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Simple Summary: Video capsule endoscopy (VCE) is a small, patient-friendly tool used for medical
imaging, but it lacks narrow band imaging (NBI), which is crucial for detecting various cancers like
esophageal cancer (EC). EC is hard to detect early since it often shows no symptoms, leading to a low
5-year survival rate. NBI enhances mucosal features for early cancer identification, but adding it to
VCE isn’t feasible due to size constraints. This study successfully developed a method to convert
traditional white light images (WLI) from VCE into NBI-like images for esophageal examination.
The method performed well, with high similarity scores and improved image quality, offering a
promising solution for better cancer detection.

Abstract: Video capsule endoscopy (VCE) is increasingly used to decrease discomfort among patients
owing to its small size. However, VCE has a major drawback of not having narrow band imaging
(NBI) functionality. The current VCE has the traditional white light imaging (WLI) only, which has
poor performance in the computer-aided detection (CAD) of different types of cancer compared
to NBI. Specific cancers, such as esophageal cancer (EC), do not exhibit any early biomarkers,
making their early detection difficult. In most cases, the symptoms are unnoticeable, and EC is
diagnosed only in later stages, making its 5-year survival rate below 20% on average. NBI filters
provide particular wavelengths that increase the contrast and enhance certain features of the mucosa,
thereby enabling early identification of EC. However, VCE does not have a slot for NBI functionality
because its size cannot be increased. Hence, NBI image conversion from WLI can presently only
be achieved in post-processing. In this study, a complete arithmetic assessment of the decorrelated
color space was conducted to generate NBI images from WLI images for VCE of the esophagus.
Three parameters, structural similarity index metric (SSIM), entropy, and peak-signal-to-noise ratio
(PSNR), were used to assess the simulated NBI images. Results show the good performance of the
NBI image reproduction method with SSIM, entropy difference, and PSNR values of 93.215%, 4.360,
and 28.064 dB, respectively.

Keywords: narrow band imaging; hyperspectral imaging; decorrelated color space; video capsule
endoscopy; peak-signal-to-noise ratio; structural similarity index metric; entropy
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1. Introduction

Video capsule endoscopy (VCE) has been identified as a prospective substitute for
traditional endoscopy in recent times [1], owing to the noninvasive nature of the device
and its comparatively diminutive size [2–4]. The VCE device is designed to include a
camera, a miniature lighting system, and an electronic box within its compact form factor,
which is comparable in size to a tablet [5–7]. Despite its small size, VCE has the ability
to generate high-quality images at a significantly higher frame rate [8,9]. Despite the
numerous advantages of VCE, a significant drawback of this technology is its lack of
narrow band imaging (NBI) functionality, which is commonly present in conventional
endoscopes [10]. VCE relies solely on WLI, limiting its ability to detect subtle vascular
patterns and mucosal details characteristic of NBI. Furthermore, VCE is prone to several
other limitations such as its inability to perform therapeutic interventions, potential for
capsule retention in cases of strictures, and challenges in localizing lesions precisely [11].
The exclusion of NBI from VCE means that subtle lesions, which may have crucial clinical
implications, could be missed. Furthermore, VCE is a passive imaging modality incapable
of therapeutic interventions or biopsies during the procedure, limiting its diagnostic scope
and therapeutic utility.

NBI is a modality of medical imaging that employs a specialized filter to selectively
permit the transmission of a specific wavelength of light [12,13]. The aforementioned
wavelengths have the ability to enhance the contrast, thereby accentuating the features
of the mucosal layer [14,15]. Typically, the central wavelength of NBI is either 415 or
540 nm, which correspond to the blue and green spectral bands, respectively [16,17]. The
absorption of light by hemoglobin in the bloodstream is heightened at these particular
wavelengths to provide enhanced precision, resulting in a darkened appearance of the
blood vessels [18,19]. Consequently, the distinguishing features of the mucosa can be
readily discerned from the neighboring milieu [20]. NBI bands are predominantly utilized
in endoscopy for diagnosing diverse types of cancer [21].

The use of NBI In endoscopy is based on the principle that certain wavelengths of
light can enhance the visualization of blood vessels and mucosal patterns in the gastroin-
testinal tract. Typically, NBI employs either a central wavelength of 415 nm (blue) or
540 nm (green) [22]. These specific wavelengths are chosen because they coincide with the
absorption peaks of hemoglobin, the protein responsible for transporting oxygen in blood.
Hemoglobin has two primary forms: oxygenated (oxyhemoglobin) and deoxygenated
(deoxyhemoglobin). Oxyhemoglobin predominantly absorbs light in the blue spectrum,
around 415 nm, whereas deoxyhemoglobin absorbs light in the green spectrum, around
540 nm [23]. When NBI light is directed onto the mucosal surface, it is preferentially ab-
sorbed by hemoglobin in blood vessels. This selective absorption results in a darkened
appearance of blood vessels against a lighter background, greatly enhancing their visi-
bility during endoscopic examination. This enhanced contrast and precision provided
by NBI have proven invaluable in the detection of subtle mucosal changes, such as early
neoplastic lesions and vascular patterns indicative of gastrointestinal pathology [24]. Con-
sequently, NBI has become an essential tool in the early diagnosis and surveillance of
gastrointestinal diseases.

Specific cancers, such as esophageal EC, which does not have any particular biomarker
in early stages, can be diagnosed early with the use of NBI [21,25]. Many previous studies
have proven that the accuracy, sensitivity, and specificity of early detection of various
types of cancer increased significantly with the use of NBI [26–31]. Tsai et al. used single-
shot detector and hyperspectral imaging to detect early EC and revealed that the overall
accuracy of the NBI images was 91% and the RGB image’s accuracy was only 88% [32].
Lee et al. examined EC by using the conventional white light imaging (WLI) and NBI,
and concluded that NBI was much more effective than the conventional WLI in detecting
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dysplasia [33]. Yosidha et al. demonstrated that the NBI system improved the accuracy of
magnifying endoscopy [34]. Hence, the use of NBI is critical in VCE to detect early EC.

Therefore, in this study, the usability of NBI images simulated from decorrelated
color spaces for VCE imaging of the esophagus was evaluated. The simulated NBI images
were compared with three distinct parameters: PSNR, SSIM, and entropy. The narrow
band conversion technology and the dataset employed in this study were discussed in
depth. Subsequently, the outcomes obtained from the image comparison using various
parameters were elucidated. Finally, a summary of the findings, the potential avenues for
future research, and the limitations of this study were provided.

2. Materials and Methods
2.1. Dataset

Obtaining the necessary dataset for identifying and categorizing the esophagus can
often be a challenging undertaking [35]. Moreover, a huge amount of pertinent information
can be found in the VCE of the esophagus. In the present study, a series of esophageal
images was obtained from two collaborating hospitals. The dataset consisted of a compre-
hensive collection of 3415 WLI VCE images of the esophagus. WLI images were obtained
using VCE (InsightEyes EGD System, Insight Medical Solutions Inc., Hsinchu, Taiwan).
VCE images of 640 × 480 pixels in dimension were acquired from Taipei Veterans General
Hospital. A supplementary set of 2000 WLI images obtained via a conventional endoscope
(CV-290, Olympus, Shinjuku, Tokyo, Japan) was used for analysis. The dataset containing
Olympus images was obtained from Chung-Ho Memorial Hospital at Kaohsiung Medical
University. The dimension of these images was 640 × 480 pixels.

2.2. NBI

The lack of NBI functionality is one of the most significant drawbacks associated
with the use of VCE. Increasing the size of the VCE device is not possible because of the
convenience factor. Therefore, the NBI features can be added only after the processing is
completed. Given that NBI performs far more effectively with computer-aided detection
machine learning techniques than WLI, this step is essential for early EC detection. Thus, in
this study, a color space that replicated the NBI image was chosen to have decorrelated axes
because it has been shown to be an effective tool for manipulating color images. The method
developed by Reinhard et al. was applied [36]. Simply imposing the mean and standard
deviation (SD) over the data points is a straightforward operation that, when combined
with credible input images, results in the production of convincing output images. Only
the mean and standard deviation in tandem with any of the three dimensions were needed
in this investigation. Therefore, these metrics were calculated for the original image and the
target image. A notable detail is that the average and standard deviation for each axis in one
space were determined on an individual basis. First, a method that should be considered
reasonable for converting RGB signals to l was demonstrated, the perception-based color
space developed by Ruderman et al. [37] Considering l is a transform of LMS cone space,
the image was converted to LMS space using the LMS transform in two steps. First, the RGB
tristimulus values were converted to XYZ ones. By using the standard matrix provided by
the International Telecommunications Union, a vector that can be applied to multiply the
columns was obtained, resulting in the RGB-to-XYZ conversion. The image was converted
for it to be in LMS space using the traditional conversion matrix, as shown in Equation (1). L

M
S

 =

0.3811 0.5783 0.0402
0.1967 0.7244 0.0782
0.0241 0.1288 0.8444

·
R

G
B

 (1)

The information in this color space exhibited a significant amount of skew, which was
reduced to a significant degree after transforming the data to the logarithmic space, as
shown in Equation (2).

L = log LM = log MS = log S (2)
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First, the data points were taken, and the mean was subtracted from them. Then, the
data points that made up the synthetic image were adjusted using the factors determined
by the standard deviations of each of the individual data points, as shown in Equation (3).

l′ =
σl

t
σl

s
l∗α′ =

σα
t

σα
s

α∗β′ =
σ

β
t

σ
β
s

β∗ (3)

Choosing a source image and a target image that do not go together very well was
possible because this investigation aimed to copy the appearance of one image onto another.
The compositional similarities between the images can determine the quality of the final
product. For instance, if the synthetic image has a significant amount of grass, whereas
the photograph has a great amount of sky, then the transformation of statistics could be
assumed to be unsuccessful.

2.3. Parameters for Comparision
2.3.1. SSIM

SSIM is a widely recognized quality measurement that is utilized in the process
of determining how similar two images are to one another [38]. It was introduced by
Wang et al., and it has been proposed to be associated with the human visual system’s
quality perception [39]. SSIM is developed by predicting every image distortion as an
amalgamation of three factors, loss of correlation, contrast distortion, and luminance
distortion, rather than using traditional error summation methods [40,41]. SSIM is used
as a measure to compare the similarity between WLI Images and NBI images [42]. SSIM
metric has gained significant popularity in the field of digital image analysis due to its ease
of use, widespread application, and established validity through rigorous testing [43,44].
SSIM values usually range between 0 and 100%, and SSIM values of more than 90% are
considered better results [45].

2.3.2. Entropy

The second criterion employed to assess the algorithm formulated in this investigation
was entropy [46]. The calculation of entropy was similar to that of SSIM. The entropy
discrepancy between the WLI images acquired through the Olympus endoscope and the
simulated NBI images was compared. Entropy can be utilized in image processing for the
purpose of texture classification. A specific texture may exhibit a distinct entropy value
because certain patterns tend to recur in a relatively consistent manner [47]. Within the
framework of the paper, low entropy is indicative of reduced disorder and diminished
variance among the constituent elements. Thus, reducing the entropy results in an im-
proved reproduction of the image. The entropy disparity between the WLI images acquired
through VCE and the simulated NBI images was compared.

2.3.3. PSNR

PSNR is a byte-by-byte comparison of the quality of two images [48,49]. It is one of the
simplest methods to compare the source and the reproduced image [50]. PSNR is analyzed
similar to SSIM. The corresponding WLI images from VCE and the Olympus endoscope
were separately compared with the simulated NBI images. PSRN values range between 20
and 60 dB, and the higher the value is, the better the result. For an 8-bit data representation,
the accepted PSNR value is about 25 dB [51].

3. Results

In this study, three important parameters were considered for analyzing the effective-
ness of the algorithm: PSNR, SSIM, and entropy. Comparing the results of these parameters
can help understand the limitations and advantages of the proposed method.
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3.1. SSIM

Figure 1 shows the results of the SSIM analysis. The SSIM value lies in the range
of 0 to 100%, with a higher value indicating a better result. In this study, 50 random
WLI images and their corresponding simulated NBI images were compared to compare
the SSIM between the WLI images and the simulated NBI images. The average SSIM
values for the Olympus and VCE images were 90% and 92.49%, respectively. However,
out of the 50 images, 21 VCE images had a high SSIM of more than 93%. Out of the
50 randomly selected images, 19 had an SSIM of 91%, and only nine images had less than
84% (Supplementary Table S3). These findings revealed that the average SSIM decreased
because of these nine images. These images were either blurred, had too much light
reflected on them, or had some flare. Therefore, the SSIM value decreased below 91%. If the
dataset was filtered and had a clearer WLI, then the NBI reproduction of the images could
be better. Similar to the Olympus images, the eight WLI images in VCE had considerable
reflection that made the SSIM value less than 90%. However, in all the different conditions,
the SSIM values did not reduce to below 90% in VCE. Therefore, regardless of the errors
present in the image, the NBI reproduction can be profound.

Figure 1. SSIM metric of 50 random Olympus and VCE images.

3.2. Entropy

The entropy difference between the Olympus endoscope and VCE is illustrated in
Figure 2. The average entropy difference between the WLI and simulated NBI images in
VCE was around 2.6942%, and average entropy difference between the WLI and simulated
images from the Olympus endoscope was 2.3457% (Supplementary Table S2). The results
showed that the entropy in the Olympus endoscope and VCE followed a similar pattern:
when the entropy increased in the WLI images, the entropy of the NBI images also increased,
and vice versa. In VCE and the Olympus endoscope, the entropy in the NBI images
increased because of three images (image numbers 20, 25, and 46). This finding can
be attributed to the excessive reflection seen in the WLI image, indicating the successful
utilization of the algorithm in this study. The differences in entropy between images provide
insight into the levels of randomness or disorder present in the pixel intensity values within
each image. Entropy differences between the same images can indicate variations in
information content or randomness within the images. Higher entropy differences suggest
greater dissimilarity between the images, potentially due to noise, compression artifacts,
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or alterations. Conversely, lower entropy differences imply more similarity or consistency
between the images, indicating minimal changes or distortions. Analyzing these differences
can be useful in quality control, image restoration, or change detection applications, helping
identify and quantify the extent of image alterations or discrepancies and ultimately aiding
in image analysis and processing tasks.

Figure 2. Entropy of 50 randomly chosen Olympus and VCE images.

3.3. PSNR

Figure 3 shows the PSRN value of the 50 randomly chosen VCE and Olympus endo-
scopic images. The average PSNR values of the VCE and Olympus endoscopic images
were 27.8212 and 28.0813 dB, respectively (Supplementary Table S1). The results of SSIM,
entropy, and PSNR showed that the proposed algorithm performed better.

Figure 3. PSNR comparison of 50 randomly chosen Olympus and VCE images.
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4. Discussion

In this study, a decolored axis color-matching function was used to simulate NBI
images from the VCE WLI images by using the NBI image from an Olympus endoscope as
a reference. Given that VCE is more preferred than the traditional endoscopy, incorporating
NBI capability onto VCE is an important requisite because VCE does not currently have
NBI functionality. Such functionality has been proven to be more effective in detecting early
cancer cells, specifically EC, which does not have any early biomarkers. This incorporation
could increase the 5-year survival rate of EC drastically. The results of this study showed
that the reproduced NBI images had better comparison metric values. First, the average
SSIM values of the Olympus and VCE endoscopic images were 89.1995% and 92.4919%,
respectively. Second, the average entropy values of the randomly chosen WLI images and
their corresponding NBI images in VCE and the Olympus endoscope were 2.6942% and
2.3457%, respectively. Finally, the PSNRs of the WLI images and their corresponding NBI
images in VCE and the Olympus endoscope were 27.8212 and 28.0813 dB, respectively.
The future scope of this study is to test the reproduced NBI images with a YOLOv5 deep
learning model with a dataset of EC to detect and classify cancers on the basis of stage
severity. Then, the same model could be used to compare the accuracy, sensitivity, and
specificity of WLI of those NBI. However, one of the limitations of this method is that
it did not consider the lighting spectrum of the WLI and NBI images. Therefore, if the
WLI image is blurred or has light reflections on it, the NBI image could not be a perfect
simulation. The simulated NBI image with the corresponding WLI of the VCE endoscope
is shown in Figure 4 (Supplementary Figure S1 shows 50 randomly chosen images of WLI
in VCE, and Figure S2 shows 50 randomly chosen images of the simulated NBI in VCE).
The simulated NBI image with the corresponding WLI and a similar NBI image from the
Olympus endoscope are shown in Figure 5 (Supplementary Figure S3 shows six randomly
chosen images of WLI in VCE, and Figures S3 and S4 shows another 12 randomly chosen
images of simulated NBI in VCE).

Figure 4. Comparison between WLI and simulated NBI images of VCE. (a) WLI image from VCE,
(b) simulated NBI image from the NBI conversion algorithm.
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Figure 5. Comparison among the (a) WLI images, (b) simulated NBI images, and (c) real NBI images
from the Olympus endoscope.

5. Conclusions

In this study, a decolored axis color-matching function was implemented to simulate
NBI images from VCE WLI images by making use of the NBI image obtained from an
Olympus endoscope as a reference. VCE does not currently have NBI functionality, which
has been proven to be more effective in detecting early cancer cells, particularly early EC,
which does not have any early biomarkers. Given that VCE is more preferred than the
traditional endoscopy, incorporating NBI capability into VCE is an important requisite
that could result in a significant increase in the 5-year survival rate of patients with EC.
The results showed that the reproduced NBI images had higher comparison metric values.
The images from the Olympus endoscope and VCE had average SSIM values of 98.415%
and 93.215%, respectively. The random WLI images and their corresponding NBI images
obtained from VCE and the Olympus endoscopes showed average entropy values of 3.45%
and 4.36%, respectively. The PSNRs of the WLI images with their corresponding NBI
images in VCE and the Olympus endoscope were 28.06 and 28.15%, respectively.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers15194715/s1, Table S1: Results of PSNR comparison
of each image in Olympus and VCE; Table S2: Results of Entropy comparison of each image in
Olympus and VCE; Table S3: Results of SSIM comparison of each image in Olympus and VCE;
Figure S1: 50 Randomly chosen images of WLI in VCE; Figure S2: 50 Randomly chosen images of
NBI in VCE; Figure S3: 6 Randomly choses WLI images, simulated NBI images and a similar original
NBI in Olympus endoscope. (a) Olympus WLI images. (b) simulated NBI image and (c) a similar
NBI image from Olympus; Figure S4: 6 Randomly choses WLI images, simulated NBI images and a
similar original NBI in Olympus endoscope. (a) Olympus WLI images. (b) simulated NBI image and
(c) a similar NBI image from Olympus.
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