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Simple Summary: This narrative review summarises the current limited literature relating to multi-
parametric magnetic resonance imaging software (called LiverMultiScanTM) used for the purpose of
analysing liver tissue in a non-invasive approach to assess liver health. Liver health is of particular
importance when considering patients with liver malignancy planned for a major liver resection.
The aim of this review is to consider the current evidence for its use in the setting of chronic liver
disease, liver malignancy, and perioperative planning, and to examine the future applications of such
software and the hurdles it must surpass to improve patient selection and outcomes in liver surgery.

Abstract: Liver biopsy remains the gold standard for the histological assessment of the liver. With
clear disadvantages and the rise in the incidences of liver disease, the role of neoadjuvant chemother-
apy in colorectal liver metastasis (CRLM) and an explosion of surgical management options available,
non-invasive serological and imaging markers of liver histopathology have never been more pertinent
in order to assess liver health and stratify patients considered for surgical intervention. Liver MRI
is a leading modality in the assessment of hepatic malignancy. Recent technological advancements
in multiparametric MRI software such as the LiverMultiScanTM offers an attractive non-invasive
assay of anatomy and histopathology in the pre-operative setting, especially in the context of CRLM.
This narrative review examines the evidence for the LiverMultiScanTM in the assessment of hepatic
fibrosis, steatosis/steatohepatitis, and potential applications for chemotherapy-associated hepatic
changes. We postulate its future role and the hurdles it must surpass in order to be implemented in
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the pre-operative management of patients undergoing hepatic resection for colorectal liver metastasis.
Such a role likely extends to other hepatic malignancies planned for resection.

Keywords: colorectal liver metastasis; post-hepatectomy liver failure; prehabilitation; hepatectomy;
LiverMultiScan; magnetic resonance imaging; quality of future liver remnant

1. Introduction

Liver biopsy remains the historical “gold standard” for measuring fibrosis, steatosis,
and steatohepatitis, despite being both invasive and costly, as well as sampling-dependent,
taking only a snapshot (0.002%) of liver tissue, and observer-dependent with associated
risks that limit patient acceptability [1–5]. However, with an epidemic of progressive liver
disease, in combination with the implications of chemotherapy on liver health, the impor-
tance of adequately stratifying liver disease severity has never been more pertinent. There
is a need for non-invasive, reliable, and objective methods to assess liver histopathology
of the functional liver remnant (FLR) prior to major hepatic resection. Such novel tests
may stratify disease severity, identify patients at risk of liver decompensation, and inform
clinical decision making without the limitations associated with liver biopsy in the context
of major hepatic resection.

Imaging offers an attractive, non-invasive method, which may address the unmet
need highlighted above. Imaging provides an anatomical assessment of the liver, and
recent work suggests it may have a role in the histological assessment of the liver in either
a focused or entire liver approach, thereby eliminating the limitations described above
with the added value of amalgamating assessments of specific anatomical areas of interest
with pre-operative planning. Specifically, magnetic resonance imaging (MRI) is already a
leading modality in the assessment of colorectal liver metastases (CRLM) and is commonly
used. Therefore, any imaging biomarkers utilising MRI would be of great value in this field,
without any additional steps required in the pre-operative workup and minimising further
inconveniences to the patient. Non-invasive MR imaging markers of histopathological
features of the liver warrant precise assessment in the pre-operative assessment of CRLM
and have associations with long-term outcomes in other liver diseases [6–9]. In this review,
we discuss the recent technological advances and evidence for one specific multiparametric
MRI software, the LiverMultiScanTM (Perspectum, Oxford, UK). As a recent novel technol-
ogy, there is limited evidence focusing solely on its role in hepatic surgery for CRLM. Thus,
we will discuss its demonstrated application in chronic liver disease, as well as hepatic
surgery. We foresee this technology as having a potential role in various aspects of hepatic
surgery and postulate potential roles it may serve, as well as hurdles it must surpass to be
implemented in the pre-operative management of patients undergoing liver resection for
CRLM and other hepatic malignancies.

2. The LiverMultiScanTM

The LiverMultiScanTM uses information from a novel multiparametric MR and PDFF
protocol that allows for the in vivo objective characterisation of liver tissue. The software
processes T1 mapping of extracellular water content, which is a proxy for inflamma-
tion/fibrosis, T2* mapping for liver iron content and proton density fat fraction (PDFF)
for liver fat quantification. However, T1 measurements are adjusted for the iron level, as
high levels of iron can lead to decreased T1 values or pseudo-normal values, thus provid-
ing a corrected T1 value (cT1) [10,11]. Banerjee and colleagues conducted a prospective,
comparative, non-randomised study comparing LiverMultiScanTM with histological as-
sessment of tissue obtained from liver biopsy in an unselected cohort [10]. They showed a
good correlation of the LiverMultiScanTM with histological parameters in a cohort with
an array of liver disease aetiologies. For discriminating any healthy individuals with
any degree of fibrosis, steatosis, or iron content, they showed an area under the curve
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(AUROC) of 0.94 (p < 0.0001, 95% CI 0.90–0.99), 0.93 (95% CI 0.87–0.99, p < 0.0001), and
0.94 (95% CI 0.87–1.00, p < 0.0001), respectively. However, it is unclear if any of the patients
in this study had operable primary or secondary hepatic malignancies.

In terms of practicality, there is no additional hardware required to carry out the scans.
The only requirement is appropriate software, which is suitable for most modern MRI
scanners. Furthermore, there is no specific training required for the clinician to imple-
ment this technology. However, clinicians should have a level of education on how to
correctly interpret the clinical results. Only the MRI technicians/radiographers require
specific training to acquire the scans correctly, which takes approximately 2 h to complete.
The analysis of data obtained does not require the involvement of a radiologist. In fact,
the images/data obtained are securely uploaded (by a radiographer) to the manufacturer
(Perspectum Ltd., Oxford, UK). Once uploaded, the data are analysed by their team using
their propriety software. The results were previously corroborated in an independent study
conducted by the Hepatobiliary teams at the University of Edinburgh and Basingstoke
Hospital [12]. A report (quantifying cT1, T2*, and PDFF) with maps of the liver is re-
turned to the clinical team. The overall analysis has a turnaround time of approximately
2 h. Figure 1 illustrates the different degrees of parenchymal wellbeing in terms of cT1
and PDFF.
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Figure 1. LiverMultiScanTM schematic demonstration of the increasing degrees of liver disease
activity/fibrosis (as measured by cT1 score) and liver fat content (as measured using PDFF) in
3 patients included in the Precision1 trial. Scores are graphically represented on an increasing colour
scale on the liver. Images reproduced with permission from the Basingstoke Unit and Perspectum ltd.

There are currently over 600 MRI scanners with the technology, and there is regulatory
clearance for the clinical use of the technology in the USA, Singapore and across Europe
(including the United Kingdom). It should be noted that LiverMultiScan adds an additional
15 min to a standard MRI Liver scan.

In terms of cost effectiveness, no study to date has explored the cost effectiveness of
implementing the LiverMultiScanTM for the purpose of CRLM or other hepatic cancers.
However, it was deemed a cost-effective alternative to liver biopsy in the National Health
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Service (NHS) for monitoring autoimmune hepatitis [13] and for the risk stratification of
NAFLD [14].

2.1. LiverMultiScan TM: The Grading of Hepatic Fibrosis and Future Applications in
Hepatic Surgery

Research to date suggests that liver parenchyma T1 relaxation time (milliseconds)
maps of the liver provide information related to tissue composition, as T1 relaxation time
increases with fibrosis and thus provides a measurable parameter used in the quantifi-
cation of liver fibrosis in chronic liver disease [10,15–18]. Previous work also suggests
cT1 mapping may be able to distinguish between mild (Ishak 1–2) and severe (Ishak 5–6),
as well as between moderate (Ishak 3–4) and severe disease, but not between mild and mod-
erate grades of histological fibrosis; however, its true accuracy in doing so remains to be
determined [10,16,19,20]. If LiverMultiScanTM cT1 scores cannot differentiate between
lower grades of fibrosis, its value may be limited in high-stakes complex surgery, which
relies on detail and marginal gains. Some have investigated the relationship between grades
of fibrosis and outcomes in disease states where hepatic surgery is indicated. Some work is
described below and provides insight into how we may utilise the LiverMultiScanTM to
predict outcomes prior to embarking on surgical intervention.

One group showed that the fibrosis grades of Ishak 1–5 have no correlation with
survival outcomes after liver resection for Hepatitis B-associated Hepatocellular Carci-
noma [21]. However, Ishak 6 (i.e., Cirrhosis) was independently associated with poor
overall recurrence-free survival and overall survival [22]. This study did not look at intra-
operative or postoperative outcomes other than survival and recurrence. One limitation
is that the histological grading was based on the resected sample as opposed to the rem-
nant. Other work has not shown any difference between patients with varying grades of
fibrosis and intraoperative outcomes nor immediate postoperative complications following
right major hepatectomy for HCC [23]. However, an association between the length of
stay and fibrosis grade was noted. Furthermore, this group demonstrated that rates of
remnant liver volume growth at 6 and 12 months following right major hepatectomy are
inversely associated with the severity of fibrosis. Whilst some work corroborates their
findings [24,25], others contradict this statement [26]. In CRLM, high levels of histological
fibrosis may be related to hepatic-specific recurrence-free survival [27]. The retrospective
nature, lack of power, and lack of standardised histological assessment found in all these
studies limit their interpretation and warrant further validation. Indeed, it is a major
challenge to obtain reliable and standardised liver histological grading. cT1 scores may
provide such standardisation.

Whilst it is logical that chronic liver disease and fibrosis affect Post-Hepatectomy Liver
Failure (PHLF) and other outcomes such as RFS and OS (especially in HCC), the nuance of
fibrosis grades and its association with outcomes after liver resection for CRLM and other
hepatic malignancies remains to be determined. This should be a focus of future work in
order to guide decision making in a field where the role of imaging markers is likely to
only gain traction and relevance. Imaging biomarkers for grades of fibrosis may indeed
provide valuable insights into the outcomes of hepatic surgery and may prove to be a key
prognostic marker.

There are other considerations for the T1 measurement. Importantly, T1 or cT1 are
indirect measures of liver fibrosis and may be prone to confounding factors. The T1 map-
ping technique may be affected by fat levels, whereby it is shorter in regions of fat [28,29].
However, cT1 was also shown to correlate with the histological grade of steatohepatitis [30]
and correlates well between no fibrosis and fibrosis of any grade in the presence of steato-
hepatitis, albeit at higher cut-off values for cT1 [10]. Thus, the true T1 value may well be
the weighted sum of hepatic fat content, liver fibrosis/inflammation, and any other factors
which may affect T1 measurements. T1 is also affected by inflammation [31], which is
logical when we consider that extracellular water content rises with chronic fibrosis and
acute inflammation [11]. This may raise questions regarding the clinical applicability of
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cT1 alone in the presence of acute inflammation, hypoalbumenia/fluid overloaded status,
altered lipid content, and/or longstanding liver disease following chemotherapeutic inter-
vention for hepatic malignancies or following any form of pre-habilitation dietary-based
intervention, preoperative sarcopenia, and postoperative nutritional support. It is likely
that one would have altered cT1 scores, which may result in the misinterpretation of fibrosis
and thus, validation tests must be conducted to establish cT1 cut-offs for various grades of
fibrosis in the context of underlying patient factors. An urgent study into the nuances of the
relationships between these patient factors and cT1 is warranted in order to correct the cT1
score further and improve the interpretation of cT1, especially when we consider that the
optimisation of imaging parameters was shown to improve the impact of fat on cT1 [28].
cT1 correlation with histological disease features is maintained even after controlling for
steatosis [32]. cT1 is also affected by patients with type 2 diabetes, resulting in possibly
higher values [29]. Interestingly, cT1 mapping is unaffected by the presence of ascites,
which is important to note in the context of intra-abdominal malignancy [10].

With the LiverMultiScanTM software, it could be possible to demonstrate which parts
of the liver are spared/unaffected by unhealthy parenchyma, and one can highlight regions
of interest. Thus, it may provide further insights into the state of the future liver remnant.
However, we must be sure that we do not include fluid-filled structures, such as the
porta hepatis/large vessels, which theoretically could cause interference. Thus, local
expertise or outsourcing expertise is paramount to future implementation. Using the
software developed by Banerjee and colleagues, a cT1 timing map can be converted into a
schematic representation of the liver whereby increasing fibrosis (i.e., increasing cT1 time)
is graphically represented on an increasing colour scale on the liver, which again may
have its uses in the pre-operative planning of liver resection, as well as in both patient
and surgical team education and understanding. In fact, one study demonstrated that
providing patients (with an array of liver diseases) with a LiverMultiScanTM-based visual
report improved patient comprehension and experience [33]. This is, of course, imperative
in oncological surgery. One possible limitation is that, naturally, one will find discrepancies
between the planned and actual resection planes.

Eddowes and colleagues carried out an independent validation study to assess the
diagnostic accuracy of the LiverMultiScanTM in predicting the severity of NAFLD [19].
cT1 had an excellent ability to identify patients with any fibrosis compared to healthy
controls (AUROC 0.93, 0.86–1.00). However, this study found only a moderate association
with the steatosis or fibrosis stage in their cohort when comparing low-risk patients (simple
steatosis and less than or equal to F1 grade fibrosis) vs. high-risk patients (Patients with
NASH or >F1 fibrosis) with AUROC 0.73 (0.53–0.93). Whilst contradictory to previous
work [10,34], this study had a small sample size and poorly matched patient groups with
regard to cohort size (50 vs. 6 patients) and demographics. Furthermore, they used an
alternative fibrosis grading system compared to previous studies [10,30,34]. It is likely that
the variable results between studies may be attributable to the factors listed above, as well
as the fact that studies are comparing the intervention with a proposed ‘gold standard’
biopsy, which, in fact, has limitations such as significant inter-observer variability and
a limited sample of the liver, which may not be representative of any future liver rem-
nant. Large multi-centre clinical studies in disease-specific cohorts will hopefully shed
further light on the discrepancies found between these studies and will likely pick up
more subtle relationships between cT1, histological fibrosis grading, and clinical outcomes.
Comparing the LiverMultiScanTM grading of fibrosis with a larger sample of tissue (for ex-
ample, a sample taken during hepatectomy) may produce more meaningful comparisons in
the future.

Taking all of this into account, Eddowes et al. showed a sensitivity of 88% and
specificity of 100% for the detection of NAFLD using multiparametric MRI [19]. They went
on to investigate other non-invasive tools for predicting the degree of fibrosis and found
other markers to be superior to cT1. Their work correlates with other studies that have
also shown the value of other non-invasive tests in predicting the grade of fibrosis [35–37].
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Pavlides and colleagues used cT1 mapping in patients with chronic liver disease to show a
correlation between the degree of disease and the risk of developing clinical events (ascites,
encephalopathy, mortality, and HCC) with 100% negative predictive value [34]. T1 mapping
was also shown to differentiate Child–Pugh A patients from Child–Pugh B or C effectively
(0.00001) [38]. cT1 scores were also reported to correlate with portal hypertension [39,40],
which, of course, correlates with PHLF [41]. Such additional data may provide crucial
information in order to guide appropriate treatment modalities or adjuncts, which may
improve any future liver remnant.

The role of the LiverMultiScanTM assessment of fibrosis and predicting clinical out-
comes in chronic liver disease was previously demonstrated in a number of other studies
as well [15,34,42,43]. However, the role of multiparametric MRI in predicting outcomes in
patients undergoing resection largely remains to be determined and should be assessed
in future studies. It is logical to consider the importance that a non-invasive assay of the
histological makeup of the liver remnant will have on predicting outcomes in liver surgery.
In fact, Mole et al. alluded to this [12]. In a multicentre observational clinical trial, this
group used cT1, PDFF, and T2 mapping overlaid onto an estimated 3D image of a future
liver remnant model created for an unselected group of patients undergoing liver resection
to characterise the liver tissue of the future liver remnant. They showed that for patients
where more than 10% of the liver volume was removed (n = 77), the median length of
stay post-liver resection was longer in patients who had a cT1 score above the upper limit
of normal compared to those with a cT1 score below this level (Wilcoxon rank sum test,
p = 0.0053). Furthermore, they showed that a preoperative cT1 score above the upper
limit of normal is associated with a higher Hyder–Pawlik score (a weighted score of
bilirubin, INR, and creatinine), suggesting that cT1 may correlate with scoring systems
aimed at predicting morbidity. A composite score of future liver remnant volume and cT1
showed reasonable diagnostic accuracy in discriminating patients with a high 5-day sum
of modified Hyder–Pawlik scores in the upper quartile, with an AUROC of 0.78 (95% CI
0.66–0.90). This composite score performed better than FLR volume alone (AUROC 0.70
(95% CI 0.55–0.84). Most patients in this study had CRLM (114/135 participants, 84%),
and the median future liver remnant size was 83%. The main limitation of this study is
that there were a limited number of patients who developed PHLF, and thus, the power
in measuring the intended outcome is low. Furthermore, this study incorporated a modi-
fied Hyder–Pawlik score, which was not validated as a clinical tool. However, it utilises
serum measures of liver dysfunction, which are commonly used to monitor patients in
the post-hepatectomy period and are already used in the original Hyder–Pawlik scoring
system. A study into the clinical validity of the modified Hyder–Pawlik scoring system
should be considered to further our understanding of the clinical utility of the cT1’s role
in predicting morbidity following liver resection. Furthermore, large independent multi-
centre studies directly comparing cT1, as well as measures of liver fat with subsequent
morbidity/mortality post hepatectomy may be of great benefit.

Furthermore, this study compared patients with any degree of fibrosis vs. no fibrosis,
i.e., cT1 score at the upper limit of normal. The benefit of the non-invasive assessment of
hepatic fibrosis in patients undergoing hepatectomy may lie in patients who are borderline
with regard to whether they would or would not be suitable for resection due to the risk of
PHLF. Therefore, the benefit of such an assay may not lie in comparing patients with any
degree of fibrosis and no fibrosis but, in fact, delineating between specific grades of fibrosis.

2.2. Alternative Imaging Markers of Liver Fibrosis and Fibrosis Grading

Previously, transient elastography (TE) and magnetic resonance elastography (MRE)
gathered interest due to their ability to correlate well with the liver fibrosis stage and disease
progression [16,19,44–47]. The main disadvantage of TE/MRE is that both require addi-
tional hardware, which might limit implementation, as well as specific software to acquire
and process the information, whilst LiverMultiScanTM can be used on any modern clinical
1.5 or 3.0 Tesla MR scanner with no additional hardware required. MRE/TE results may
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be confounded by acute inflammation, changes in transaminases, and cholestasis [48–52].
Furthermore, elastography has limited diagnostic use in iron overload, obese populations,
and those with ascites [47]. Its role in quantifying liver health in the context of malignant
liver disease planned for resection may be limited. TE specifically has a high failure rate
of 18.4%, and cut-off values of liver stiffness for the different stages of liver fibrosis are
not well established [48,53]. It was shown that the technical success rate of TE is 85% com-
pared to 98.1% with the LiverMultiScanTM for measuring fibrosis [44,49]. Furthermore, the
longitudinal assessment of fibrosis using elastography is limited by operator and patient
factors, which result in significant variations in measurements, affecting reproducibility.
Therefore, its application in the serial assessment of the liver in the context of clinical
studies or preoperative assessment may prove inferior to alternative tools [16,54]. On the
other hand, cT1 measurement was shown to have low measurement failure rates, high
repeatability, and reproducibility that are superior to elastography techniques [16,55–57].
McDonald and colleagues in 2018 carried out a prospective two-centre validation study
assessing LiverMultiScanTM’s ability to measure hepatic inflammation, fibrosis, fat, and
iron load compared to liver biopsy and compared it with transient elastography in unse-
lected patients undergoing a liver biopsy for the investigation of chronic liver disease. They
found the cT1 measurement of hepatic fibrosis/inflammation to be positively associated
with liver biopsy (p < 0.001). They found no significant difference between the accuracy of
the two tests in detecting any degree of histological change compared to normal subjects in
an unselected population. TE was, however, superior with regard to identifying those with
moderate–severe fibrosis and severe fibrosis. However, in subgroup analysis, where post-
liver transplant patients were removed from the cohort, cT1 showed superior predictive
accuracy in differentiating between groups of no fibrosis vs. any grade of fibrosis. Although
transient elastography is available within the National Health Service (NHS), it is unlikely
to serve as a tool for serial investigations of the liver, as it may not track changes in the liver
reliably. The main benefit of LiverMultiScanTM over MRI elastography is the lack of need
for additional hardware, as well as the patented iron correcting T1 measurement. However,
unlike cT1, MRE was shown to correlate well with all specific grades of histological fibrosis
as measured by Ishak grading [58].

2.3. LiverMultiScanTM: Grading of Hepatic Steatosis/Steatohepatitis and Applications in
Hepatic Surgery

It is clear that steatosis and steatohepatitis measures may also be of value in the
preoperative assessment of patients undergoing liver resection, with a possible role in
predicting intraoperative and postoperative outcomes [59–64]. LiverMultiScanTM was
initially used with MR Spectroscopy (MRS) or, more recently, proton density fat fraction
(PDFF) for liver fat quantification. Banerjee et al. showed that MRS thresholds of 1.5%
and 7.5% of the water signal could discriminate between different grades of steatosis,
as measured by Brunt grading [10]. This study also showed that fat is homogeneously
distributed throughout the liver, suggesting that one can use a resected liver tissue sample
as a surrogate marker for the fat content of the liver remnant. The measurement of hepatic
lipid content was previously described using several methods. However, spectroscopy
was shown to be superior to others and is considered the optimum non-invasive measure
of liver fat with regard to reliability, reproducibility, and validation as an accurate tool
in measuring liver fat [10,65–74]. Recently, MRI-PDFF has shown its utility for liver fat
assessment [74]. A recent meta-analysis showed that MRI-PDFF has excellent linearity
and negligible bias with respect to MRS measurements over the entire range of steatosis
severity [74]. Several pertinent studies are discussed below.

MRI-PDFF has been increasingly used to estimate fat infiltration and was shown to
have high predictive accuracy for individual steatosis grades (Brunt grading) with AUROC
ranging from 0.90 to 0.94 in unselected populations [16] and can detect changes in hepatic
fat as small as 1% [75–77]. It was also shown to highly correlate with MRS [74] and hepatic
triglyceride levels [75,76]. MRI-PDFF and MRS are reproducible [75].
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A single-centre prospective clinical trial investigated whether a multiparametric 3D-
MRE protocol combined with MRI-PDFF can be used to monitor histological improvements
in NASH in 40 patients who underwent bariatric surgery for steatohepatitis. MRI-PDFF
was compared to histological sampling taken intra-operatively and at 1 year follow-up,
demonstrating changes in MRI-PDFF are associated with changes in histological steatosis
and overall NAFLD activity score improvement after intervention. They suggest that MRI-
PDFF is an ideal candidate for the longitudinal monitoring of non-alcoholic steatohepatitis
after pharmacological therapy or lifestyle changes [78]. Indeed, the application of cT1 and
MRI-PDFF are gaining popularity; a recent randomised control study investigated the
role of treatments aimed at reducing hepatic fibrosis using cT1, as well as MRI-PDFF as
a marker for changes in liver fibrosis and fat content [57]. It should be noted that MRI-
PDFF measurements of fat are not affected by the presence of inflammation or fibrosis [77].
It is likely that MRI-PDFF correlates with steatosis severity in patients with CRLM. One
study showed the preoperative measure of liver fat % shown on MRI-PDFF correlates in a
stepwise fashion with increasing grades of steatosis assessed histologically on resected liver
tissue in an unselected population undergoing liver resections for a range of malignancies
of whom the majority of participants had CRLM [12].

Recently, clinical trials in liver surgery have alluded to the benefit a preoperative
low-fat liver diet may have in patients planned for hepatectomy. Barth et al. performed a
multi-centre randomised controlled trial on the effects of a one-week (low in calorie and fat)
diet in patients undergoing liver surgery. Results showed a significant difference in easier
manipulation of the liver and a decrease in operative blood loss [79]. We foresee novel
imaging biomarkers having a quantitative role in the serial assessment of such dietary
interventions and in establishing which patients would benefit from interventions aimed
at decreasing liver fat content. Specifically, we wonder whether diet modification in the
prehabilitation period has any implication on outcomes in liver resection and whether MR
spectroscopy PDFF can be used to identify which patients would benefit most from inter-
ventions aimed at decreasing hepatic fat content and what degree of change is associated
with positive outcomes in liver resection. Proving the reversibility of established steatosis
and non-alcoholic steatohepatitis with preoperative intervention is key to interventions
aimed at these concepts. However, it is probable that LiverMultiScanTM (or alternative
non-invasive imaging biomarkers) will serve a future purpose in both the research and
clinical setting related to pre-operative fat modification.

2.4. Future Clinical Applications of the LiverMultiScanTM in Neoadjuvant Chemotherapy Setting
in CRLM and Decision Making Regarding Optimum Treatment Modalities

Another exciting prospect is the role of multiparametric MRI in quantifying and pre-
dicting the effect neoadjuvant chemotherapy regimens have on liver health and subsequent
outcomes, especially in the context of CRLM. Only 20% of patients with CRLM have initially
resectable disease [80,81]. Neoadjuvant/downgrading chemotherapy prior to curative liver
resection was shown to downsize the tumour burden and increase the number of patients
suitable for resection [82,83]. Neoadjuvant therapy was shown to improve progression-free
survival in patients with primary resectable CRLM [82,84]. Naturally, more patients are
being considered for chemotherapy prior to surgical intervention. However, there are
concerns regarding the administration of several cytotoxic agents and pathological liver
changes referred to as chemotherapy-associated liver injury (CALI) [85–87]. One study
demonstrated that CALI may increase the risk of PHLF by 11% [64]. Fluorouracil (5-FU)
administration increases hepatic steatosis [59,88]. However, to date, the post-operative asso-
ciation of 5-FU-induced hepatic steatosis may be limited to increased infection rates [89] and
bilirubin counts [90]. Irinotecan use in CRLM is associated with chemotherapy-associated
steatohepatitis (CASH) [63,86,88,90,91]. CASH associated with irinotecan was shown to
increase morbidity and mortality after partial hepatectomy for CRLM [63,64,91]. In fact,
one study showed it is associated with a higher 90-day post-operative mortality (14.7%)
compared to patients without evidence of CASH secondary to irinotecan (1.6%) [63]. Ox-
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aliplatin may induce fibrosis [88,92,93]. The specific liver injury effect of oxaliplatin is
called sinusoidal obstruction syndrome (SOS); it carries a 2.2-fold increase in the risk of
developing it after oxaplatin-based therapies [86], and it is histologically characterised
by hepatic sinusoidal dilatation, hepatocyte atrophy, perisinusoidal fibrosis, and nodular
regenerative hyperplasia [87]. Studies showed that oxaliplatin-associated SOS increases the
risk for post-hepatectomy morbidity as well [63,64,94,95]. Furthermore, the incidence of
steatosis in patients undergoing chemotherapy for CRLM is between 30 and 47% [59,60].
With neoadjuvant chemotherapy coming to the forefront of the management of CRLM, the
accurate preoperative evaluation and diagnosis of histological changes associated with
CALI are of great importance. It is also worth noting that SOS undergoes a segmental
development, which may limit the applicability of biopsy, and it is in this void that imaging
biomarkers may serve useful, as would serological markers.

Welsh et al. were one of the first groups to highlight the risk of morbidity following
prolonged neoadjuvant chemotherapy on liver outcomes [96]. In the same study, this
group demonstrated a significant reduction in surgical complications with increasing time
intervals between the cessation of chemotherapy and hepatic resection. These findings
were not correlated with liver histological changes post-chemotherapy. One study showed
that morbidity after liver resection is related to the number of neoadjuvant chemotherapy
cycles, whereby greater than or equal to six cycles was associated with increased morbidity
(54% vs. 19%, n = 45, p < 0.05) as well as six or more cycles being predictive of SOS
(risk ratio = 3.198;95% CI [1.010–10.128] n = 90, p < 0.05) [64]. Other studies showed that
nine or more cycles are an independent risk factor for PHLF [97]. Such evidence suggests
there may be a close correlation between post-operative outcomes and the timing of surgical
intervention post chemotherapy, as well as the number of neoadjuvant chemotherapy cycles,
which may have implications on CALI and post operative outcomes. The non-invasive
histological assessment of liver parenchyma post chemotherapy and prior to hepatectomy
may serve as an important tool in the workup and decision making in patients with CRLM
in the neoadjuvant setting.

What we need to understand is how does any specific chemotherapy regimen affect the
liver of an individual patient? Can we predict which patients will be most affected by neoad-
juvant chemotherapy and what specific degree of histological changes post-chemotherapy
correlates with outcomes following hepatectomy? Does the LiverMultiScanTM software
correlate with grades of SOS, CALI, and CASH? If this is demonstrated and validated
in future work, such non-invasive assessments of the liver prior to chemotherapy may
help select specific chemotherapy regimens best suited to any given patient based on their
parenchymal characteristics and predisposition to any given cytotoxic agent. It may also
provide a degree of real-time surveillance of the hepatic parenchyma during neoadjuvant
chemotherapy or after in the pre-operative period to guide optimum time for surgical inter-
vention. Furthermore, longitudinal assessments of the liver during chemotherapy regimens
may serve to ensure risk-benefit is addressed throughout treatment, ensuring an adequate
response is balanced with optimised liver health. Non-invasive hepatic histological markers
applications could be extended to prehabilitation strategies aimed at modulating the liver
during or after chemotherapy and prior to resection to maximise outcomes. This may be of
particular importance when we consider that post-chemotherapy liver parenchyma can
be challenging to manage intra-operatively and can result in additional blood loss and
intra-operative time compared to controls [96].

2.5. Future Application of Alternative Biomarkers in the Pre-Operative Setting
and LiverMultiScanTM

In order to improve patient selection and perioperative planning in liver resection,
there is a drive to study factors that can affect liver regeneration, concomitant recovery, and
the avoidance of post-hepatectomy liver failure (PHLF). The development of PHLF is closely
related to the future liver remnant, and volumetric assays have long been used to predict
PHLF risk [98–104]. However, size alone cannot reliably predict outcomes, especially in the
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context of underlying liver disease [88,91,105–108]. It is logical to consider that the function
of the liver remnant is also related to postoperative morbidity and mortality, specifically
PHLF [109–111]. Estimates of hepatic function are based on clinical risk factors, including
age, liver disease, and metabolic syndrome [112,113] and specific serological markers of
synthetic liver function [114]. Numerous serological markers have been associated with
PHLF, but independently, many suffer from low sensitivity and weak positive predictive
value [102,114–122]. Objective measures of preoperative hepatic function can also be
used [123–125]. It is well established that steatosis, fibrosis, and cirrhosis play a critical
role in liver function, rates of liver regeneration, and PHLF [126]. Furthermore, scores
such as APRI/ALBI were shown to detect SOS and CASH [127]. It was also shown
to predict outcomes of hepatic resection [128]. Such scores have a valuable role in the
selection of patients being worked up for surgical intervention. Furthermore, there is
a growing body of evidence suggesting that microRNA (miRNA) signatures may serve
as a reliable tool for diagnosis, prognostication, and treatment response biomarkers for
various diseases [129,130]. The benefit of miRNAs is that they can be highly specific, cost
effective, and easily accessible via biofluids such as blood, urine, and saliva. Specifically in
hepatobiliary surgery, miRNA signatures were shown to reliably predict post-operative
liver dysfunction, morbidity, and mortality in patients undergoing partial hepatectomy
for CRLM and other malignancies [131]. Such miRNA signatures were also shown to
outperform indocyanine green (ICG) and volumetric analysis in terms of predicting post-
operative liver dysfunction [131].

If LiverMultiScanTM is demonstrated to have clinical applications in patients under-
going chemotherapy and hepatic resections, an important question to address is whether
LiverMultiScanTM performs better than serological tests or scores that predict liver health,
CALI/CASH/SOS and, importantly, post-operative outcomes such as mortality and PHLF,
and whether it can be used in composite with such scores. We foresee non-invasive markers
having a pivotal role in the management of CRLM and other primary or secondary liver
malignancies. Figure 2 summarises potential applications of the LiverMultiScanTM at
various stages in the patient journey.

Figure 2. Summary of the potential future applications of the LiverMultiScanTM during the neoadju-
vant, pre-habilitation, and peri-operative setting, as well as additional applications throughout the
patient journey in order to improve post-operative outcomes. (CRLM = Colorectal Liver Metastasis,
CALI = Chemotherapy associated liver injury, FLR = Future liver remnant, PHLF = Post hepatic
liver failure).
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2.6. Pertinent Current Trials Examining the Clinical Applications of LiverMultiScanTM in Liver
Surgery for CRLM and Other Hepatic Malignancies

There is currently a trial underway using MR Spectroscopy to longitudinally investi-
gate liver fat content changes during neoadjuvant chemotherapy regimes in CRLM [132].
This trial may shed further light on the issue. Another trial is in the recruitment phase to as-
sess NAFLD after liver transplant using the LiverMultiScanTM (RADICAL2, NCT03165201).
One trial has quantified liver health in candidates for hepatic resection using the
LiverMultiScanTM (HEPAT1CA, NCT03213314). The same group used cT1 and MRI-PDFF
with volume analysis reports for each couinaud segment [133], such that the volume and
function of the liver can be assessed together prior to operative intervention. Furthermore,
the PRECISION1 trial (NCT04597710) is completed. However, it is not yet published. The
results are eagerly anticipated to establish the LiverMultiScansTM clinical value in deter-
mining appropriate treatment modalities [134]. This prospective, observational, cohort
study aimed to establish the impact of routine use of LiverMultiScanTM data integrated
with whole genome sequencing, pathological data, and clinical data on the allocation of
treatment options (for example, resection, radiofrequency ablation, venous embolization,
chemotherapy, and targeted molecular therapies) in patients with primary or secondary
liver cancer. Specific secondary outcome measures, which may shed further light on the
role of the LiverMultiScanTM in hepatic surgery, include the correlation of histopathological
assessments of liver fat and fibroinflammation with quantitative MRI metrics (i.e cT1 and
PDFF), the performance of whole genome sequencing and LiverMultiScanTM for predicting
post-surgery length of stay, post-operative liver function, 1 year mortality, and recurrence
rates. Following communication with the study group, whilst not yet published, their
results suggest the routine use of the LiverMultiScanTM in patients considered for major
hepatic resection can encourage alternative therapeutic adjuncts to improve the FLR and
prevent PHLF. This group have also demonstrated that LiverMultiScanTM can be used
to demonstrate an improvement in the FLR post dual vein embolization in terms of FLR
volume, cT1 scores, and PDFF scores in patients with insufficient FLR who required a major
hepatectomy [135]. No patient developed PHLF. However, only seven patients underwent
dual vein embolization. The group concluded that multiparametric MRI can improve
surgical decision making in patients with borderline FLR, preventing PHLF and improving
outcomes. Pertinent current and ongoing studies specific to hepatic surgery are detailed
in Table 1.
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Table 1. Pertinent current and future studies investigating the role of LiverMultiScan in Hepatic surgery for CRLM.

Current Studies

Reference Title Study Design Cohort and Study Information Findings Status Possible Future Applications

Mole et al.
2020 [12] HepaT1ca (NCT03213314)

An observational clinical
cohort study in two
tertiary referral
HPB centres.

Included 149 participants.
Combined 3D volumetric
assessment of FLR with cT1 score
prior to treatment.
Total of 135 participants underwent
liver resection. Majority of
participants had CRLM (n = 114).
The remaining had HCC (n = 6),
CCA (n = 1) or other secondary
malignancies (n = 14).
Imaging biomarkers (cT1 and PDFF)
correlated with histological
assessment from intra-operative
tissue samples.

− cT1 correlated with histological scoring of
ballooning and inflammation. PDFF correlated
with steatosis scoring.

− Elevated pre-operative cT1 score correlated
with prolonged hospital stay vs. normal
pre-operative cT1 score (6.5 days vs. 5 days,
p = 0.005).

− A composite score combining FLR and cT1
predicted poor liver performance (as measured
by a modified Hyder–Pawlik score) on
post-operative day 5 (AUROC = 0.78).

− The same composite score correlated with liver
regeneration at 3 months post resection.

Completed
and published
study

Correlates with histological assays of
fibroinflammation and steatosis and may
circumvent need for a pre-operative
biopsy in select patients in the
pre-operative setting.
Abnormal cT1 score can help Identify
patients at risk of prolonged hospital
stay and poor liver performance post
operatively. Informed risk stratification
of patients and personalised
pre-operative decision making.
Potential value of composite scoring
systems in predicting post-operative
outcomes and liver
regeneration capacity.

Sethi et al.
2021 [43]

Quantitative multiparametric
MRI allows safe surgical
planning in patients
undergoing liver resection for
colorectal liver metastases:
report of two patients

Retrospective case
presentation of 2 patients
included in the
observational clinical trial,
HepaT1ca (NCT03213314)

Both patients had CRLM and
underwent extended right
hepatectomy with estimated FLR
30%. Comparable pre-operative
characteristics in terms of
demographics, imaging, and
baseline laboratory values.

− Patient 1 developed PHLF and prolonged
admission. Patient 2 had an uneventful post
operative clinical course.

− Retrospective evaluation of multi-parametric
MRI using LiverMultiScanTM showed Patient 1
had elevated fibro-inflammatory disease
(cT1 = 829 ms) and steatosis (PDFF = 14%).
Patient 2 had normal parametres (cT1 = 745 ms
and PDFF = 2.4%).

Completed
and published
study

Potential objective evaluation of liver
parenchyma, which can reveal
significant underlying liver disease. This
may aid/change decision making
regarding pre-operative optimisation of
the FLR in order to improve
post-operative outcomes.

McKay et al.
2021 [33]

Patient understanding and
experience of non-invasive
imaging diagnostic techniques
and the liver patient pathway

Cross-sectional study.
Pre- and post-
LiverMultiScan self-rated
questionnaire on
understanding of
liver health. Post-
LiverMultiScan
semi-structured qualitative
interview re. patient
experience, understanding
of the report and how to
improve experience and
delivery of information.

101 participants included with a
spectrum of liver disease diagnosis,
including cancer.

− Self-reported understanding of liver health
increased significantly from 6.28 to 9.22 (+2.94)

− Analysis of semi-structured interviews
revealed that

(1) The presentation and discussion of the
LiverMultiScan visual report was an effective
contributor to better patient understanding.

(2) Patients demonstrated preference for
non-invasive tests over biopsies.

(3) Patients reported positive experiences with the
LiverMultiScan.

Completed
and published
study

Visual reports of liver health may
increase patient understanding of their
disease care and overall experience.
Potential for improving patient
engagement with care.

Sundaravadanan
et al. 2022 [135]

Multimetric MRI detects
improved quality of the future
liver remnant post-dual vein
embolization—a novel finding.

Presentation abstract

Analysis of 81 patients with CRLM
considered for liver resection,
recruited in Precision1 trial
(NCT04597710). Seven patients with
CRLM had multiparametric MRI
(including LiverMultiScan and
volumetric assay) pre- and
post- DVE.

− DVE resulted in significant FLR volume
increase, as well as reduction in FLR cT1 scores;
median 747.33 ms (range 684–884 ms) from
median 771.25 ms (range 726–945 ms), p = 0.047.
Median PDFF scores also improved post DVE.

− No patient developed PHLF.

Presented with
published
abstract

Demonstrating potential role in
clinical trials for interventions
aimed at optimising FLR.
Aids in surgical decision making in
patients with borderline FLR in order to
optimise FLR and improve outcomes.
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Table 1. Cont.

Current Studies

Reference Title Study Design Cohort and Study Information Findings Status Possible Future Applications

Welsh et al.
2023 [136]

Quantitative liver health
imaging impacts surgical
decision making and improves
clinical outcomes in colorectal
liver metastasis surgery

Comparative observational
cohort study, including
prospective cohort from
Precision1 trial vs. analysis of a
historical similar cohort

Analysis of the clinical utility of
mpMRI in 81 patients with
CRLM considered for liver
resection (recruited in the
Precision1 trial, NCT04597710).
Clinical utility as measured by
a change in the surgical pan.
Post operative clinical
outcomes of the cohort were
compared with a similar
historical cohort including
97 patients with CRLM, as well
as other hepatic cancers.
Both cohorts underwent
mpMRI, including cT1, T2, and
PDFF. However, information
obtained from mpMRI was not
used to alter surgical plans in
the comparator cohort.

− Examination of mpMRI reports resulted in a
change in surgical plan in 29/81 cases in the
Precision1 cohort, whether that be a more
aggressive or conservative resection, dietary
modification or a two staged/DVE approach.

− Mean length of stay in the comparator dataset
was 6.7 days (±9.1) vs. 5.3 (±2.1) (p = 0.147).
Notably, protracted length of stay (>14 days)
was greater in the comparator dataset,
5% vs. 1% (p = 0.136).

− Another pertinent finding in this study; poor
liver health was underestimated in up to 40% of
patients planned for liver resection.

Preprint article
awaiting
peer review

mpMRI utilising LiverMultiScan in
pre-operative planning may
improve LoS.
mpMRI may alter surgical strategy or
provide confidence with the proposed
treatment strategy.
mpMRI may pick up underestimated
liver health using conventional assays of
liver health and volume.

Future studies

Reference Title Aim Study design Primary objective/end points Secondary objective/end points

Welsh et al.
2022 [134]

Precision1 Trial: Precision
medicine for liver tumours
with quantitative MRI and
whole genome sequencing.
NCT04597710.

Whole genome sequencing
(WGS) integration with
quantitative MRI and
histopathology data to produce
a software product to inform
management of patients with
liver tumours.

A single centre prospective
observational cohort study of
up to 200 adult participants
being considered for liver
resection of a primary or
secondary liver cancer.

To determine the utility of WGS to aid clinical decision
making in patients referred for liver resection.
Evaluated retrospectively, with clinically actionable
data defined as data resulting in clinicians choosing a
different medical intervention to the current standard
of care.

1. To determine the utility of LiverMultiScan to aid
clinical decision making in patients referred for liver
resection. Evaluated retrospectively as proportion of
patients for whom clinically actionable data are
provided by LiverMultiScan.

2. To compare computationally derived pathology
results with human pathologist assessments.

3. To compare histopathological assessment of liver fat
and fibro-inflammation with LiverMultiScan (cT1
and PDFF).

4. To evaluate long term outcomes and recurrence
rates/patterns of patients as it relates to WGS
and imaging.

5. To evaluate if WGS enables better stratification of
patients pre-operatively.

Parmar et al.
2023 [132]

CoNoR Study: A prospective
multi-step study of the
potential added benefit of two
novel assessment tools in
colorectal liver metastases
technical resectability
decision-making

To evaluate the potential added
value of two novel assessment
tools (Hepatica, i.e.,
LiverMultiScan with 3D
volumetric assay, and LiMax)
in CRLM resectability
decision making

A multistep systematic
approach of systematic review,
international expert interviews,
international questionnaire and
internation case-based surveys.
Including international HPB
senior community.

The added value of Hepatica and LiMAx in CRLM
technical resectability decision making, assessed by
measuring the following in HPB experts:

1. Proportion of change in resectability decision
making resulting from the novel tests

2. Proportion of change in planned operative
strategy resulting from novel tests.

1. Variability in CRLM resectability decision making.
2. Opinions on the role of novel tools in CRLM

resectability decision making
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3. Conclusions

Hepatic parenchymal histological markers serve as hallmarks of liver disease, which
are likely key determinants for outcomes in the surgical management of malignant hepatic
disease. In an era where the options for operative intervention in primary and secondary
liver malignancy have seen an explosion of recent major advancements, the number of
patients suitable for operative intervention has increased. In doing so, the need to differen-
tiate between those best suited for any given intervention has never been more pertinent.
Non-invasive imaging histological markers used as surrogates for liver health and poten-
tial for regeneration could pave the way to individualised patient planning approaches,
especially if used with current serological and clinical markers of liver function, liver
regeneration capacity, and PHLF. Indeed, the LiverMultiScanTM and other non-invasive
markers of hepatic parenchyma may be the answer to improving outcomes associated with
liver resection.

Whether it will have any implication on rates of biopsies for liver malignancy is
uncertain, as biopsies are rarely carried out. However, its role may come to the forefront of
surgical planning, and it will only gain relevance with advancements in technology and
expertise. Furthermore, the role of the radiologist in the MDT will only increase with the
introduction of novel imaging approaches in order to guide and inform clinicians. This
technology still needs to be validated in patient-specific groups (CRLM, other primary
and secondary hepatic malignancies, and chemotherapy-associated hepatoxicity), and the
real need for it must be clinically translated. Its role will be enlightened by the current
studies underway. In future studies, one barrier to consider is a clear understanding of how
the performance metrics of the LiverMultiScanTM change over the severity of the CRLM
disease burden. Nonetheless, the future looks promising for LiverMultiScanTM and other
imaging histological markers.

LiverMultiScanTM is a ‘software as a service’ business model with potential cost impli-
cations. Future studies must explore the cost effectiveness and resource impact such a test
will have on the oncological and surgical management of liver disease. Important questions
to consider are whether it will increase the burden on MRI services and at what financial
cost. Local expertise, cost effectiveness, and budgets will likely dictate local access to such
investigations in the future. It is also worth noting that the addition of LiverMultiScanTM

adds up to 15 min of additional time to a standard liver MRI with contrast, and the impli-
cations of this on both services and the patient should be considered. Specifically, some
patients may be uncomfortable with small, confined spaces and prolonging this experience
may result in claustrophobia. However, in two of our author’s (FW and MR) surgical
units, over 200 LiverMultiScanTM MRIs used in combination with Primovist were carried
out. All patients were counselled and consented to the slightly longer procedure. There
were no incidents of failure to complete the required scan, and no patient volunteered any
objections to the experience. Furthermore, there are no additional hospital visits or injec-
tions required for LiverMultiScanTM. A formal comparative study of patient experience
comparing conventional Liver MRI scans with LiverMultiScanTM should be considered.

Furthermore, with such technology, we are likely to have access to increased informa-
tion relating to the future liver remnant. In the future, such information may be utilised
to identify patients with a severely compromised FLR, which may trigger an alternative
therapeutic route to consider in order to optimise the FLR. This may well avoid patients
enduring prolonged hospital stays or even mortality as a consequence of PHLF, whilst
having positive effects on cost. In fact, in two of our authors’ (FW and MR) affiliated
units, the LiverMultiScanTM was used pre-operatively in over 100 consecutive resections.
There were no cases of PHLF resulting in delayed discharge. Patients with an abnormal
cT1 score, often associated with high-fat content, are diverted to a more parenchymal-
sparing procedure; other pre-operative interventions such as dual vein embolization or a
two-staged approach with clearance of the left side was initially followed by portal vein
ligation and/or portal vein embolization together with hepatic vein embolization. Such
findings were formally investigated in a prospective study, which will be published in the
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near future. If LiverMultiScanTM’s role in pre-operative planning for CRLM is validated, its
utility will need to be compared to other non-invasive and potentially more cost-effective
serological tests/scores.

We would encourage large volume centres to collaborate in future trials to strengthen
the power of studies and, in doing so, provide valuable insights into the predictive value
of such non-invasive tests in morbidity and mortality post hepatectomy, as well as the
exact role grades of histological changes in the liver play in outcomes. Such studies should
investigate non-invasive imaging markers and serological markers (such as APRI/ALBI) in
parallel. Indeed, the LiverMultiScanTM and other imaging markers may complement other
assays of liver health in order to minimise the risk associated with extended hepatectomy.
It is an exciting prospect that with such markers of liver parenchyma status, we are likely
to see the advent of novel composite scoring systems, which will use this information in
combination with other serological and imaging assays to predict outcomes of surgery
and optimise patient and therapeutic selection and timing. In doing so, it could provide
real-time information, which may guide patient-tailored decision making regarding the
ideal timing for surgical intervention during the neoadjuvant period. Robust clinical trials
are warranted to validate such tools.
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