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Simple Summary: In radiation therapy of tumors in the chest, such as in lung or esophageal cancer,
part of the heart may be situated in the radiation field. This can lead to the development of radiation-
induced heart disease. The mechanisms by which radiation causes a long-term injury to the heart are
not fully understood, but investigations in pre-clinical research models can contribute to mechanistic
insights. To model partial heart irradiation as it may occur in patients, in this study, adult male
and female mice were exposed to irradiation to only 40% of the heart. Mice exposed to a whole
heart irradiation were used for comparison. While plasma samples at 5 days and 2 weeks after the
irradiation showed different metabolite profiles, we found no differences in the tissue structural
changes between the irradiated and unirradiated portions of the heart at 6 months. Additional work
in larger animal cohorts is required to determine whether there are differences between the two sexes.

Abstract: In radiation therapy of tumors in the chest, such as in lung or esophageal cancer, part of the
heart may be situated in the radiation field. This can lead to the development of radiation-induced
heart disease. The mechanisms by which radiation causes long-term injury to the heart are not
fully understood, but investigations in pre-clinical research models can contribute to mechanistic
insights. Recent developments in X-ray technology have enabled partial heart irradiation in mouse
models. In this study, adult male and female C57BL/6J mice were exposed to whole heart (a single
dose of 8 or 16 Gy) and partial heart irradiation (16 Gy to 40% of the heart). Plasma samples were
collected at 5 days and 2 weeks after the irradiation for metabolomics analysis, and the cardiac
collagen deposition, mast cell numbers, and left ventricular expression of Toll-like receptor 4 (TLR4)
were examined in the irradiated and unirradiated parts of the heart at 6 months after the irradiation.
Small differences were found in the plasma metabolite profiles between the groups. However, the
collagen deposition did not differ between the irradiated and unirradiated parts of the heart, and
radiation did not upregulate the mast cell numbers in either part of the heart. Lastly, an increase in
the expression of TLR4 was seen only after a single dose of 8 Gy to the whole heart. These results
suggest that adverse tissue remodeling was not different between the irradiated and unirradiated
portions of the mouse heart. While there were no clear differences between male and female animals,
additional work in larger cohorts may be required to confirm this result, and to test the inhibition of
TLR4 as an intervention strategy in radiation-induced heart disease.

Keywords: radiation-induced heart disease; partial heart irradiation; mouse model; Toll-like receptor 4

1. Introduction

Radiation therapy (RT) is used to treat more than 70% of all cancer types [1]. Im-
provements in cancer therapy lead to an ever-increasing cancer cure rate. However, both
RT and many chemotherapies are associated with side effects due to the injury of normal
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(non-cancer) tissues that are sometimes severe and almost always reduce the quality of life
of cancer patients and survivors. From a clinical perspective, the dose of ionizing radiation
that can be delivered is limited by the radiation tolerance of normal tissue [2]. RT of tumors
in the chest may lead to the exposure of the whole or part of the heart to radiation. As a
result, studies have been reported on the incidence of heart disease in ~10% or more of
patients treated with RT for lung cancer, esophageal cancer, Hodgkin’s lymphoma, and
breast cancer [3–6]. An improved understanding of normal tissue injury, such as in the
heart, is required to develop pharmaceutical interventions that increase the safety of cancer
therapy [7].

Investigations in pre-clinical research models can contribute to our understanding of
mechanisms by which ionizing radiation injures the heart and may point to new targets
for intervention [8,9]. In RT of thoracic cancers, the heart may only be partially exposed to
radiation [10,11] and a radiation exposure to certain parts of the heart may be associated
with a different cardiac outcome [12,13]. While previous X-ray technologies limited small
animal models to whole heart or whole chest irradiation, recent developments have enabled
image-guided partial heart X-ray exposures [14–16]. These prior studies have shown that
a partial heart irradiation in mouse models leads to changes in cardiac function and that
certain parts of the mouse heart may be specifically radiation-sensitive.

Mast cells are normally present in the heart in low numbers. However, in rat models
of whole heart irradiation, the cardiac mast cell numbers increase and correlate with a
radiation-induced collagen deposition in the myocardium [17–20]. Therefore, increased
cardiac mast cell numbers may be an indication of radiation-induced adverse remodeling
in the heart.

Toll-like receptors (TLRs) are pattern recognition receptors that recognize microbial
components and endogenous ligands such as the extracellular matrix components and
molecules released due to cellular injury. In complex with other transmembrane support
molecules, including MD-2 [myeloid differentiation-2] and MyD88 [myeloid differentia-
tion primary response 88], TLRs activate intracellular signaling pathways and induce the
transcription of genes required for inflammatory responses. However, studies in various
disease models, including in the heart, implicate that the inappropriate activation of the
TLR signaling pathways results in deleterious inflammation and injury [21]. Of all TLRs,
TLR4 has the highest expression in both the murine and human heart [22]. Studies have
shown a role for TLR4 in myocardial inflammation due to myocardial infarction [23], my-
ocarditis [24], and in heart failure [25]. TLR4 also regulates the production of cytokines
in mast cells [26]. TLR4 inhibitors or knock-out approaches have been shown to reduce
cardiac injury in many animal models, including cardiac dysfunction due to trauma hemor-
rhage [27]. However, while TLR4 can promote the production of collagen by cells in the
heart [28], the inhibition of TLR4 does not always reduce myocardial fibrosis in cardiac
disease models [29]. Moreover, despite the extensive knowledge of the role of TLR4 in
cardiac disease, its role in radiation-induced heart disease is largely unknown.

In this study, we examined the effects of whole heart and partial heart irradiation on
the cardiac collagen deposition, mast cell numbers, and left ventricular expression of TLR4
in male and female wild-type mice. In this model, adverse tissue remodeling occurred in
both the irradiated and unirradiated portions of the heart.

2. Materials and Methods
2.1. Animal Housing

All procedures were approved by the Institutional Animal Care and Use Committee
of the University of Arkansas for Medical Sciences (UAMS) under protocol numbers 3955
and TR202200000004. Thirty-two male and 32 female C57BL/6J mice were obtained from
the Jackson Laboratories (Bar Harbor, ME, USA) at the age of 8 weeks and housed at the
UAMS Division of Laboratory Animal Medicine, 4 mice per cage on a ventilated cage rack
system, on a 12:12 light-to-dark cycle with free access to standard rodent chow and water.
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2.2. Animal Irradiation

After one week of acclimatization, mice were exposed to whole or partial heart irradia-
tion. For this purpose, mice were anesthetized with a 1–2% isoflurane inhalation and placed
supine on a mouse platform in the Small Animal Radiation Research Platform (SARRP,
XStrahl, Surrey, UK). Anesthesia was maintained during irradiation via a nosecone. A cone
beam computed tomography (CBCT) scan was obtained of each animal (60 kV, 0.8 mA)
and reconstructed using 720 projections. The SARRP Muriplan software was used to plan
an X-ray beam (220 kV, 13 mA, 0.5 mm copper) locally to the heart while minimizing the
exposure of the lungs and spinal cord. For whole heart irradiation, one beam (8 × 8 mm
beam size) was delivered, with the gantry at −50 degrees and the couch at 75 degrees. A
single dose of 8 or 16 Gy was applied. For the irradiation of the bottom 40% of the heart,
one beam (5 × 5 beam size) at the same gantry and couch settings was executed, and a
single dose of 16 Gy was administered. Sham-treated animals (0 Gy) were anesthetized
and placed on the SARRP platform but not exposed to radiation. Example treatment plans
and dose volume histograms are shown in Figure S1.

2.3. Plasma Collection

At 5 days and 2 weeks after irradiation, a peripheral blood sample was collected from
each mouse. The facial vein was punctured, and 200–250 µL blood was collected into an
EDTA-coated tube, immediately centrifuged at 1000× g for 15 min, and the plasma was
snap-frozen and stored for metabolomics analysis.

2.4. Tissue Collection

At 6 months after irradiation, animals were anesthetized with 3% isoflurane inhalation,
administered 30–40 U/kg of heparin, and the tissues were collected and immediately pro-
cessed. The hearts were cut longitudinally, and one half of the heart was fixed in methanol
Carnoy’s solution (60% methanol, 30% chloroform, 10% acetic acid). The remainder of the
heart was dissected into the atria, left, and right ventricles and snap-frozen before their
storage at −80 ◦C. In collecting the specimens of the left ventricle, care was taken to obtain
specimens of the irradiated as well as the unirradiated parts of the heart.

2.5. Histology

All analyses were performed blinded to the experimental groups. For the determina-
tion of the collagen deposition, the sections of the heart were deparaffinized, rehydrated,
and incubated in Sirius Red supplemented with Fast Green. The sections were scanned
with a ScanScope CS2 slide scanner and analyzed with ImageScope 12 software (Aperio,
Leica Biosystems, Buffalo Grove, IL, USA) to determine the percentage of the tissue area
which was positive for collagens. The top half and the bottom half of the hearts were
examined separately.

Mast cells are normally present in the heart in low numbers. However, in rat models
of local heart irradiation, the cardiac mast cell numbers increase and correlate with the
radiation-induced collagen deposition in the myocardium [17–20]. Therefore, increased
cardiac mast cell numbers may be an indication of radiation-induced adverse remodeling
in the heart. To visualize mast cells, the deparaffinized and rehydrated sections of the heart
were incubated in 0.5% Toluidine Blue in 0.5 N HCl for 72 h, followed by 0.7 N HCl for
10 min. The mast cells were counted using an Axioskop transmitted light microscope (Zeiss
International, Oberkochen, Germany) and divided by the total tissue area.

2.6. Western-Blotting

Samples of the frozen left ventricle of both irradiated and unirradiated parts of the
heart were homogenized with a Potter-Elvehjem mechanical compact stirrer (BDC2002,
Caframo LabSolutions, Georgian Bluffs, ON, Canada) in a 1% Triton-X100 radioimmuno-
precipitation assay buffer containing protease inhibitors (1:100) and phosphatase inhibitors
(1:100; Sigma-Aldrich, St. Louis, MO, USA). The protein concentration was determined
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with a bicinchoninic acid protein assay (Bio-Rad, Hercules, CA, USA), and 25 µg of protein
was added to a 2× Laemmli buffer containing β-mercaptoethanol (5%). Gel electrophoresis
was performed, and the proteins were transferred to a polyvinylidene difluoride mem-
brane. The membranes were incubated in mouse anti-TLR4/MD2 complex (MTS510,
Thermo Fisher Scientific, Waltham, MA, USA) or mouse anti-glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (6C5, Santa Cruz Biotechnology, Santa Cruz, CA, USA) in TBS
containing 0.1% Tween-20 and 5% non-fat dry milk at 4 ◦C overnight. After incubating
with horseradish peroxidase-conjugated goat anti-mouse IgG (Jackson Immunoresearch,
West Grove, PA, USA), the membranes were covered in enhanced chemiluminescence Plus
Western Blotting Detection Reagent (GE Healthcare Life Sciences, Chicago, IL, USA) and
placed on a CL-Xposure Film (Thermo Scientific, Waltham, MA, USA). The films were de-
veloped and imaged with an AlphaImager® gel documentation system (ProteinSimple, San
Jose, CA, USA). Densitometry was performed with ImageJ software. TLR4 was normalized
to the loading control GAPDH and calculated relative to the expression of TLR4 in the
sham-irradiated controls.

2.7. Metabolomics

The plasma samples collected at 5 days and 2 weeks were subjected to targeted
metabolomics using liquid chromatography-mass spectrometry on a QTRAP 5500 (Sciex,
Framingham, MA, USA). A detailed description of the procedures and statistical analysis is
provided in Table S2.

2.8. Statistical Analysis

The metabolomics data were transformed using a log transformation to stabilize the
variance, and a statistical analysis was performed using the unpaired t-test to determine
the differential expression between the groups. Multiple testing correction was applied
using the Benjamini–Hochberg procedure. Metabolites were identified that were 2-fold
or more up-regulated or down-regulated at a p < 0.05 in the plasma of irradiated animals
compared to the time- and sex-matched sham-irradiated controls. All other data of the male
and female animals were combined and evaluated with a one-way analysis of variance
(ANOVA) followed by the Tukey–Kramer test for multiple comparisons, using the software
package NCSS 8 (NCSS, Kaysville, UT, USA). The criterion for significance was p < 0.05.
With this analysis approach, the study had 80% power to detect an effect size (detectable
contrast/standard deviation) of 1.5. The data are reported as individual values and the
mean ± standard deviation.

3. Results
3.1. Histology

The deposition of cardiac collagen did not seem to differ between males and females
(Figure S2). Therefore, in Figure 1, the data from both sexes were combined. There was
an increased collagen deposition 6 months after whole heart irradiation. There was no
significant difference in the collagen deposition between the partially irradiated hearts and
the sham-controls. Interestingly, this increase in the collagen deposition was seen in both
the irradiated and unirradiated parts of the heart.

After high doses of radiation to the heart, the cardiac mast cell numbers correlate with
the radiation-induced collagen deposition [17–20]. Therefore, we determined the numbers
of mast cells in the heart. Radiation did not upregulate the mast cell count in either part of
the heart (Figure 1).
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Figure 1. Cardiac histology 6 months after irradiation. Cardiac tissue area occupied by collagens
was assessed (a) in the top half of the heart and (b) in the bottom half of the heart. Cardiac mast cell
counts were determined (c) in the top of the heart and (d) in the bottom of the heart. Male and female
data are combined, n = 8 animals per group. * p < 0.05 compared to 0 Gy.

3.2. Left Ventricular TLR4 Expression

Specimens of the left ventricular tissue were obtained from the top and bottom half
of each heart and used to assess the protein levels of TLR4. There seemed to be local
differences in the expression of TLR4, with a significant radiation-induced increase only in
the bottom part of the left ventricle, after a dose of 8 Gy (Figure 2, Figure S3).

3.3. Plasma Metabolomics

A metabolomics analysis of the plasma samples was performed at 5 days and 2 weeks
after the irradiation and comparisons were made with time- and sex-matched sham-
irradiated controls. Raw data from the analysis are provided in Table S1. The analysis
identified a total of 51 metabolites that were two-fold or more up-regulated or down-
regulated at a p < 0.05 in the plasma of animals in one or more of the irradiation groups
(Table S2). These metabolites may provide an indication of early post-irradiation metabolic
changes in the hearts. Most of the significantly altered metabolites were identified at the
day 5 time point. At this time point, all male irradiation groups showed a larger number of
dysregulated metabolites than the females. A total of 12 metabolites were dysregulated in
two irradiation groups or time points: epinephrine, glucosamine-6-phosphate, guanosine
monophosphate, guanosine diphosphate, hippurate, homocysteic acid, 3-hydroxyisovaleric
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acid, 5-hydroxyl-indole-3-acetic acid, IDP, methylmalonate, succinate, and succinyl-CoA.
One metabolite, L-ornithine, was upregulated in three irradiation groups (Table S2).
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Figure 2. Left ventricular protein levels of TLR4. Western blotting was performed on specimens of
the left ventricle in the top part of the heart (a) and the bottom part of the heart (b). Male and female
data are combined, n = 7–8 animals per group. * p < 0.05 compared to 0 Gy.

4. Discussion

Prior studies have investigated the effects of a partial heart irradiation on cardiac
function in mouse models [14–16]. Ghita et al. showed more severe changes in cardiac
function and structure as measured with echocardiography in C57BL/6J mice that were
exposed to radiation to the base of the heart compared to the middle portion or the apex [14].
Lee et al. exposed a larger volume of the mouse heart to X-rays, in 25 fractions of 2 Gy,
to mimic the tangential field RT in conventional fractions as in the clinic. This radiation
protocol caused small changes in the cardiac function as measured with a pressure-volume
loop method, mainly in ApoE−/− mice [15]. Dreyfuss et al. exposed the apex of the heart of
C57BL/6 mice to high single doses of radiation and documented radiation-induced fibrosis
in the irradiated portion of the heart [16]. All three studies were performed in female mice.

The current study investigated the histological changes and left ventricular expression
of TLR4 in male and female C57BL/6J mice that were exposed to a single-dose whole
heart irradiation, or the irradiation of only the bottom 40% of the heart. We found a small
increase in the deposition of cardiac collagen in the whole heart-irradiated mice, but not
after a 16 Gy partial heart exposure. This suggests that in mouse models of partial heart
irradiation, high doses of radiation are needed to induce fibrosis [16]. Although 6 months
is a common post-irradiation time point at which radiation-induced cardiac fibrosis is
examined in rodent models, we cannot exclude that a difference in the collagen deposition
would have become apparent at a longer follow-up time. Moreover, in the current study, we
did not have the opportunity to measure cardiac function, which is a major limitation, since
cardiac radiation fibrosis may not be directly related to changes in the cardiac function.

Within the first 30 days after high doses of radiation to the heart, the cardiac mast cell
numbers decrease, while after about 30 days, the mast cell numbers tend to increase above
the sham-irradiated controls [17,20]. Cardiac mast cells can play both pro- and anti-fibrotic
roles in the heart [30]. While the exact role of the mast cells in radiation-induced heart
disease is not yet known, prior studies in mast cell-deficient rats suggest that mast cells may
play a predominantly protective role in radiation-induced myocardial fibrosis [31]. In this
study, the cardiac mast cell numbers were assessed at 6 months after whole or partial heart
irradiation. Therefore, the study design was not suited to determine whether radiation
induced a decrease in the cardiac mast cell numbers within the first month, as seen in prior
studies. Moreover, at 6 months, no radiation-induced increases in the cardiac mast cell
counts were seen, suggesting that mild radiation fibrosis in the heart is not associated with
a mast cell infiltration.
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The metabolomics analysis of the plasma samples collected at 5 days and 2 weeks
after irradiation provided indications of early post-irradiation metabolic changes in the
heart. Some of the metabolites were found to be up- or down-regulated in multiple
irradiation groups or time points. Of those metabolites, epinephrine is known to enhance
the production of nitric oxide in the endothelium [32]. L-ornithine, which was up-regulated
in the plasma of three radiation groups, may be an indication of the increased activity
of the enzyme arginase, which cleaves L-arginine to form L-ornithine and release urea.
The reduced availability of L-arginine may cause endothelial dysfunction [33]. However,
in the current study, the plasma levels of L-arginine in irradiated female mice showed
a modest 1.4–1.6-fold increase (p < 0.05) compared to sham-irradiated female controls
at 2 weeks (Table S1). Homocysteic acid is one of the main agonists of the N-methyl-
D-aspartate receptor and may be involved in cardiac oxidative stress [34]. 5-hydroxyl-
indole-3-acetic acid is a metabolite of serotonin and a potential biomarker of radiation
injury [35]. Additional studies are required to determine whether plasma serotonin is an
early marker of a radiation injury in the heart. Altered levels of guanosine monophosphate
and guanosine diphosphate may be an indication of an altered energy requirement. Lastly,
changes in succinate and succinyl-CoA may be an indication of an altered use of substrate in
cardiac mitochondria, in line with our prior studies showing a decrease in succinate-driven
state 2 respiration in mitochondria isolated from the irradiated rat heart [36].

Whether there are differences in the development of radiation-induced heart disease in
males and females is largely unknown. While the number of mice per experimental group
in this study was low, we saw no differences in the radiation-induced collagen deposition
between male and female mice. On the other hand, at the day 5 time point, we identified a
larger number of dysregulated metabolites in the plasma of irradiated males compared to
females. Interestingly, TLR4 may be one of the inflammatory mediators that is differentially
regulated in male and female subjects [37]. TLR4 recognizes bacterial and viral products,
but also damaged self-tissue and plays a central role in inflammation in the heart [38]. Mast
cells are among the immune cells that are regulated by TLR4 [39,40]. Further studies are
required to understand radiation-induced inflammation in the heart, determine whether
sex differences occur, and test whether TLR4 may be a target for intervention in radiation-
induced heart disease.

5. Conclusions

This study shows early changes in plasma metabolites in mouse models of a whole
heart and partial heart irradiation. The results obtained at 6 months after the irradiation
suggest that adverse tissue remodeling may not only occur in the irradiated portion of the
heart. While there was no indication of a difference between male and female mice in the
cardiac collagen deposition or mast cell numbers, studies with larger numbers of animals
per experimental group are required to study the sex effects in more detail.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15020406/s1, Figure S1: Example treatment planning for
mouse whole and partial heart irradiation; Figure S2: Cardiac tissue area occupied by collagens in
male and female mice, in the top half of the heart (top panel) and bottom half of the heart (bottom
panel); Figure S3: Left ventricular expression of TLR4 in male and female mice, in the top half
of the heart (top panel) and in the bottom half of the heart (bottom panel); Table S1: Analysis of
plasma metabolomics at 5 days and 2 weeks after whole heart or partial heart irradiation in male and
female mice compared to time- and sex-matched sham-irradiated controls; Table S2: Metabolomics
methodology and summary of significantly up- and down-regulated metabolites in plasma (p < 0.02
and fold change >2) at 5 days and 2 weeks after whole heart or partial heart irradiation.
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