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Simple Summary: Current imaging techniques do not reliably distinguish renal cell carcinoma
from other renal diseases. This review summarizes recent advances in other imaging methods
for the diagnosis and monitoring of potential kidney tumors. Magnetic resonance imaging (MRI),
positron emission tomography (PET)/CT using various radiolabeled molecules to detect specific
cancer-associated features, and computational extraction of data from CT images have all proven
useful for various purposes, but more research is needed to verify their reliability.

Abstract: Cross-sectional imaging is the standard diagnostic tool to determine underlying biology in
renal masses, which is crucial for subsequent treatment. Currently, standard CT imaging is limited in
its ability to differentiate benign from malignant disease. Therefore, various modalities have been
investigated to identify imaging-based parameters to improve the noninvasive diagnosis of renal
masses and renal cell carcinoma (RCC) subtypes. MRI was reported to predict grading of RCC and
to identify RCC subtypes, and has been shown in a small cohort to predict the response to targeted
therapy. Dynamic imaging is promising for the staging and diagnosis of RCC. PET/CT radiotracers,
such as 18F-fluorodeoxyglucose (FDG), 124I-cG250, radiolabeled prostate-specific membrane antigen
(PSMA), and 11C-acetate, have been reported to improve the identification of histology, grading,
detection of metastasis, and assessment of response to systemic therapy, and to predict oncological
outcomes. Moreover, 99Tc-sestamibi and SPECT scans have shown promising results in distinguishing
low-grade RCC from benign lesions. Radiomics has been used to further characterize renal masses
based on semantic and textural analyses. In preliminary studies, integrated machine learning
algorithms using radiomics proved to be more accurate in distinguishing benign from malignant
renal masses compared to radiologists’ interpretations. Radiomics and radiogenomics are used to
complement risk classification models to predict oncological outcomes. Imaging-based biomarkers
hold strong potential in RCC, but require standardization and external validation before integration
into clinical routines.

Keywords: imaging; renal cell carcinoma; biomarker; renal mass; radiomics; radiogenomics

1. Introduction

Renal cell carcinoma (RCC) has an incidence of 12 per 100,000 in North America,
and a peak incidence at the age of 60–70 years [1]. RCC incidence continues to rise, with
an estimated 79,000 new cases and 13,920 deaths from RCC in 2022 in the United States
alone [2]. The most common histologic subtype of renal cell carcinoma is clear-cell renal
cell carcinoma (ccRCC), with five-year survival rates declining by stage of the disease.
In the industrial world, the incidence of localized RCC continues to rise, with almost
70% of tumors being detected incidentally [3,4], secondary to increased utilization of
abdominal imaging.

Cancers 2023, 15, 354. https://doi.org/10.3390/cancers15020354 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15020354
https://doi.org/10.3390/cancers15020354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-3038-0011
https://orcid.org/0000-0002-7486-0674
https://doi.org/10.3390/cancers15020354
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15020354?type=check_update&version=1


Cancers 2023, 15, 354 2 of 15

Current challenges in the treatment of renal cell carcinoma include diagnostic un-
certainty, which leads to both under- and overtreatment of the disease. Conventional
cross-sectional imaging techniques do not allow for the discrimination of malignant tu-
mor sub-types, nor can they differentiate between benign lesions. Additionally, current
imaging gives us opaque insight into patients with metastatic disease and its response
to and progression with therapeutics. In recent years, research has focused on improved
imaging techniques to enhance diagnostic precision and prognosis in patients with renal
tumors. Advancements in the field have been multi-factorial, from enhancements in current
ultrasound and cross-sectional imaging technologies, nuclear medicine studies, and the
field of radiomics, which infers renal mass insights from radiologic data. In this review,
we summarize and analyze the future of imaging modalities, and the advancements in
radiomics and radiogenomics as they develop new ways of diagnosing and distinguishing
renal cell masses (Table 1).

Table 1. Summary of imaging-based parameters.

Imaging Technique/Model Description Advantages Disadvantages

MRI

Multiparametric MRI

DWI uses water particle
movement to identify
tumor-like tissue, which has
slower movement of water
particles, and calculated an
apparent diffusion
coefficient (ADC)

Can be used to calculate
likelihood of cancer vs.
non cancer
Can predict Fuhrman grade
with a of 78% and 86%
sensitivity and
specificity, respectively.

Studies use a variety of
non-standardized parameters
for MRI that have not been
validated in a larger
population setting
Poor-lipid AMLs remain a
challenge to distinguish from
chromophobe RCC
and oncocytomaPerfusion MRI (DCE,

DSC, ASL)

Works by assessing perfusion
at the micropapillary level,
calculating changes in signal
before and after contrast (DCE
and DSC) or detecting water
protons in blood (ASL)

Different histologic subtypes
of RCC have different
perfusion coefficients.
ASL MRI can be used to
predict response to treatment
with sunitinib and pazopanib,
with responders having
higher baseline
tumor perfusion

PET-CT

18F-FDG

FDG binds to metabolically
active tissue, signaling
cancer activity.
From a meta-analysis, pooled
sensitivity to detect renal
lesions is 62% and
specificity 88%.

Proposed surrogate for tumor
aggressiveness, with
maximum SUV of lesions in
patients with advanced RCC
is independently associated
with overall survival, also
related to higher Fuhrman
grade, higher stage and
sarcomatoid features.

Limited applicability in RCC
due to physiologic uptake in
renal parenchyma.
Limited also by practicality,
cost, and variable results
across multiple studies.

Girentuximab,
Xr-Girentuximab to CA-IX

CA-IX is a protein that is
overexpressed in
VHL-mutated pathways and
expressed in 95–100%
of ccRCC.
Average sensitivity and
specificity of 86.2% and 85.9%,
respectively for
identifying ccRCC.

Studies are validated with
surgical pathology.
Multiple ongoing studies for
different molecules that target
CA-IX. Recently zirconium
girentuximab showed
promising sensitivity and
specificity of 86% and 86% in
identifying ccRCC.

Long half life time of
girentuximab, where injection
needs to be administered 2–6
days prior to imaging.
Logistics and timing of
molecule remain main barriers
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Table 1. Cont.

Imaging Technique/Model Description Advantages Disadvantages

Tc-MIBI SPECT/CT

99Tc-sestamibi accumulates in
cells with high mitochondrial
content and low multidrug
resistance (MDR) pump
expression, which are
characteristic of
renal oncocytoma.
Sensitivity of 87.5% and a
specificity of 95.2% in
differentiating oncocytomas
and HOCTs

Widespread and usability of
99Tc-sestamibi SPECT/CT and
high concordance of imaging
findings with pathology,
results are promising in the
identification of oncocytomas

Other benign pathologies
such as chronic sclerosis,
fibroma, hydatid cyst and
angiomyolipoma don’t have
any uptake.

PSMA/PET

PSMA is a cell surface protein
that is expressed in prostatic
tissue and also in
neovasculature of some
cancers, including RCC,
specifically clear cell histology

Increased sensitivity of PSMA
PET/CT in detecting distant
metastasis, with sensitivities
of 89–95%, compared to
67–78% with conventional
CT scan
Can predict presence of
adverse histopathological
characteristics (necrosis,
sarcomatoid an
rhabdoid features)

Evaluation of primary lesions
is limited, and studies have
small sample sizes. Non
ccRCC masses have a low
PSMA uptake.
Use may be limited to
metastatic clear cell histology.

C-acetate PET

11C-acetate is actively
incorporated into tumor cells
and is integrated in cellular
lipid structures. Has high
uptake rates in papillary
and ccRCC.

Better sensitivity rates than
FDG PET.
Using dual tracer c-acetate
and FDG PET, AML was
differentiated from RCC with
sensitivity and specificity of
94% and 98%, respectively.

Evidence based on small
sample size studies
Differentiating AML and RCC
would require dual complex
imaging techniques and there
is no added information
on histology.

Radiomics

Objective and detailed
analysis of imaging
characteristics analyzed via
quantitative methods and
statistical models.
Specific morphological
characteristics, texture
analysis and intensity of
different parameters within
the tumor can be standardized
and integrated into algorithms
and AI models to predict
tumor malignancy, histology,
grade and molecular
characteristics. Convolutional
Neural network (CNN) is a
deep learning algorithm that
processes pixel and clinical
data to create models to
predict malignancy of
renal masses.

Reported AUC of 0.87 for
differentiating benign versus
malignant renal masses
Radiomic models have
reported to be superior to
conventional radiological
interpretation of images in
distinguishing histologic
subtypes and presence of
sarcomatoid features
Investigated as a biomarker
for response to therapy, and
texture analysis was found to
be an independent factor
associated with time to
progression in patients with
metastatic RCC being treated
with TKI

Lack of generalizability and
clinical application. There is
few external validity and
reproducibility of studies
because of insufficient access
to cades and images that serve
for the creation of the models.
Most studies are compared to
surgical specimens, which
implies a selection bias.
Intra-tumoral heterogeneity
may not be accounted for as
there are only few areas of the
tumor that are used for
imaging analysis and creation
of models
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Table 1. Cont.

Imaging Technique/Model Description Advantages Disadvantages

Radiogenomics

Genetic pathways express
with different phenotypic
imaging characteristics, so
radiogenomic is the
integration of radiomics with
genetic tumoral data and
molecular signatures.

Reported genetic associations
with imaging characteristics
for VHL, KDMC5, BAP1,
and MUC4.
Radiogenomic Risk Score
(RSS) was developed to
identify CT imaging features
that are correlated to genetic
signatures that have shown to
predict oncological outcomes.
This risk score was shown to
correlate with progression free
survival and response
to treatment

Known genetic alterations in
RCC have a very low
prevalence, and are mostly
applicable to ccRCC
Given the complexity of
molecular pathways,
heterogeneity within the
tumor and change in time, it is
challenging to make direct
correlations of gene and
molecular pathways to
specific imaging findings

MRI: magnetic resonance imaging; CT: computerized tomography; DWI: Diffusion-weighted imaging; DCE:
dynamic contrast-enhanced; DSC: dynamic susceptibility contrast; ASL: arterial spin labeling; RCC: renal cell
cancer; FDG: fluorodeoxy-glucose; SUV: standardized uptake value; CA-IX: carbonic-anhydrase XI; ccRCC: clear
cell RCC; HOCTs: hybrid oncocytic/chromophobe tumors; AI: artificial intelligence; AUC: area under the curve;
TKI: Tyrosin kinase inhibitors.

2. Magnetic Resonance Imaging (MRI)

Multiparametric MRI (mpMRI) allows for the evaluation of anatomic as well as func-
tional characteristics of renal masses [5]. Specifically, diffusion MRI and perfusion MRI
have been studied as imaging tools to aid in differentiating tumor histology or subtype,
and assessing the response to treatment [6]. MRI has been proposed as an alternative to
computed tomography (CT), which is limited in its ability to identify benign lesions such
as fat-poor angiomyolipomas (AMLs) and oncocytomas [7,8]. Diffusion-weighted imaging
(DWI) quantifies the mobility of protons that are associated with water (Brownian motion).
Tissue that is highly cellular, such as tumors, restricts water molecules’ movement, and
thus appears as a high-intensity signal on DWI, and has a low apparent diffusion coefficient
(ADC) [9]. A systematic review and meta-analysis including four studies that used DWI
to differentiate between malignant and non-malignant lesions showed DWI to have 86%
sensitivity and 78% specificity. In this meta-analysis, DWI used to differentiate high-grade
and low-grade RCCs had an area under the curve (AUC) of 83%, reflecting moderately
accurate test performance. However, there were no standardized criteria to compare ra-
diological findings to different imaging modalities or pathological specimens [10]. These
values are comparable to those associated with CT scans, where the sensitivity has been
reported to be 88% and the specificity 75% [11]. Using diffusion MRI, parenchymal wash
index, and ADC ratio were correlated with clear-cell RCC Fuhrman grade, with a pooled
sensitivity and specificity of DWI to differentiate between high and low grades of 78% and
86%, respectively [12,13].

Perfusion MRI, which assesses tissue perfusion at the micropapillary level, offers
the possibility of improving performance characteristics. There are three main types
of perfusion MRI: dynamic contrast-enhanced (DCE), dynamic susceptibility contrast
(DSC), and arterial spin labeling (ASL) [6,14]. DCE and DSC calculate changes in signal
intensity before and after intravenous gadolinium contrast injection, which measures
perfusion parameters. ASL does not require intravenous contrast, and measures perfusion
by detecting water protons in the blood [14]. Using ASL perfusion MRI, Lanzman et al.
compared pre-operative MRI perfusions of 42 patients with various types of renal masses.
The RCC histology was associated with different mean perfusion levels, with papillary
RCC having lower perfusion levels than all other RCC types, and oncocytomas having
significantly higher perfusion levels than RCCs [15].

Differentiating fat-poor AML and RCC based solely on imaging is a known challenge.
In a systematic review and meta-analysis by Wilson et al., MRI was found to be 83%
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sensitive and 90% specific for the detection of fat-poor AMLs, with an AUC of 0.93 [16]. In a
retrospective study of 109 renal masses, Kay et al. developed an MRI diagnostic algorithm
comprising 11 MR imaging features to determine the most likely histology of a renal mass.
They found a sensitivity and specificity of 85% and 76%, respectively, for predicting clear
cell histology, and 80% and 94%, respectively, for predicting papillary histology. Their
algorithm, however, was weak in predicting chromophobe, oncocytoma, and fat-poor AML
histologies [17]. Using this algorithm, Canvasser and colleagues developed a clear cell
likelihood scale of 1 (less likely) to 5 (most likely), and found a sensitivity of 78% and a
specificity of 90% for scores of 4 and 5 [18]. The clear cell likelihood scale was evaluated
in a larger retrospective cohort of 454 renal masses, and the authors found a 93% positive
predictive value for a score of 5, and a sensitivity and specificity of predicting clear-cell
RCC of 91% and 56%, respectively, for scores of 4 and 5 [19]. Although these scales do not
provide insight into tumor aggressiveness, they may be used to help select treatment for
small renal masses, and to determine candidates for surveillance [5].

There is a growing interest in using mpMRI, not only to predict renal mass histology
and behavior, but also to assess response to therapy. In a prospective mixed cohort of
treatment-naïve and exposed patients, Tsai et al. evaluated changes in tumor ASL MRI
perfusion as a measure of response to sunitinib and pazopanib treatment for metastatic
RCC. Perfusion on MRI imaging, as evaluated by objective response rate, was compared
among 6 responders and 11 non-responders at multiple time points during treatment and
up to disease progression. Responders had a higher baseline tumor perfusion than non-
responders (404 mL/100 g/min vs. 199 mL/100 g/min; p = 0.02), suggesting this could aid
in identifying responders to therapy with tyrosine kinase inhibitors [20]. In a prospective,
randomized, double-blinded trial that compared sorafenib and placebo, DCE MRI was also
evaluated as a pharmacodynamic biomarker of response to sorafenib in metastatic RCC. Of
the 44 patients with two available MRIs for comparison, two DCE parameters (area under
the contrast concentration versus time curve 90 s after contrast injection [IAUC90], and
volume transfer constant of contrast agent [Ktrans]) were evaluated. Although patients
with high baseline Ktrans had better progression-free survival (PFS) compared to patients
with low baseline Ktrans (log-rank p = 0.027), there was no significant association between
change in IAUC90 and Ktrans with PFS [21].

In summary, while multiple studies have evaluated the use of MRI to predict the
histology and grade of renal masses, and to assess response to treatment in metastatic
RCC, they were generally small studies that used a variety of non-standardized mpMRI
metrics [14]. Future studies are needed to validate the use of these metrics and demonstrate
their usefulness in clinical scenarios.

3. Contrast-Enhanced Ultrasound

Ultrasound is a widely used diagnostic tool, and in many settings is the first modality
used to evaluate renal pathologies. Focal lesions, hydronephrosis, and vascular pathologies
can be identified, whereas benign lesions cannot be reliably distinguished from malignan-
cies by conventional ultrasound [22]. Therefore, contrast-enhanced ultrasound (CEUS) has
been proposed to visualize RCC characteristics. The contrast agent used for ultrasound is
based on microbubbles, and amplifies the signal of microvascular structures [23]. CEUS
has been shown to highly differentiate RCC from oncocytoma and angiomyolipoma [24,25].
In one study, combining CEUS parameters showed a 93% sensitivity and 100% specificity
for renal malignancies [26]. Furthermore, a study of 85 patients with 93 renal masses
showed that peak intensity and time to peak intensity in CEUS differed between clear-cell
RCC, chromophobe RC and papillary RCC [27]. Additional studies have shown specific
enhancement characteristics compared to clear-cell RCC [28]. CEUS has also been used
in the diagnostic setting. For example, Lamuraglia et al., in 2006, showed that CEUS
holds predictive value in metastatic RCC patients treated with the multi-kinase inhibitor
sorafenib [29]. Similarly, Williams et al. reported significant changes in CEUS along with
anti-angiogenic therapy of metastatic RCC, although CEUS parameters did not correlate
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with progression-free survival or best response rate to therapy [30]. Current research
focuses on the assessment of CEUS to predict the response to immunotherapy in metastatic
RCC (NCT05206942).

In summary, CEUS is a diagnostic modality that offers potential advantages in the
characterization of renal masses, including enhanced diagnostic performance, character-
ization of renal mass histologic subtypes, its low cost, its low barrier to access, and the
absence of ionizing radiation. Additional studies are needed in larger settings to vali-
date these findings, including understanding performance characteristics in patients with
different habitus.

4. Positron Emission Tomography–Computed Tomography (PET/CT)

Molecular or nuclear imaging studies rely on in vivo visualizations of biological pro-
cesses at a cellular and molecular level, using radiopharmaceutical compounds that bind to
a molecule of interest [5]. In RCC specifically, nuclear imaging allows for the identification
of not only anatomic locations, but also for molecular pathways and processes that are
associated with specific histologic features and tumor behavior. Multiple positron emission
tomography (PET) radiotracers have been developed and studied as both prognostic and
predictive biomarkers in RCC [6,31].

4.1. 18F-Fluorodeoxy-Glucose (FDG) PET/CT

While 18F-fluorodeoxy-glucose (FDG)-PET is the most common and well-known
radiotracer used in other cancers, it has limited applicability in RCC due to its variable
activity in primary and metastatic tumors, as well as physiologic uptake in normal renal
parenchyma [5]. In a meta-analysis of 14 studies that assessed this modality in advanced
RCC, the pooled sensitivity and specificity of FDG-PET/CT were 62% and 88%, respectively,
for renal lesions, and 79% and 90%, respectively, for extrarenal lesions [32]. Despite variable
uptake at the individual lesion level, the maximum standardized uptake value (SUVmax)
of lesions in patients with advanced RCC has been independently associated with overall
survival (OS) and PFS [33,34]. FDG-PET/CT activity has been proposed as a surrogate
for tumor aggressiveness, as it has also been correlated with higher Fuhrman grade, TNM
stage, and sarcomatoid features, and can aid in the prediction of progression and in clinical
decision making [35–38]. Additionally, the detection of metastatic or recurrent sites was
evaluated in a recent meta-analysis that included 14 studies [39]. The pooled sensitivity was
described with 0.86, and specificity with 0.88 [39]. Accordingly, FDG-PET may be a useful
re-staging tool for RCC, but current evidence is mostly based on retrospective studies, and
lacks prospective investigations [39]. Hou et al. focused on the clinical value of FDG-PET in
papillary RCC, and reported a similar sensitivity of 81% in the primary lesion and 100% in
recurrent lesions [40]. These preliminary retrospective studies are promising, and need to
be confirmed in larger prospective studies. Limitations to the use of FDG-PET/CT include
practicality, cost, and variable results across multiple studies [41].

4.2. 124I-cG250 (124I-Girentuximab)

Girentuximab, formerly known as antibody cG250, is one of the most promising nu-
clear imaging methodologies in the characterization of solid renal masses [5]. It selectively
binds to carbonic anhydrase IX (CA-IX), a protein that is overexpressed in VHL-mutated
pathways in response to hypoxic conditions, and is expressed in 95 to 100% of clear-cell
RCCs [6,42,43]. A multi-center phase III trial, the REDECT trial, evaluated the diagnostic
efficacy of 124I-girentuximab PET/CT and contrast-enhanced CT (CECT) in identifying
clear-cell RCC in patients with indeterminate renal masses that were scheduled for surgical
resection. Imaging was performed 2–6 days after intravenous administration of giren-
tuximab, and prior to surgical resection. Imaging readings were classified as clear-cell
RCC and non-clear-cell RCC, which were then compared to final surgical pathologies. In
195 patients that had imaging and pathology available for analysis, the average sensitivity
and specificity were 86.2% and 85.9%, respectively, for girentuximab-PET/CT, and 75.5%
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and 46.8%, respectively, for CECT. Furthermore, the inter-reader agreement was higher
for girentuximab PET/CT [44]. Although the limitations of this study included a bias in
patient selection, using only pre-surgical candidates, nevertheless, it provides the most ac-
curate validation of pathology with imaging using PET/CT. Different radiotracers targeting
CA-IX are currently being studied to improve clinical practice to reduce the long half-life of
girentuximab. The molecule F-VM4-037, which is reported to have an 18-minute plasma
half-life, has been studied in a phase II trial to allow same-day imaging [45]. Although the
performance characteristics of this approach appear to be promising, logistics and timing
remain ongoing barriers and, additionally, advancements in the technology will need to be
validated in order for it to be used in clinical practice.

There is currently a prospective, open-label, multi-center phase III trial evaluating the
performance characteristics of girentuximab (an anti-CAIX monoclonal antibody) labelled
with 89Zr, to evaluate indeterminate renal masses to differentiate clear-cell RCC from other
renal masses (ZIRCON Trial; NCT03849118). Its preliminary results were reported recently,
and exceed the predetermined sensitivity and specificity study targets, with the imaging
agent delivering 86% sensitivity and 87% specificity [46]. The phase I study showed in all
ten cases a good toxicity profile, and was able to differentiate between clear-cell RCC and
non-clear-cell RCC renal mass [47]. This technology is also being examined for diagnostic
and therapeutic purposes in the STARLITE 2 Phase II study which evaluates the efficacy
of Lu177 conjugated to girentuximab + nivolumab (anti-PD-1) systemic therapy. In a
theranostic approach, Girentuximab could be labelled with 177Lu, a beta- emitter, that
could induce single-strand DNA breaks into RCC cells. These agents are promising, and
future research will focus on their incorporation into clinical practice.

4.3. Prostate-Specific Membrane Antigen (PSMA)–Targeted PET/CT

Prostate-specific membrane antigen (PSMA) is a cell surface protein that is overex-
pressed in prostate cancer, as well as in the neovasculature of some solid tumors, including
RCC. PSMA-targeted imaging was first described in metastatic RCC by Demirci et al.
in 2014 [48]. Small studies have reported the sensitivity of F-DCFPyL PSMA PET/CT
in detecting distant metastases to range from 88.9% to 94.7%, compared with 66.7% to
78.0% for conventional CT scans [49–51]. For localized renal masses, Golan et al. found
that the mean SUVmax of 68Ga-PSMA-11 PET/CT was significantly higher in malignant
as compared to benign lesions, and its washout coefficient K2 was significantly lower in
cancerous tissue [52]. Gao et al. reported that SUVmax of the same tracer could effec-
tively differentiate high vs. low (WHO/SIUP grade I-II vs. III-IV) grade in 36 cases of
clear-cell RCC. Furthermore, 68Ga-PSMA-11 PET/CT could predict the presence of adverse
histopathological characteristics, such as necrosis and sarcomatoid and rhabdoid features,
with an AUC of 0.89 [53]. Both of these studies, however, have small sample sizes, and
are not consistent with prior studies that show a high-background signal, limiting the
evaluation of primary masses [54,55]. In general, most studies of PSMA-targeted PET/CT
have included mostly clear-cell RCC, but the few non-clear-cell RCC lesions evaluated
by this approach have shown lower uptake than surrounding renal parenchyma [55]. In
particular, a meta-analysis described that PSMA PET/CT may also be suitable for chromo-
phobe RCC, due to its relevant PSMA expression [56]. In contrast, only 13.6% of papillary
RCC demonstrate a PSMA expression and therefore, FDG PET is the preferred dynamic
imaging modality [56,57]. Based on the inconsistency of PSMA uptake in non-clear-cell
RCC, PSMA PET is not appropriate for staging RCC subtypes other than clear-cell and
chromophobe RCCs [56,58].

The specificity of PSMA PET/CT to patients with clear-cell RCC may limit its routine
clinical use in the localized setting. However, this technique could potentially become
useful in patients with metastatic disease as a way to measure treatment response or disease
progression. Additional studies are warranted to validate these findings.
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4.4. 11C-Acetate PET-CT

The radiotracer 11C-acetate is actively incorporated into tumor cells and integrated
into cellular lipid structures, and may be helpful in distinguishing between malignant
and benign lesions [59]. In the imaging of RCC, 11C-acetate has shown high uptake rates
in clear-cell RCC, and even higher uptake rates in papillary RCC [60]. Additionally, in
comparison to FDG-PET/CT, 11C-acetate-PET/CT is reported to have better sensitivity for
detecting RCC [61]. 11C-acetate was evaluated as part of a dual-tracer technique with FDG
PET/CT for the differentiation of AML from RCC; it was reported to have a sensitivity of
94% and a specificity of 98% [62]. In a case report, 11C-acetate was reported to predict early
response to sunitinib in metastatic RCC. In summary, 11C-acetate is a promising radiotracer
that may have the potential to be used to stage RCC, but evidence is based on small sample
sizes. This tracer may also be relevant to the differentiation of AML from RCC as part of a
complex dual imaging technique

5. Single Photon Emission-Computed Tomography (SPECT Scan)
99Tc-Sestamibi SPECT/CT

As previously mentioned, a key limitation of several imaging modalities is their lim-
ited ability to distinguish benign from aggressive RCC tumors, such as clear-cell RCC
and oncocytoma [63,64]. 99Tc-sestamibi, a widely used nuclear imaging agent, offers the
ability to differentiate these tumors based on their mitochondrial content. 99Tc-sestamibi
is a lipophilic cationic mitochondrial imaging agent that accumulates in cells with high
mitochondrial content and low multidrug resistance (MDR) pump expression, which are
characteristic of renal oncocytomas [5,65]. In contrast, clear-cell and chromophobe RCC
masses have a higher MDR pump expression and low mitochondrial activity, although
chRCC has generally higher mitochondrial activity than clear-cell RCC [65,66]. In a prospec-
tive study by Gorin et al., the use of preoperative 99Tc-sestamibi single photon emission
computed tomography (SPECT)/CT in detecting oncocytomas was assessed in 50 presurgi-
cal patients with T1 renal masses, and results were compared to final surgical pathologies.
The authors found a sensitivity of 87.5% and a specificity of 95.2% in differentiating onco-
cytomas from hybrid oncocytic/chromophobe tumors [67]. Sistani et al. validated these
findings and found that in 29 patients with 31 renal masses, all oncocytic lesions were
positive on 99Tc-sestamibi SPECT/CT, whereas uptake was low in chromophobe RCC and
absent in other RCC subtypes [68]. In a 90-patient study by Asi et al., strong 99Tc-sestamibi
uptake was observed in 10 of 10 oncocytomas, while none was seen in most malignant
lesions, except in 5 chromophobe RCC and 3 oncocytic papillary RCC masses. Other benign
pathologies, such as chronic sclerosis, fibroma, hydatid cyst, and angiomyolipoma, also
showed no uptake. The authors reported a positive predictive value of 60% and a negative
predictive value of 91.3% in predicting benign pathologies. Additionally, they reported
a relative uptake of 0.49 as an optimal cutoff to discriminate oncocytomas from other
pathologies [69]. Given the already widespread use of 99Tc-sestamibi SPECT/CT and the
high concordance of imaging findings with pathologies, results support further evaluation
of its use in the identification of oncocytomas and other benign renal lesions.

6. Radiomic and Radiogenomic Biomarkers
6.1. Radiomics

Radiomics and radiogenomics are two closely related fields with promising develop-
ments in characterizing cancers, predicting their behavior, and assessing treatment response.
Radiomics consists of high-throughput extraction of quantitative data and the application
of high-order statistical models to medical imaging to yield more objective and detailed
analyses [5,70]. To make results more reproducible and interpretations more reliable, ra-
diomic features quantifying morphological, intensity related, textural, and co-occurrence
characteristics of CT, FDG-PET, and T1-weighted MRI features are being standardized [70].
These predefined quantitative radiomic features can be integrated into algorithms and
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artificial intelligence models to predict malignancy, tumor histology, tumor grade, and
molecular characteristics [5].

Several radiomics models, most using texture analysis, have been designed and re-
ported to be highly accurate in differentiating benign from malignant renal masses [71–73].
Varghese et al. evaluated 31 texture metrics of contrast-enhanced CT on 174 renal masses,
and compared these findings with surgical pathologies. They found that six specific texture
analysis features—entropy, entropy of fast-Fourier transform magnitude, mean, uniformity,
information measure of correlation 2, and sum of averages—had high AUC values, with a
mean AUC of 0.87 for differentiating benign versus malignant renal masses [72]. Further-
more, Uhlig et al. used machine learning algorithms to predict the malignancy of renal
masses using 120 standardized radiomic features, and their diagnostic accuracies (base on
surgical pathology) were compared with the those of blinded radiologists’ assessments.
The sensitivity and specificity of their models were higher than radiologists’ diagnoses
(0.88 vs. 0.80; p = 0.045, and 0.67 vs. 0.50; p = 0.083, respectively), with an AUC of 0.83
compared to 0.68 (p = 0.47) [73].

Other studies have also used convolutional neural network (CNN), a type of deep
learning algorithm that processes images using pixel data recognition, in order to create
models to differentiate malignant masses based on imaging [74–77]. In one of the largest
series, Xi et al. developed a CNN model that included clinical and radiologic MRI data of
1162 renal lesions. This model was superior to radiological experts’ interpretations, with an
accuracy of 0.70 vs. 0.60 (p = 0.053), sensitivity of 0.92 vs. 0.80 (p = 0.017), and specificity of
0.41 vs. 0.35 (p = 0.450), respectively.

Using radiomics, various models have been reported to distinguish specific histologic
features in renal masses. The accuracy of some models has exceeded conventional interpre-
tation of radiologists, including those for CT to differentiate fat-poor AML from clear-cell
RCC [78,79], oncocytomas from chromophobe RCC [80], and papillary type I from papillary
type II RCC [81,82]. Similarly, such models have also been used to determine the presence
of sarcomatoid features in clear-cell RCC, and to predict their nuclear grade [83–85].

Radiomics has also been investigated as a means of predicting responses to targeted
therapy. In a retrospective analysis of 39 patients with 87 metastatic sites, Goh et al.
compared the correlation of contrast-enhanced CT texture analysis parameters, at baseline
and after two doses of tyrosine kinase inhibitors, with their progression with those of
standard criteria. They reported texture analysis to be an independent factor associated
with time to progression, supporting its potential to improve assessment and predict good
response to therapy [86].

Although radiomics has promising utility for the diagnosis and assessment of renal
masses and their response to therapy, its potential is limited by a lack of generalizability
and clinical application. A recent systematic review and meta-analysis of 57 publications
by Ursprung et al., of which 34 involved machine learning and artificial intelligence,
reported that several similar characteristics have been investigated, but they have not been
introduced into clinical practice because of a lack of external validation and reproducibility.
This may be due to limited access to the codes and images that are used for the analysis
and creation of the models [87].

One limitation to current radiomic analysis of renal masses is the fact that in most
studies, the findings are compared to surgical pathologies, creating the possibility of selec-
tion bias. Additionally, some radiomics studies only analyzed single segments of the tumor,
and therefore could not assess intratumoral heterogeneity, which may be an important
factor in RCC [87]. This remains a promising field; however, prospective, randomized, and
multicenter trials are required to accelerate its incorporation into clinical practice.

6.2. Radiogenomics

Radiogenomics is the integration of radiomics with genetic data and molecular signa-
tures, based on the underlying principle that genetic alterations lead to distinct phenotypic
imaging characteristics [5,6,88]. For clear-cell RCC specifically, the thorough analysis of
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genetic alterations with prognostic significance has led to an increased interest in the
relationship between genomic signatures and imaging characteristics [88].

Karlo et al. analyzed the relationship of contrast-enhanced CT findings to genetic
alterations in VHL, PBRM1, SETD2, KDM5C, and BAP1 genes in 233 patients with clear-cell
RCC. For VHL, they described a mutation frequency of 53.2% and imaging characteristics
of well-defined tumor margins, nodular tumor enhancement, and gross appearance of
intratumoral vascularity. KDMC5 and BAP1 had mutation frequencies of 6.9% and 6.0%,
respectively, and were significantly associated with evidence of renal vein invasion. PBRM1
mutations were observed in 28.8% of patients and, together with VHL mutations, were
significantly more common among solid clear-cell RCC. BAP1, KDMC5, and SETD2 muta-
tions, with a frequency of 7.3%, were absent in multi-cystic clear-cell RCC [89]. In a similar
study by Shinagare et al., BAP1 mutations were significantly associated with ill-defined
margins and the presence of calcifications, while MUC4 mutations were associated with an
exophytic growth pattern [90].

Radiogenomics has also been studied and integrated into models that can predict
outcomes and response to treatment. Jamshidi et al. demonstrated how targeted, non-
invasive, imaging-based surrogates of molecular assays (SOMA) can be constructed and
used to determine outcomes in clear-cell RCC. They developed the Radiogenomic Risk
Score (RRS), using a library of CT imaging features that have been correlated to genetic
signatures shown to predict oncological outcomes. They followed 70 patients prospectively,
classified RRS as high vs. low, and showed that the RSS predicts disease-specific survival,
with a median survival of 40 months in patients with high RRS vs. 120 months in patients
with low RRS (p = 0.00024) [91]. In another study, the ability of RRS to predict radiologic
PFS was evaluated in patients with metastatic RCC undergoing presurgical treatment
with bevacizumab in a phase II clinical trial. Patients with high RRSs on pretreatment
CT scans had a median radiological PFS of 6 months vs. >25 months for patients with
low RRSs (p = 0.005). Furthermore, overall survival differed significantly between the two
cohorts: 25 months among high-RRS patients vs. >37 months among those with low RRSs
(p = 0.03) [92]. These results must be interpreted carefully, as imaging characteristics may
reflect tumor biology, and not necessarily the response to treatment.

The limitations of radiomics also apply to radiogenomics. In addition, the known
genetic alterations in RCC have a very low prevalence, which may limit the utility of
radiogenomics. Furthermore, image characteristics, as they relate to genetic alterations,
may not be consistent in all phases of imaging, and given the complexity of molecular
pathways, heterogeneity within the tumor, and change over time, it is challenging to make
direct correlations to specific imaging findings. This field will continue to expand with
the advancement of knowledge regarding the relationships among genetic alterations,
molecular pathways, and prognosis and response to treatment [5,88].

7. Future Directions

There are currently multiple trials focusing on the imaging of RCC and indeterminate
renal masses. An early stage study is currently investigating hyperpolarized 13C pyruvate
MRI to differentiate benign from malignant renal masses (NCT04687969). Due to the charac-
teristic increased lactate production in malignant tissue, the conversion of hyperpolarized
13C pyruvate to lactate can be visualized with MRI, and makes this noninvasive pathway
specific technique a promising approach in visualizing renal masses [93]. Another trial is
investigating the use of a machine learning algorithm in patients undergoing PET/MRI us-
ing [18F]-DCFPyL, a PSMA ligand, in solid tumors including renal masses to assess tumor
aggressiveness (NCT04687969). Aggressiveness assessed in imaging will be compared to
the final histopathology in 50 patients, and patients will undergo up to three scans to evalu-
ate longitudinal differences. With respect to treatment response, Mittlmeier et al. reported
a pilot study that revealed a potential approach to predict early response to tyrosine-kinase
inhibitors in metastatic RCC using 18F-PSMA PET/CT [94]. The theranostics approach,
involving molecular imaging and a subsequent targeted therapy using the same radiotracer,
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represents an exciting modality in clear-cell renal cell carcinoma. The natural association of
neovascularization in clear-cell RCC and PSMA expression may allow for targeted ther-
apy using 177Lu-PSMA in highly aggressive RCC [57,95]. Furthermore, a combination of
PSMA-targeted therapy and immunotherapy may also be a promising approach [57].

8. Conclusions

Various imaging platforms are currently being studied that offer significant promise
to better inform the diagnosis and prognosis of patients with RCC. Although most tech-
nologies described here are not yet ready for routine clinical use, advances in imaging will
soon help clinicians make better informed management decisions.
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