to 17, a total of 61 features (11 first-order features, 5 shape features, 13 texture features,
28 filter-based features, 2 log-based features, and 2 exponential features). Four studies
reported the final selected features for characterizing PA and WT. The number of features
selected for building the final model ranged from 4 to 13, a total of 36 features (6 first-order
features, 1 shape feature, 7 texture features, and 22 filter-based features). No features
included in the final models were found to be present in more than two studies.

Table 4 details the final features used for characterizing benign and malignant SGTs.
Table 5 details the characteristics of the selected features from eligible studies.

3.4. Performances of Radiomics Analysis in Characterizing SGTs

Thirteen studies reported final radiomics models (Table 1). The performance of these
models was assessed through various validation methods, including cross-validation
in 4 studies, internal dataset validation in 6 studies, and external dataset validation in
2 studies.

3.4.1. Performances of Radiomics Analysis in Characterizing Benign and Malignant SGTs

For characterizing benign and malignant tumors, the AUCs ranged from 0.74 to 1,
of which studies that used only T1W or T2W images achieved AUCs ranging from 0.74
to 0.85, and those that used only DWI images achieved AUCs ranging from 0.76 to 0.89.
The highest AUC was achieved using features selected from multi-parametric MRI (DCE-
MRI, ADC-map, T2WI) validated on a cross-validation dataset, while the lowest AUC was
obtained using T2WI.

Three studies compared the performance of radiomics models built using different
classifiers. One study reported that radiomics models constructed with support vector
machine (SVM) (AUC 0.893) and logistic regression (LR) (AUC 0.886) outperformed those
built with k-nearest neighbors (KNN) (AUC 0.796) [17]. Another study demonstrated that
extreme gradient boosting (XGBoost) (AUC 0.857) and SVM (AUC 0.809) outperformed
models constructed with decision trees (DT) (AUC 0.730) [18]. In a third study, SVM and
Fischer’s linear discriminant analysis (LDA) yielded identical performances (AUC 1.0) [21].

Two studies suggested that models incorporating clinical and radiomics features
exhibited superior performance compared to models built solely with clinical or radiomics
features [19,20].

Three studies compared the performances of radiomics models constructed using
different MRI sequences. It was observed that models utilizing multiple MRI sequences for
feature extraction outperformed those utilizing a single sequence [16,21,23]. Additionally,
the inclusion of CE sequences did not lead to an improvement in performance [23].

One study demonstrated that a radiomics model constructed using a single feature
category outperformed a model utilizing all feature categories [23]. Another study indicated
that radiomics models built using features extracted from manual segmentation performed
better than those using automatic segmentation [16].
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Table 4. The final features in models for characterizing benign and malignant salivary gland tumors.

Shape (n = 5) Exponential (n = 2) Logarithm (n = 2)

DWI_Original_shape sphericity,
DWI_SurfaceArea,

DWI_Compactness2,
DWI_VoxelValueSum,

DWI_Maximum3DDiameter

FS_T2WI_exponential_glszm_SmallAreaEmphasis,
FS-T2WI_exponential_firstorder_90Percentile

T1WI_logarithm_glszm_SmallAreaEmphasis,
T1WI_logarithm_ngtdm_Complexity

First Order (n = 11) Texture (n = 13) Filter (n = 28)

T2WI_skewness value,
T2WI_gray level mean,

1% percentile,
T1WI_Original_first-order_10 Percentile,

95th percentile of Ktrans,
Maximum,

histogram variance,
histogram skewness,

95th percentile of WIR,
histogram standard deviation,

DWI_histogram entropy

DWI_Gradient glcm_cluster tendency,
DWI_Original glszm_small-area low-gray level emphasis,

T2WI_autocorrelation value,
DWI_SizeZoneVariability,

DWI_LongRun-HighGreyLevelEmphasis angle45 offset7,
DWI_RunLengthNonuniformity angle0 offset4,

DWI_LongRunHighGreyLevelEmphasis angle90 offset1,
CE-T1WI_Original_glszm_HighGrayLevelZoneEmphasis,

S(0,1) angular second moment,
S(5,5) Entrop,

S(1,1,0) Entropy,
FS-T2WI_ Original_glcm_Imc2,

T2WI_GLRLM features

DWI_Wavelet-LHL_first-order mean, DWI_Wavelet-LHH_gldm large
dependence low-gray level emphasis,

DWI_Wavelet-HHL_first-order mean, DWI_Wavelet-HHL_glszm
small-area low-gray level emphasis,

DWI_Wavelet-LLL_glszm small-area low-gray level emphasis,
T2WI_Wavelet-HLH_glrlm_RunEntropy,

CE-T1WI_Wavelet-LHL_firstorder_Maximum,
T1WI_Wavelet-HLH_glrlm_GrayLevelNonUniformityNormalized,

CE-T1WI_Wavelet-LLL_glcm_JointAverage,
T1WI_Wavelet-LLL_firstorder_Kurtosis, WavEnHH (s-4),

T1WI_Wavelet HLL_glcm_Idn, T1WI_Wavelet
LHL_gldm_Dependence entropy,

T1WI_Wavelet LHH_gldm_Dependence variance, T1WI_Wavelet
LHH_first-order_Energy,

T1WI_Wavelet LHH_first-order_Total energy,
T1WI_Wavelet HLH_gldm_Small dependence low gray level

emphasis,
T1WI_Wavelet HLH_glcm_Correlation, T1WI_Wavelet

HHL_gldm_Small dependence low gray level emphasis,
T1WI_Wavelet HHL_glcm_Correlation, T1WI_Wavelet

LLL_first-order_Minimum,
FS-T2WI_Wavelet LHL_first-order_Mean, FS-T2WI_Wavelet

LHL_ngtdm_Busyness,
FS-T2WI_Wavelet-HLH_gldm_Dependence entropy,

T2WI_wavelet_HLH_glcm_JointEnergy,
FS-T2WI_Wavelet HLH_glszm_Gray level nonuniformity normalized,

FS-T2WI_Wavelet LLL_first-order_Kurtosis,
T2WI_wavelet_LHL_gldm_LargeDependenceEmphasis,

CE: contrast-enhanced, DWI: diffusion-weighted imaging, FS: fat saturation, GLCM: gray-level co-occurrence matrix, GLDM: gray-level dependence matrix, GLRLM: gray-level
run length matrix, GLSZM: gray-level size zone matrix, H: high-pass filter, L: low-pass filter, NGTDM: neighboring gray tone difference matrix, T1WI: T1-weighted image, T2WI:
T2-weighted image, WIR: wash-in rate.
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Table 5. Detailed characteristics of the selected features.

Number of Features (Percentage)

MRI
sequence

BT vs. MT

T1WI 15 (24.59%)

T2WI 7 (11.48%)

CE-T1WI 3 (4.92%)

FS-T2WI 8 (13.11%)

DWI 17 (27.87%)

Uncategorized 11 (15.49%)

PA vs. WT

T1WI 1 (2.78%)

T2WI 11 (30.56%)

FS-T2WI 11 (30.56%)

DWI 13 (36.11%)

Number of studies (Percentage)

Feature
category

BT vs. MT

Texture features 7 (77.78%)

Filter-based features 5 (55.56%)

First-order features 4 (44.44%)

Shape features 2 (22.22%)

Logarithm-based features 1 (11.11%)

Exponential-based features 1 (11.11%)

PA vs. WT

First-order features 4 (100%)

Filter-based features 3 (75%)

Texture features 2 (50%)

Shape features 1 (25%)

BT: benign tumors, CE: contrast-enhanced, DWI: diffusion-weighted imaging, FS: fat saturation, MT: malignant tumors, PA: pleomorphic adenoma, T1WI: T1-weighted image, T2WI:
T2-weighted image, WT: Warthin’s tumor.
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3.4.2. Performances of Radiomics Analysis in Characterizing PA and WT

For characterizing PA and WT, the AUCs ranged from 0.80 to 0.96, of which studies
that used only T1W or T2W images achieved AUCs of 0.80–0.96, and those that used only
DWI images achieved an AUC of 0.93. The highest and lowest AUCs were achieved using
features selected from T2W images.

Similar to the BT vs. MT studies, three studies indicated that models incorporating
clinical and radiomics features outperformed those constructed using only clinical or ra-
diomics features [15,22,25]. One study revealed that radiomics models comprising features
extracted from multiple MRI sequences performed better than those utilizing a single
sequence [22]. Moreover, one study found no significant difference in the performances of
radiomics models constructed using computed tomography (CT) and MRI [24].

3.5. Quality Assessment
3.5.1. QUADAS-2

The initial flow of QUADAS-2 assessments is presented in Supplementary Table S2. A
graphical summary of the QUADAS-2 assessment findings is presented in Figure 2, illustrat-
ing that the majority of the included studies had a low risk of bias and high applicability.
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3.5.2. RQS

The median score of the RQS was 12.5 out of 36, with a range of 5 to 16 (Supplementary
Table S3). A total of 3 studies scored below 12, and 7 scored above 12 (Figure 3). In most
studies, the imaging protocol was well documented. Multiple segmentations and feature
reductions were performed, and discrimination statistics were calculated. Nine studies
reported on the current and potential application of the model in a clinical setting. None
of the studies conducted phantom studies, segmentations at multiple time points, or
prospective validations. Furthermore, no study performed a cost-effectiveness analysis or
published the algorithms or dataset.
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4. Discussion

In this systematic review, we evaluated the procedures for radiomics analysis in char-
acterizing SGTs on MRI based on 14 eligible studies. Ten studies focused on characterizing
benign and malignant tumors, reporting AUC values ranging from 0.74 to 1. Seven studies
differentiated PA and WT, with AUCs ranging from 0.80 to 0.96. Despite the promising
accuracy of radiomics, with most studies achieving AUCs above 0.80, these studies em-
ployed various methods for radiomics analysis, and none of the resulting models have been
further validated or widely implemented in clinical practice. To note, no features included
in the final models were found to be present in more than two studies. This systematic
review provides valuable insights into MRI sequence selection, image preprocessing, fea-
ture extraction, feature selection, and model development, which can help standardize the
procedures for radiomics analysis in characterizing SGTs on MRI.

4.1. MRI Sequences Selection

The MRI protocol for SGTs typically includes multiple MRI sequences, such as T1WI,
T2WI, and CE images. Functional MRI techniques, such as dynamic contrast-enhanced
(DCE) MRI and DWI, have also demonstrated potential for characterizing SGTs and are
increasingly included in the MRI protocol for SGTs [33]. In radiomics analysis, it is not
surprising that our results showed that models constructed using multiple MRI sequences
outperformed those built using a single sequence. However, including radiomics features
from functional MRI sequences, such as DCE MRI and DWI, did not significantly improve
performance and could potentially increase the computational burden. It is also worth
noting that one study indicated that radiomics features derived from CE images did not
provide additional value in characterizing SGTs [23]. Other studies in head and neck cancer
have demonstrated that non-contrast-enhanced MRIs can be used instead of CE MRIs to
develop machine-learning algorithms for clinical tasks [34,35]. Therefore, the value of CE
MRI in the context of radiomics characterization needs further evaluation.

4.2. Image Preprocessing and Feature Extraction

Image preprocessing and feature extraction play crucial roles in radiomics analysis,
but their implementation and reporting were inconsistent across the studies reviewed.
Only five studies reported on image preprocessing, while the details of this step were
unclear in the remaining studies. Image preprocessing is essential for standardizing images
obtained from different institutions with varying protocols. This step is particularly critical
but challenging to implement for MRI as MRIs are constructed by weighting the signals
corresponding to the magnetic properties of the tissues being imaged. Several common
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methods have been proposed to address different protocol parameters and improve the
quality and consistency of MRI images, including the “µ ± 3σ” method, N4ITK bias field
correction, resampling, and Z-score normalization [36–39]. However, further investigation
is needed to determine the effectiveness of each method.

The selection of ROI is an important consideration and depends heavily on the hetero-
geneity of the tumor as depicted on imaging. Since SGTs can exhibit high heterogeneity, it
is suggested to use an ROI covering the whole tumor. Interestingly, one study showed that
radiomics models built using features from manual segmentation outperformed those using
automatic segmentation for characterizing benign and malignant SGTs on MRI [16]. This
may be due to the current limitations of automatic segmentation methods for accurately
segmenting SGTs. While manual tumor segmentation can be time-consuming, there is a
need for tools that provide accurate and consistent ROI segmentation.

On the other hand, in diseases with low incidences, such as SGTs, the number of
features extracted for analysis should be carefully considered. The reviewed studies had
total patient numbers ranging from 31 to 334, and the total number of extracted features
ranged from 29 to 3396. Most studies extracted over 400 features. These increased the
risk of overfitting the model. One study notably demonstrated that the radiomics model
built up by the selection from over 1000 radiomics features did not outperform that from
91 features [23]. Furthermore, this study showed that feature category should also be
considered when radiomics analysis was performed in characterizing SGTs on MRI [23].
It is also important to evaluate the repeatability of the extracted features, which can be
significantly influenced by inter-observer variability in ROI delineation. Inter-observer
agreement for the features should be assessed before further analysis. Among the reviewed
studies, seven evaluated feature repeatability and reported a high inter-class correlation
coefficient (ICC) above 0.75 to confirm the repeatability of the features.

4.3. Feature Selection and Model Build-Up

The review showed the LASSO method as the most commonly used feature selection
method in the analyzed studies, with 8/14 studies employing it. LASSO is a regularization-
based method that can effectively remove irrelevant or redundant features by shrinking
their coefficients to zero [40]. This helps reduce the risk of overfitting and improves
the model’s generalizability [40]. However, it is crucial to consider the potential impact
of correlation among features and the choice of regularization parameter on the perfor-
mance of LASSO. Other feature selection methods, such as minimum redundancy maxi-
mum relevance (mRMR), were also utilized in some studies [41]. mRMR shares similar
strengths with LASSO but may be sensitive to feature settings or the presence of outliers [42].
Some studies combined multiple feature selection methods to exploit their complementary
strengths [18,43,44]. However, the stability and reliability of the selected features should be
carefully evaluated. In addition to cross-validation and bootstrapping used in 11 studies,
the bagged-boosted repeated elastic net technique (BB-RENT) can effectively select features
with high stability and reliability [45]. However, the performance of models built up using
features selected by these methods still needs further evaluation [45].

LR and SVM were the most commonly used classifiers for building radiomics models
to characterize SGTs on MRI. However, the best-performing classifier varied among the
studies. In three studies that compared multiple classifiers, SVM and LR outperformed
KNN in one study, XGBoost and SVM performed better than DT in another study, and
SVM and LDA performed similarly in the third study [17,18,21]. Model performance was
validated using cross-validation in four studies, the internal dataset in six studies, and
the external dataset in two studies. The AUCs of models validated by cross-validation
were generally higher than those using the internal dataset but lower than those using
the external dataset. Seven studies included texture features in the final model, indicating
they may be the most likely useful category in characterizing benign and malignant SGTs.
However, no single feature was consistently included in the final models across multiple
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studies, emphasizing the need for the improved generalizability of radiomics models for
clinical applications.

4.4. Suggestions

Based on the findings of this review, the following suggestions can be made to facilitate
radiomics analysis and the development of radiomics models in characterizing SGTs
on MRI:

1. Focus on non-contrast-enhanced MRIs.
2. Implement image preprocessing.
3. Limit the number of features extracted and consider the feature categories.
4. Evaluate inter-observer agreement for the extracted features and select those with

high repeatability for further analysis.
5. Use multiple feature selection methods.
6. Ensure feature stability by different approaches.
7. Build models using different approaches and identify the best model.
8. Validate models using at least cross-validation dataset with/without internal or

external datasets.
9. Report the final models for future validations.
10. Open datasets (not necessarily the original images) for future validations.

Implementing these recommendations will enhance the standardization, reproducibil-
ity, and generalizability of radiomics analysis and radiomics models in characterizing SGTs
on MRI, ultimately facilitating their broader use in clinical practice.

4.5. Limitations

This review has limitations that may result in inherent heterogeneity and publication
bias. Firstly, all studies included in this systematic review were retrospective studies. Due to
the retrospective nature, the concerns regarding the risk of bias in the included studies could
not be avoided. However, the results from QUADAS-2 showed that most of the studies
had a low risk of bias and high applicability. Secondly, a meta-analysis that evaluated the
performance of radiomics models in characterizing SGTs on MRI was inappropriate due to
the significant heterogeneity of the radiomics models among the eligible studies. Thirdly,
according to the registered study protocol, eligible studies that were published after July
were not included in the analysis. Furthermore, the added value of radiomics analysis to
clinical practice remains underreported, and no studies have analyzed cost-effectiveness.
Therefore, it is recommended that further studies be conducted to evaluate radiomics
analysis using standardized procedures for characterizing SGTs on MRIs.

5. Conclusions

Previous studies have demonstrated the potential of radiomics analysis in charac-
terizing SGTs on MRI. However, the lack of standardized procedures for implementing
radiomics analysis across these studies may have led to the limited generalizability of the
final radiomics models, thereby restricting their application in clinical practice. To develop
radiomics models that can be widely utilized for characterizing SGTs on MRI in the future,
it is crucial to establish a consensus on the procedures for conducting radiomics analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15204918/s1, Table S1. details of radiomics protocols
used in each included study, Table S2. QUADAS-2 assessment for each study, Table S3. individual
and summarized RQS scores for each study.

https://www.mdpi.com/article/10.3390/cancers15204918/s1
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