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Simple Summary: Tumors are not masses of cancer cells alone but made up of cancer cells, other
cells including fibroblasts, macrophages, endothelial cells, as well as secreted factors, blood vessels
and the extracellular matrix (ECM). This comprehensive review presents new findings on the role of
each component of the tumor cell surroundings and the effect on the success of cancer drugs. We
show in this paper that the tumor cell’s surroundings are not simply ‘bystanders’ but are actively
involved in tumor growth and can cause resistance to treatment. Initially, cells and ECM around
tumor cells do not promote their growth but over time, tumor cells ‘convert’ their surroundings to
promote their growth. An increase in tumor size means tumor cells must overcome a lack of oxygen
and nutrients, be able to remove waste and form secondary tumors. A better knowledge of tumor
cells and their surrounding means better drugs for tumor cells and their surroundings.

Abstract: Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular
matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review
provides an updated summary of the role played by the tumor microenvironment (TME) components
and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram
normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts,
-macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transfor-
mation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once
formed, solid tumors continue to interact with various stromal cells, including local and infiltrating
fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors
and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug
response and treatment outcome. Importantly, stromal cells and secreted factors can initially be
anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter
hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to ac-
tively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing
metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination.
Successful tumor treatment and novel drug development require the identification and therapeutic
targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs)
and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting
of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic
is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered
therapies under investigation.
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1. Methodology

We retrieved relevant published manuscripts via an electronic search on Embase,
Scopus, PubMed and Web of Science using keywords including tumor microenviron-
ment; stromal cells; immune cells; extracellular matrix (ECM); cancer hallmarks; hypoxia;
chemotherapy; multi-drug resistance and targeted therapy. This search yielded a rich
source of data on the role of tumor microenvironment in tumorigenesis and therapy re-
sistance (Figure 1). We removed duplicate articles and only full articles were included in
compiling this review.
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2. The Tumor Microenvironment in Brief

It is universally accepted that cancer has major hallmarks including the presence of
genomic instability and mutations, unrestricted growth, the evasion of growth suppressors,
resisting cell death, enhanced inflammation, enhanced metabolism, and the ability to
promote angiogenesis, invasion, and metastasis [1,2]. It is also scientifically accepted
that tumors are more than just tumor cells and include recruited stromal cells and the
non-cellular component, the ECM (Figure 2) [3–6]. Stromal cells and the ECM are active
participants during tumorigenesis, starting as anti-tumorigenic during the initial stages
to being pro-tumorigenic over time and contributing to the attainment of specific cancer
hallmarks [3–6]. Thus, the study and understanding of cancer and tumorigenesis now
extends beyond tumor cells to include the stromal cells and the ECM, which make up
the tumor microenvironment (TME) [3,5–18]. Stromal cells include normal fibroblasts,
cancer associated fibroblasts (CAFs), cancer associated macrophages (CAMs), mesenchymal
stem cells (MSCs), inflammatory cells and endothelial cells [3,7,11,13,17,19,20]. Beside the
contribution of the TME during tumorigenesis and metastasis, the TME and common
features including hypoxia also play a critical role in therapy resistance [4,6,8,9,14,16,18].
Cell-cell and cell-ECM interactions involve a myriad of biomolecular factors, such as
growth factors, cytokines, enzymes, and chemokines. In addition, exosomes and apoptotic
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bodies are shown to play roles in promoting tumorigenesis and drug resistance [21]. This
review provides a comprehensive description of how the TME, characterized by hypoxia,
contribute to tumorigenesis and therapy resistance, and presents ways to reprogram cells
and factors to increase therapy efficacy.
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3. Biological Functions of Stromal and Immune Cells within the
Tumor Microenvironment
3.1. Cancer Associated Fibroblasts

Reports have shown that resident and recruited fibroblasts are part of the TME, where
they contribute during tumorigenesis and in drug resistance [3–5,7,12,17,19,20]. Initially,
fibroblasts are anti-tumorigenic as they are involved in the synthesis of the ECM, which
surrounds and isolates tumor cells from normal tissue during the early stages of tumori-
genesis [5,6,22]. Over time, a subpopulation of activated fibroblasts, referred to as cancer
associated fibroblasts, obtain a myofibroblastic phenotype characterized by the increased
synthesis of ECM and the release of pro-tumorigenic factors (Figure 3) [6,23]. Similar to
myofibroblasts linked to fibrosis, the CAFs are perpetually activated and promote tumori-
genesis via the release of factors, the activation of pro-tumorigenic signaling, angiogenesis,
microRNA, and cytokines [24–28]. At each stage of tumorigenesis, CAFs continue to
produce and interact with various TME components including the ECM, cytokines, and
growth factors.

Together with several other stromal cells including CAMs and MSCs, CAFs release
factors such as TGF-β and cytokines involved in ECM remodeling, the promotion of tumor
cell proliferation, the suppression of immune response, the recruitment of MSCs as well
as the induction of angiogenesis [3,5,6,16,17,29,30]. For example, TGF-β, from both tumor
cells and CAFs, has been shown to promote tumor cell proliferation and to induce EMT
transition [31–36]. TGF-β overexpression is correlated with poor prognosis in prostate
cancer, colorectal cancer, and hepatocellular carcinoma [37–39]. In addition to the expres-
sion of TGF-β, CAFs also express vascular endothelial growth factor (VEGF) and platelet
derived growth factor (PDGF), and this allow their involvement in tumor metastasis [40,41].
CAF-derived interleukin-6 (IL-6) activation of the Janus kinase (JAK)-signal transducer and
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activator of transcription (STAT) (JAK-STAT) signaling pathway leads to increased TGF-β
signaling, promoting tumor growth and metastasis [42–44]. In addition, increased CAFs
within the TME and synthesized CXC chemokines correlated with low patient survival
in various cancers including colorectal cancer and esophageal cancer [45–48]. Several in-
vestigations also show that CAF-derived matrix metalloproteases (MMPs) participate in
tumor cell migration and invasion through the creation of ‘matrix highways’ after ECM
molecules degradation [49–53]. Using a cell-derived ECM, Senthebane and colleagues
demonstrated that fibroblast-derived MMPs contribute towards cancer cell migratory and
invasive behavior [5].
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Mounting reports indicate that CAFs originate from different cells and therefore
display complex heterogeneity (Figure 4) [16]. Tissue-resident fibroblasts contribute to most
CAFs within the TME in addition to other stromal cells such as stellate cells, bone marrow
derived- and tissue adult derived-MSCs, pericytes and endothelial cells (Figure 3) [54].
In the case of an injury, the activation of tissue-resident fibroblasts and stellate cells in
the liver, for example, reversibly transform these cells into a myofibroblast phenotype
characterized by the elevated expression of α-SMA [54]. Many studies have shown the
involvement of growth factors including fibroblast growth factor 2 and TGF-β signaling in
the transformation of stromal cells into myofibroblastic cells or CAFs [5,24,31,42]. These
myofibroblastic cells are the activated fibroblasts responsible for enhanced ECM synthesis in
liver cancers. Several studies have also shown that fibrocytes are present in blood [55]. Barth
and colleagues demonstrated the presence and the role of CD34+ fibrocytes in invasive
ductal carcinoma [56]. Besides breast cancer, the same authors also demonstrated a role
for fibrocytes in pancreatic and cervical cancer [57]. Overall, the increased levels of CAFs
within the TME is associated with tumor relapse and poor prognosis in various cancers.

Another potential origin of CAFs is epithelial cells. Epithelial cells near cancer cells can
undergo epithelial-to-mesenchymal transition (EMT) and end up as CAFs [58]. Epithelial
cancers may display elevated levels of CAFs that drive tumorigenesis [17,59]. Epithelial
cells lose the normal cell-cell adhesive abilities and gain migratory abilities. Endothelial
cells can undergo endothelial-to-mesenchymal transition (EMT), transforming these cells
into CAFs [60]. CAFs originating from epithelial and endothelial cells produce CAF markers
such as S100A4 [58,60]. Both adipocytes and pericytes can undergo trans-differentiation
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into CAFs [61]. It is important to note that while CAFs are pro-tumorigenic, studies also
indicate that CAFs can act in an anti-tumorigenic manner [16,62]. Only recently, is a clear
and well-defined picture of CAFs and their role in tumorigenesis emerging.
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CAFs heterogeneity means numerous subgroups exist with contrasting phenotypes
and functions within the TME [63,64]. Reports also show that CAFs heterogeneity is linked
to stage of tumor development [65]. ECM remodeling and stromal cell transformations
during different stages of tumorigenesis can lead to CAFs being genetically unstable [66,67].
Thus, CAFs co-evolve with tumor cells during tumorigenesis. The initial anti-tumor activity
of stromal cells becomes ‘tumor-promoting’ activity over time [5,6]. Various signaling
cascades modulate CAFs activation and activity and these include the lysophosphatidic
acid and TGF-β family ligands which influence serum response factor (SRF) and SMAD
transcription factors activities, respectively, to promote the expression of the activated
fibroblast marker α-SMA [68]. A co-culture of cancer cells and fibroblasts demonstrate the
promotion of CAF activation in breast cancer via the Notch signaling [69]. Furthermore,
inflammatory modulators including interleukin-1β (IL-1β) can induce NF-KB activation in
CAFs [70]. CAF markers include FAP, PDGFRα/β, tenascin C, vimentin, desmin, CD90
and podoplanin (PDPN) (Table 1) [71]. CAFs heterogeneity means that there is no universal
marker and early studies utilized α-SMA and FAP-alpha [71]. A combination of these
markers is the ideal means to identify CAFs. Other markers include α-SMA, vimentin and
CD10. The expression of α-SMA is not exclusive to CAFs as other cells such as smooth
muscle cells and pericytes express the same marker [63]. CAFs found in several cancers,
such as breast and pancreatic cancers, express high levels of α-SMA and vimentin [54,72].
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Table 1. Markers for cancer-associated fibroblasts.

CAFs Marker Description and Function of Protein Effect within TME

α-SMA Actin isoform: cellular contraction and
maintenance of structure

Promote tumor cell proliferation; involved in
immunosuppression [73–75]

Tenascin-C Extracellular matrix glycoprotein: cell
migration; wound healing Impeding drug delivery; protect tumor cells [76,77]

Vimentin Type III intermediate filament protein:
cell migration; cell structure maintenance Tumor cell migration and invasion [25,34,74,75]

PDGFRα/β Protein tyrosine kinase receptor:
cellular signaling Macrophage polarization; angiogenesis [16,78]

FAP Membrane-bound gelatinase: protease
activity; ECM remodeling

Angiogenesis, macrophage polarization;
immunosuppression; metastasis [16,17,79]

GPR77
Complement component 5a receptor 2:

Activation of complement;
promote inflammation

Maintains tumor cell stemness; Drug resistance [80]

Caveolin-1
Scaffolding protein within caveolar

membranes: maintains cellular structure
and signaling

Low caveolin-1 linked to poor prognosis [81,82]

Targeting CAFs, with their significant heterogeneity, involves reversal of the trans-
formation from normal fibroblasts into CAFs. Reports indicate that the use of microRNA
can achieve such de-activation or reprogramming of CAFs into normal fibroblasts [83–85].
De-differentiation of CAFs into quiescent cells is another strategy under consideration [86].

3.2. Cancer Associated Endothelial Cells

New blood vessel formation during tumorigenesis is initiated by endothelial cells and
these cells constitute the innermost layer of blood vessels [87]. The usually thin vascular
endothelium separates blood from tissues in addition to delivering important nutrients,
ions, and water [88]. The vascular endothelium is also important in carrying away all toxic
metabolic waste products. Immune cells are also carried to tumors via the blood stream.
Whilst diffusion is responsible for oxygen supply and carbon dioxide removal during the
initial stages of tumorigenesis, increase in the size of tumor will require increased supply of
oxygen as well as removal of metabolic waste [89]. As the tumor increase in size, a hypoxic
core is formed, activating the tumor to form new blood vessels to supply much-needed
nutrients and oxygen [90,91]. Vascular networks are formed as a result of the action of
various transcription factors induced by hypoxia. The transcription factors induced by
hypoxia act on endothelial cells which release growth factors, such as epidermal growth
factor (EGF), and PDGF to form new blood vessels [92,93]. Old blood vessels can also
sprout and form new branching vessels. Beside growth factors, endothelial cells also release
proteins required for the formation of basement membranes. Due to the unregulated release
of cytokines and growth factors, blood vessel formation is not proper within a tumor. This
results in ‘makeshift’ blood vessels that are leaky [94]. Being responsible for new blood
vessel formation makes endothelial cells important for cancer cell migration and metastasis.
As the blood vessels within tumors are leaky, cancer cells can easily invade new tissues and
intravasate into blood vessels to be transported to new sites [95]. Endothelial cells can also
undergo ‘endothelial to mesenchymal transition’ to become cancer associated fibroblasts
as they are very plastic [96,97]. Various growth factors, including TGF-β, are known to be
involved in this transition [98]. Cancer associated endothelial cells promotes tumorigenesis
by being immunosuppressive, growth factor synthesis and the enhanced migratory behav-
ior of tumor cells [99,100]. Cancer associated endothelial cells also aid immunosuppressing
myeloid cells’ infiltration into tumors. Reports show that cancer associated endothelial
cells can modulate anti-tumor immunity via the disruption of cytotoxic T cell infiltration,
whilst at the same time allowing immunosuppressive cells to move into the tumor [14,101].
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Cancer associated-endothelial cells also demonstrate enhanced angiogenic ability leading
to increased drug resistance versus normal endothelial cells [102,103].

3.3. Cancer-Associated Macrophages

In the human body, macrophages, mostly originating from circulating monocytes,
participate in various processes from clearing infections and wound healing, as well as
the repair of tissues [104]. As part of the innate immune system macrophages respond to
the presence of pathogens by presenting antigens and carrying out phagocytosis [105]. M1
macrophages are the predominant type of macrophages during the initial stages of tumori-
genesis, as they participate in phagocytosis of pathogens and antigen presentation [106]. A
tumor is sometimes referred to as a ‘wound’ that does not heal. Thus, within the tumor
microenvironment, the M2 macrophages are present and actively participate in suppressing
the immune system and wound healing [107]. Deep inside the tumor, la ack of oxygen
and various cytokines are known to promote the M2 type of macrophages [107,108]. The
infiltration of tumors with macrophages occur throughout the process of tumorigenesis and
macrophages can account up to a third of the mass of the tumor at some stages. Reports
indicate that an elevated levels of macrophages within tumors are associated with low
survival rates in various cancers [109,110]. This is attributed to macrophages’ promotion of
angiogenesis via release of various cytokines and thus enhance formation of new blood
vessels. Recent data also show that CAMs play key roles in chemoresistance to drugs
such as paclitaxel and 5-fluorouracil [111–116]. Furthermore, CAMs have been shown to
promote CSCs tumorigenic capacity as well as their therapeutic resistance via increased
enzyme synthesis (cytidine deaminase) involved in drug metabolism [112–114].

3.4. Cancer-Associated Neutrophils

When an infection occurs, circulating leukocytes, and specifically neutrophils, provide
the first line of defense against pathogens [117]. Within the tumor microenvironment,
neutrophils can have both pro- and anti-tumorigenic properties [118]. During the initial
stages of tumorigenesis, recruited neutrophils release various cytokines including IL6
thereby inducing inflammation [119,120]. This causes tumor cells to undergo apoptosis.
Neutrophils also release reactive oxygen species that induce apoptosis in tumor cells [104].
In later stages of tumorigenesis, neutrophils release various growth factors such as VEGF
involved in angiogenesis, and therefore promotes tumorigenesis through new blood vessel
formation [121,122]. Neutrophils are also involved in ECM remodeling via the production
of matrix metalloproteases (MMPs) [123]. MMPs are also actively involved in promoting
tumor cell invasion and eventual metastasis via the degradation of ECM molecules [124].
Cancer-associated neutrophils have been shown to contribute towards the attainment of ac-
quired cancer drug resistance via their ability to suppress the immune system, enhancement
of angiogenesis, as well as enhancing tumor cell proliferation [117,125]. Cancer associated
neutrophils also activate various signaling cascades that prevent the proper functioning of
many cancer drugs such as immune checkpoint blockers and common cytotoxic drugs. In
combination with standard therapies, drugs targeting cancer associated neutrophils can
sensitizes tumor cells to drugs and prevent drug resistance and relapse [121,125].

3.5. T Cells

Various populations of T cells have been identified within the tumor microenviron-
ment at various stages of tumor development [126]. Specific T cell populations have specific
receptors used in antigen identification. For example, cytotoxic T cells with specific recep-
tors identify abnormal antigens expressed on tumor cells and their attachment to tumor
cells leads to the destruction of the cells [126,127]. Cytotoxic T cells also play a key role
in preventing formation of new blood vessels via the release of the pleiotropic cytokine
interferon-gamma [128]. Thus, cytotoxic T cells demonstrate anti-tumorigenic behavior
within the tumor microenvironment [129]. Another population of T cells found within
the tumor microenvironment are the CD4+ T cells. CD4+ T cells are mainly involved in
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immune responses within the tumor microenvironment and over time differentiate into
several cells [130]. For example, CD4+ T cells can become T-helper 1 cells, which participate
in inflammation induction and their presence within various tumors is linked to increased
patient survival [131–133]. Another T cell type found within tumors is the regulatory T
cells. Regulatory T cells participate in suppressing inflammation and anti-tumor immune
responses [134–137]. Regulatory T cells releases interleukin-2, which controls the function
of natural killer cells [138–140]. Furthermore, regulatory T cells secrete various growth
factors and cytokines and advertently supports tumorigenesis [139,140].

3.6. B Cells

B cells are responsible for antibody production in the body as well as secretion of
various cytokines [141–144]. B cells are mostly localized at the periphery of tumors and
within lymph nodes near the tumor site [142,144]. Thus, few B cells are found within tu-
mors [142,144]. The main function of B cells during tumorigenesis is their close relationship
with T cells, allowing T cells to act against tumor cells. B cells act as antigen presenting cells
to T cells [145–148]. B cells are also involved in secretion of anti-tumorigenic cytokines such
as IFN-γ [145–148]. However, several studies also show that B cells are pro-tumorigenic
in some tumors [149–151]. It has been shown that regulatory B cells produce various
cytokines including IL-10 and TGF-β that promote immune suppression via their effects on
macrophages and T cells [152–154].

3.7. Natural Killer Cells

Natural killer cells are able to destroy cells infected with viruses in blood [8,155,156].
Two functional sub-categories of natural killer cells have been identified: those that directly
kill tumor cells; whilst another sub-category produces inflammatory cytokines [8,133,155].
Inflammation will lead to the accumulation of various immune cells involved in tumor cell
killing. By seeking and destroying tumor cells within the bloodstream, natural killer cells
are important in preventing metastasis and formation of secondary tumors [157–159]. Both
natural killer cells and innate natural killer cells use both adhesion and cytokine receptors
to identify their cellular targets and in so doing can spare normal healthy cells [160,161].
Within tumors, natural killer cells are less efficient at killing tumor cells. Reports indicate
that both natural killer cells and innate natural killer cells are able to detect ‘stress’ or
biological changes in host tissues and the cells can activate innate and adaptive immune
cells within the TME [161–164]. Reports indicate that natural killer cells may express multi-
drug resistance-like activity, and this can be inhibited through the use of drugs such as
verapamil or solutol HS-15 [165–167].

3.8. Dendritic Cells

The function of dendritic cells is mostly to recognize and capture antigens as well
as present them to T cells [168–170]. Dendritic cells are mostly found within lymph
nodes where they participate in T cell response to specific pathogen infection [171,172].
Depending on the prevailing environment within tumors, dendritic cells can be both
anti- and pro-tumorigenic [170]. The over-production of pro-tumorigenic growth factors
and cytokines can lead to dendritic cells tolerating the presence of tumor cells and act to
prevent an immune reaction [170]. Tumors have been shown to exploit dendritic cells. For
example, reports show that local dendritic cells may be conditioned by tumor cells to form
suppressive T cells, leading drug resistance [173,174].

3.9. Stellate Cells

Found in the liver and the pancreas, stellate cells originated from mesenchymal tissue
and are mostly involved in promoting tumorigenesis via differentiation into myofibrob-
lasts [175–177]. Injury to the liver and pancreas induce stellate cell differentiation into
myofibroblasts, after which they synthesize enormous quantities of ECM molecules and
growth factors including VEGF [178–180]. The development of a tumor, akin to ‘wound
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healing’ induce stellate cells differentiation into myofibroblasts. One major function of
stellate cells is the accumulation of vitamin A in lipids droplets [181–183]. The lipid droplets
are then utilized during ECM synthesis and production of MMPs. Tumor cell-derived TGF-
β is known to be involved in the activation of hepatic stellate cells into myofibroblast in
liver cancer. Both liver cancer and pancreatic cancer tend to be associated with fibrosis. Qui-
escent pancreatic stellate cells are involved in remodeling of the ECM via MMPs synthesis
and ECM protein synthesis [184]. Once activated, pancreatic stellate cells secrete vari-
ous biomolecules leading to their increased migratory behavior and proliferation. Various
reports demonstrated the involvement of stellate cells in tumorigenesis [185–187]. For exam-
ple, a classic study by Hessmann and colleagues showed that pancreatic stellate cells traps
drugs such as gemcitabine and this reduces the efficacy of the drug during treatment [188].

3.10. Adipocytes

Two cell types, adipocytes, and white adipose tissue, constitute the adipose tissue [189].
Energy storage as well as maintenance of energy balance in the body is the function of
adipocytes or fat cells. Given the high energy required by tumor cells during tumor
initiation and progression, it is not surprising therefore that adipocytes play a key role
in this process [189]. Adipocytes have been shown to secrete various biomolecules from
growth factors, enzymes to cytokines [190,191]. The secretion of enzymes including MMPs
leads to ECM remodeling, allowing tumor cells to migrate and metastasize. Obesity is
considered a high-risk factor in many cancers with close to half cancer patients being obese
for example in breast and ovarian cancers [192]. Reports show that white adipose tissue
is linked to an increased risk of cancers and the formation of secondary tumors in lungs,
for example [193]. Organs with a high number of adipocytes include the breast and these
cells have been shown to be pro-tumorigenic [194]. As tumor cells require a lot of energy,
adipocytes can be induced to undergo lipolysis, which converts lipids into fatty acids that
can be used by tumor cells during tumorigenesis [189,195]. Furthermore, adipocytes secrete
various hormones including leptin that promotes tumor cell proliferation and migration
as well as the recruitment of immune cells to the TME [196]. Adipose-derived adult stem
cells, which can differentiate into different cell lineages, also come from adipose tissue.
These stem cells have the ability to enhance inflammation within the TME and thus are
pro-tumorigenic [197,198]. It is possible that adipose-derived stem cells can differentiate
into cancer-associated stromal cells such as CAFs.

3.11. Mesenchymal Stem Cells

Important for the maintenance of healthy tissue and the repair of tissue in the case
of injury, mesenchymal stem cells, or mesenchymal stromal cells, are able to differentiate
into cell types such as osteoblasts, and chondrocytes [199,200]. This differentiation ability
is the reason why MSCs recruited to tumors can transform into various tumor associated
cells. Reports indicate that beside resident fibroblasts differentiation into CAFs, recruited
MSCs can also be transformed into CAFs [4,16,17,20,24]. Whilst resident fibroblasts may
initially have an anti-tumorigenic phenotype, it is reported that over time all fibroblasts
are pro-tumorigenic [5]. During the initial stages of tumorigenesis, fibroblasts synthesize
large quantities of ECM proteins, in what appear to be an attempt at isolating the tumor
from the rest of the tissue [5]. An increase in ECM synthesis also causes the stiffening of
tissue. An increase in tissue stiffness has been associated with tumorigenesis [201]. In later
stages of tumorigenesis, MSCs demonstrate immunoregulatory effects by contributing to
the dampening of the anti-tumor immunity [202,203]. Importantly, the differentiation of
MSCs into CAFs has long-lasting effect with regard to the promotion of tumorigenesis as
CAFs will continue to synthesize and release various factors needed by tumor cells. Our
earlier study clearly demonstrated the involvement of MSCs in CAFs differentiation and
the release of TGF-β, for example [6].
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3.12. Pericytes

Pericytes have multiple roles within the tumor microenvironment including covering
endothelial cells along the surface of the endothelium, in the remodeling of the basement
membrane during tumorigenesis and the formation of new blood vessels [94,204]. Per-
icytes have also been involved in immunoregulatory process through the activation of
immune cells such as lymphocytes, and in phagocytosis [205,206]. Although clinical trials
targeting pericytes involvement in angiogenesis has been carried out, results so far are
not promising. Some reports even show that targeting pericytes leads to more tumor cells
metastasizing [207,208]. For example, targeting pericytes in animal models of breast cancer
resulted in aggressive pulmonary tumor process [209]. It has been postulated that pericytes
may display heterogeneity and there is need to target the correct pericyte subpopulation
with a specific phenotype to stop tumorigenesis [210–212]. Reports indicate that pericytes
can cause resistance to vemurafenib and sorafenib in thyroid cancer and the mechanism
involved occur via the TGF-β signaling [213]. Other reports show that pericytes participate
in tumorigenesis via the promotion of angiogenesis [214,215].

4. The Extracellular Matrix

One key component of the TME is the ECM. Forming the structural part of the TME, the
ECM is located under the epithelial layer surrounding the connective tissue cells [216,217].
CAFs are the main source of ECM components. It is made up of many macromolecules in-
cluding vitronectin, collagens, proteoglycans, and glycoproteins (e.g., fibronectin, laminin)
(Figure 5) [216]. Its composition is always changing depending on the stage of tumorigene-
sis [218], and this is facilitated by enzymes such as cathepsins, lysyl oxidase (LOX), MMPs,
and their inhibitors [219]. In solid tumors, the ECM can constitute about half of the tumor
mass (desmoplastic tumors) and has been linked to poor patient survival [220].
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The elasticity and rigidity of the ECM promote tumorigenesis via integrin signal-
ing [221]. Changes in ECM composition and elasticity influence many aspects of tumori-
genesis varying from cancer cell growth, survival and therapy resistance [221]. Collagen,
the most abundant ECM molecule in tumors [221], provides structural support to tumor
cells and regulating other processes such as tumor cell adhesion, supporting chemotaxis
and migration. Enhanced levels of type I collagen also increase ECM stiffness and pro-
mote tumorigenesis in the process [221]. Enzyme-linked changes in ECM composition
and levels facilitate tumor cell migration via the creation of ‘pores’ allowing tumor cells
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to invade surrounding tissues and travel to distant tissues and organs [222]. Increased
collagen production and the resulting stiffness influence integrin signaling and tumor
cell survival [222].

Importantly, the ECM presents a physical hindrance to drug distribution within tu-
mors [223]. In most cases, this physical hindrance as well as the sequestration of drugs
through direct binding to ECM molecules contributes to the development of drug resistance
in many solid tumors [224]. Furthermore, various reports show that the ECM is key to
tumor vascularization [225]. New blood vessel formation is important to tumorigenesis.
As production of ECM molecules such as collagen increases, the resulting increased ECM
density causes a decrease in vascularization. A stiff ECM compresses blood vessels, limiting
the flow of drugs and oxygen within the TME [225,226]. The lack of enough oxygen within
tumors influence vascularization via the activation of HIF-1α. HIF-1α promotes chemore-
sistance via activation of MDR1 expression in hypoxic colon cancer, for example [227,228].
Lastly, the ECM can sequester various growth factors and cytokines that can promote
tumorigenesis such as TGF-β, VEGF and PDGF.

5. Vascular Networks

Tumor cells require supplies of oxygen and nutrients to maintain their uncontrolled
growth [229]. This is achieved through the vascular networks that allows gaseous exchange
and the removal of toxic waste from the tumor (Figure 6) [8,230]. A major hallmark of cancer
is the process of angiogenesis. The tumor microenvironment becomes hypoxic as the tumor
continue to grow as the vasculature cannot supply oxygen to all cells within the TME [8].
New blood vessels formed from pre-existing ones are ‘leaky’ and convoluted [7,231]. Similar
to the growth of tumor cells, which is uncontrolled, blood vessel formation continues
unabated with no proper control, resulting in a complex structure. Leaky vessels also help
tumor cells to migrate to other tissues and organs to form secondary tumors, as well as
contribute to the ineffective distribution of drugs within the TME. Lymphatic vessels also
provide a ‘throughfare’ through which tumor cells can migrate to other sites [232]. Indeed,
lymph nodes have been shown to be the common sites through which tumor cells migrate
to other tissue and organs [233]. In many cancers, lymph node metastases are linked to
poor prognosis [234–236]. Once in the lymph nodes, cancer cells can easily migrate to other
organs and tissues and in many cases lymph nodes metastases must be treated together
with solid tumors for successful therapy.
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6. Hypoxia within the TME

A hallmark of the unregulated proliferation of tumor cells is the unavailability of
oxygen or hypoxia and nutrients in some parts of a growing solid tumor [237,238]. Synthesis
of new blood vessels via angiogenesis does not occur fast enough to provide oxygen to
rapidly growing tumor cells. The result is tumors with some regions having less than 2%
oxygen levels, thus are hypoxic [238,239]. Importantly, angiogenesis within a growing
tumor leads to dysregulated vasculature and oxygenated blood is not supplied to all regions.
Tumor cells within hypoxic regions obtain a different phenotype to those in regions properly
supplied with oxygenated blood, are more aggressive and become resistant to commonly
used drugs [240]. Indeed, oxygen gradients within solid tumors is a common feature.
Tumor cells within hypoxic regions also express elevated levels of hypoxia-inducible factor
alpha (HIF-1α), with three isoforms having been found in mammals [241]. HIFs play
central roles in tumorigenesis in which they influence hypoxia-induced gene expression
and metabolism [242]. For example, HIF-1 is especially important in tumor cell response to
therapy [243]. HIF-1α also enhances the activities of transcriptional factors including Twist
and Snail, leading to increased endothelial-to-mesenchymal transition (EMT) [244,245].
By modulating collagen synthesis and collagen fiber alignment as well as integrin-ECM
interactions within the TME, HIF-1α also aid tumor cell migration and metastasis [246,247].
In addition, due to a lack of oxygen, tumor cells within hypoxic regions of TME divide
slowly, thus can circumvent common drugs targeting rapidly dividing tumor cells.

As a tumor grows, de novo angiogenesis leads to the formation of leaky blood vessels
leading to an increase in interstitial fluid pressure [95,248]. Furthermore, leaky blood
vessels aid tumor cell metastasis as tumor cells can easily escape the blood vessels with
discontinuous endothelium. Various reports documented that cells within hypoxic TME
region also promote immunosuppression. For example, cancer-associated macrophages
of the M2 type have been found in hypoxic regions [249,250]. The immunosuppressive
properties of CAMs are well documented. HIF-1α can modulate the behavior of myeloid-
derived suppressor cells within the hypoxic regions of TME [251]. Hypoxia also cause
the TME to be acidic and under these conditions T cells are not able to perform their
cytotoxic functions [252]. Further data show that hypoxia can induce the over-expression
of various proteins involved in drug efflux [239]. Reports show that the blocking of HIF-
1α expression can reverse drug resistance in cancers [253,254]. Drug resistance can also
emanate from tumor cells altering their metabolism and avoiding apoptosis. Hypoxia can
also induce autophagy, which can lead to multi-drug resistance [255]. Overall, hypoxia
within the TME can be used as an independent prognostic factor in cancers and predicts
poor outcomes [256,257]. Thus, novel strategies must target tumor hypoxia together with
various components of the TME.

7. Exosomes and Exosomal miRNAs in Tumor Microenvironment

Ranging in size from 30 to 200 nm, exosomes play key roles in cellular communication
between tumor cells and stromal cells and are secreted into the extracellular space by cells
regularly [258]. The contents of exosomes depend on their origin, with stromal cell-derived
exosomes containing various growth factors, cytokines and other signaling molecules that
can impact tumor cell behavior as well as cell-cell interactions [259]. In most cases, the
contents of exosomes promote tumorigenesis via impacting processes such as angiogenesis,
migration, and metastasis [260]. Reports indicate that tumor cells under conditions of low
oxygen and nutrients produce increased levels of exosomes and leads to alterations of
stromal cells into pro-tumorigenic cells including CAFs and CAMs [21,261]. Tumor cell-
derived exosomes also have the ability to prepare some tissue-specific cells for colonization
by tumor cells [262,263].

Importantly, exosomes are key to transporting microRNAs [21]. Stromal cells can
alter microRNAs (miRNAs) expression in both tumor cells and stromal cells [261]. The
alteration of miRNA expression can be induced by tumor and stromal cell interactions
through the release of auto- and paracrine factors [86,260]. For example, microRNA-122
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from breast cancer cells has been shown to reprogram normal cell metabolism by reducing
the uptake of glucose by lung cells, in preparation for lung colonization [264–266]. This
will make sure there are enough nutrients for metastatic breast tumor cells upon lung
colonization. Delineating miRNAs functions within the TME can lead to new therapeutic
targets identification. Exosomes are useful as diagnostic biomarkers as well as therapeutic
targets [267]. Exosomes are stable within the circulatory system and their contents can be
used for diagnosis purposes and can predict tumor metastasis accurately [268,269]. Given
their many functions during tumorigenesis, reports indicate that the abrogation of exosome
production can inhibit tumorigenesis [21,270]. The suppression of tumor-derived exosomes
uptake through the use of heparin resulted in decreased metastatic ability of oral squamous
cell carcinoma [271].

In terms of cancer treatment, exosomes can be used to deliver drugs as they are non-
toxic and biodegradable [272]. Ligands specific for certain tumors can be expressed on the
surface of the exosomes so as to direct them to specific tumor cells [273,274]. Such tumor
cell-specific exosomes can then deliver therapeutic siRNA or drugs, for example, to kill
cancer cells [275].

8. Advances in Therapeutic Targeting of TME

Great improvements have been brought to cancer treatment through combinations of
various drugs and immunotherapy in the past few years. Chemotherapy, used mostly as
the first line of cancer treatment, target rapidly growing cancer cells, and tends to be broad
in its focus [276,277]. Whilst cancer is initially caused by changes in genes, its progression
is associated with major biological and metabolic changes that over time negatively affect
bodily functions [278,279]. By specifically targeting sub-populations of cancer cells within
the TME including CSCs, improvements have been made in cancer treatment [3,18]. In
addition, the introduction of immunotherapy and specifically immune checkpoint blockade
such as PD1 that targets several immune cells within the TME brought remarkable success
in cancer treatment [280]. Immune checkpoint inhibitors are antibodies or drugs that
block proteins called checkpoints from immune system cells including T cells as well as
some cancer cells [281,282]. Programmed death ligand 1(PDL-1) on cancer cells and the
programmed death 1 (PD-1) on normal healthy cells are important in the maintenance of
immune responses [7]. When cancer cell PDL-1 interacts with PD-1 on normal cells, this
prevents the immune reaction of the normal cells to the presence of tumor cell. Checkpoint
inhibitors prevent the interaction between PDL-1 and PD-1 and thus allow normal cells to
activate the immune reaction to the presence of cancer cells. Currently, checkpoint inhibitors
have been clinically proven for various cancers including renal cell carcinoma, colon cancer
and lung cancer, among others [7,283,284]. The major advantages of checkpoint inhibitors
include low toxicity and being able to reduce tumor mass efficiently [285,286]. Normally,
these checkpoints prevent the immune responses from being too strong and this impact T
cells’ ability to kill cancer cells [287,288]. Importantly, the identification of biomarkers can
lead to the grouping of patients that can benefit from specific drugs and therapies.

New therapies also include the prevention of new blood vessel formation. Tumorigen-
esis is a process that depends on the constant supply of oxygen and nutrients to growing
tumor cells [94]. Furthermore, metabolic waste must be removed, without which the mi-
croenvironment becomes toxic even for tumor cells. Thus, the prevention of angiogenesis
through the use of anti-angiogenic drugs including those neutralizing growth factors such
as VEGF, decoy receptors for growth factors is an appealing strategy under intense inves-
tigation. Small molecule inhibitors of several factors released within the TME including
AMD3465 can prevent stromal cell-derived factors from being pro-tumorigenic [289,290].
Antagonists of integrins can prevent cell-cell and cell-ECM interactions within the TME,
increasing cancer cell response to drugs in the process [291]. ECM proteins play key roles
in cancer cell migration, invasion and survival and thus blocking ECM protein interactions
with their major surface receptor, integrins, can influence drug efficacy and tumor progres-
sion [226,292,293]. For example, the combination of celengitide, an integrin antagonist, and
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temozolomide, resulted in improved antitumor activity against malignant melanoma [294].
The inactivation of HIF-1α has been shown to enhance the effect of carboplatin on tumor
cell proliferation and thus can be used as a hypoxia-centered therapy [295,296]. Tumor
acidification has been identified to be a major characteristic of tumor progression as well
as a regulator of tumor response to drugs [7]. The acidification of the TME by hypoxia
also reduces some drug effectiveness as this depends on the surrounding pH. The pH of
the TME also regulates cellular metabolic rates and can influence tumor cell metastatic
abilities [297,298]. An adjustment of TME pH can therefore be used to enhance or decrease
the efficacy of drugs [299]. Drugs that can be activated in the hypoxic regions of tumors
have been suggested. These hypoxic pro-drugs can be activated into cytotoxic drugs by
enzymes found within the hypoxic regions of tumors. For example, TH-302 is a hypoxic
pro-drug utilized together with gemcitabine in the treatment of pancreatic cancer, which
is highly hypoxic with oxygen levels averaging around 0.7% [300,301]. Various signaling
cascades important in hypoxia including the unfolded protein response are appealing
targets to treat solid tumors characterized by hypoxia [302,303]. Other strategies to avoid
hypoxia-induced changes to drug effectiveness make use of nanoparticles to deliver drugs
directly to tumor cells. Other strategies to inhibit hypoxia-mediated HIF response if to
use small-interfering RNA. Detailed reviews on TME-centered therapies has already been
published elsewhere [7,8,304–306].

As expected, therapy resistance is a major problem when these strategies are used.
Combination therapy involving the use of two or more anti-tumor strategies results in
better responses. More research is needed, including evaluating the efficiency of these
strategies before these strategies are commonplace in clinics.

9. Conclusions

The treatment of cancer, ranging from the use of surgery, chemotherapy, radiotherapy,
and recently introduced immunotherapy, have all had limited success when used alone.
In most cases, combination therapy is the best strategy to use for successful treatment.
However, therapy resistance develops as tumor cells are heterogenous and plastic in na-
ture, and tumor cells can convert a non-supporting ‘anti-tumorigenic’ environment into
a ‘pro-tumorigenic’ environment. The contribution of the tumor microenvironment to
tumorigenesis, metastasis, and the development of therapy resistance, is of note. Thus, it
is important to delineate the role played by various TME components in tumorigenesis,
metastasis, and therapy development. This review discusses the identification of predic-
tive, prognostic biomarkers via the analysis of TME components and how this reveals
the complexity of tumor biology, as well as lead to the development of targeted therapies
for specific cancers and patients. Importantly, the recruitment of non-tumorigenic cells
and non-cellular components by tumor cells for their benefit, allows tumorigenesis to
proceed without hindrances. Stromal cells and immune cells are reprogrammed by tumor
cells to release various factors that favor tumor cell growth and survival. The hypoxic
microenvironment has been noted to play key roles in tumorigenesis and drug resistance.
Understanding the processes involved in regulating hypoxia can lead to new therapeutic
targets. In this regard, exosomes have been identified as useful as diagnostic and thera-
peutic tools by revealing tumor-derived secretome and can deliver drugs to tumor cells,
respectively. Currently, combination therapy targeting various components of the TME can
lead to the best results during treatment.
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