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Simple Summary: Growth factors promote angiogenesis, which is a critical process in the develop-
ment of tumors. One of the therapeutic techniques being investigated in the treatment of cancer is the
inhibition of angiogenesis through the inhibition of growth factors. This article aims to summarize
the mechanisms by which growth factors influence the unfavorable evolution of lung cancers via
angiogenesis as well as the therapeutic approaches that have been developed or are currently being
developed in order to provide a foundation for researchers to investigate this question further and
for practitioners to discuss therapeutic strategies when confronted with a lung cancer patient.

Abstract: Research has shown the role of growth factors in lung cancer angiogenesis. Angiogenesis
promotes lung cancer progression by stimulating tumor growth, enhancing tumor invasion, contribut-
ing to metastasis, and modifying immune system responses within the tumor microenvironment.
As a result, new treatment techniques based on the anti-angiogenic characteristics of compounds
have been developed. These compounds selectively block the growth factors themselves, their
receptors, or the downstream signaling pathways activated by these growth factors. The EGF and
VEGF families are the primary targets in this approach, and several studies are being conducted to
propose anti-angiogenic drugs that are increasingly suitable for the treatment of lung cancer, either as
monotherapy or as combined therapy. The efficacy of the results are encouraging, but caution must
be placed on the higher risk of toxicity, outlining the importance of personalized follow-up in the
management of these patients.

Keywords: angiogenesis; growth factors; lung cancer; tumor microenvironment; anti-angiogenic
therapy

1. Introduction

With an estimated 2.2 million new cases and 1.8 million deaths, lung cancer was the
second most commonly diagnosed cancer and the leading cause of cancer death in 2020
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according to GLOBOCAN [1]. This cancer is broadly classified into two main types: the
Non-Small Cell Lung Cancer (NSCLC) accounting for approximately 85% of cases, and
the Small Cell Lung Cancer (SCLC), which is the most aggressive type, counts for about
15% of cases [2–4]. Despite the advancement of numerous therapeutic modalities, such
as surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, the
last two decades have been marked by a relatively low survival rate ranging from 10% to
20% in most countries, making lung cancer one of the deadliest cancers and a public health
concern [1,5]. To address this issue, numerous treatment possibilities are being investigated,
including those related to angiogenesis.

Angiogenesis is the development of new blood vessels that originate from already
existing vasculature and is an important process in both normal and pathological condi-
tions [6]. It has a significant impact in the progression and spread of cancers, particularly
lung cancer [7,8]. Angiogenesis has been investigated for several years in several aspects,
most notably its morphological characteristics, as determined by MRI, and its biological
aspects, as determined by biomarker assays [9,10]. Researchers are interested in this phe-
nomenon because it plays a substantial role in all tumoral processes and represents a new
therapeutic avenue, as various compounds with anti-angiogenic properties are presently
proposed as cancer treatments [7,11–13]. Many studies have proven the critical roles of
Growth Factors in angiogenesis; nevertheless, the molecular processes underlying these
roles, as well as how these mechanisms might be targeted in lung cancer therapy, are still to
be fully understood. Furthermore, despite promising and encouraging results, medications
targeting angiogenesis have only had limited clinical success in lung cancer treatment
highlighting the need for a deeper understanding of this phenomenon and the therapeutic
opportunities that arise from inhibiting the effects of Growth Factors [14–17].

2. Angiogenesis Affects the Lung Cancer Pattern through Several Mechanisms

Angiogenesis is essential in the development of lung cancer because it allows oxygen
and nutrients to flow to rapidly developing tumor cells, contributing to tumor invasion
and dissemination [7,18,19]. Angiogenesis may affect lung cancer pattern with a variety
of methods.

2.1. Tumor Growth Enhancement

According to various study findings, angiogenesis provides cancer cells with an
essential supply of oxygen and nutrients, aiding their rapid growth, and has been associated
with an increase in tumor volume and a higher tumor grade in lung cancer [19,20]. This
mechanism has been linked with numerous major angiogenic factors, including fibroblast
growth factor 2 (FGF-2), epidermal growth factor (EGF), and vascular endothelial growth
factor (VEGF). Indeed, the former growth factor promotes angiogenesis in lung cancer by
stimulating endothelial cell migration and proliferation, which leads to the development of
new blood vessels that support tumor growth [21,22].

2.2. Metastasis Promotion

Many studies agree that angiogenesis has a significant impact on tumorigenesis and
metastatic processes by allowing tumor cells to spread through the creation of new blood
circulation paths. Thus, the greater the neovascularization process, the greater the chance
of metastasis. This indicates that there is a correlation between the amount of blood
vessels that develop around the tumor and the metastatic potential of lung cancer [7,19,23].
Angiogenic factors including VEGF, FGF-2, and hypoxia-inducible factors (HIF) can also
directly stimulate tumor cell proliferation, migration, and invasion [21,23–26].

2.3. Changes in Immunological Response in the Microenvironment

Indeed, angiogenesis can influence the immune response by promoting inflammation,
which causes the release of pro-inflammatory cytokines, which promote cell survival and
proliferation. These cytokines will also interact with immune cells, such as neutrophils
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and macrophages, encouraging the recruitment and infiltration of immune cells while also
activating signaling pathways that promote angiogenesis. As a result, a vicious circle is
formed, in which angiogenesis maintains the inflammatory process and the inflammatory
process maintains angiogenesis [27,28]. Furthermore, these immune cells may help to build
new blood vessels via a process known as vasculogenesis [19,29].

In addition to the aforementioned factors, new research has highlighted the contri-
bution of epigenetic alterations in lung cancer angiogenesis, specifically how microRNAs
influence pro- and anti-angiogenic factors [30–32]. During the typical immune response,
the system generates a kind of self-tolerance that prevents immune cells from attacking
indiscriminately via immune checkpoints. Tumor cells will stimulate checkpoint targets
to protect themselves from being attacked in cancer. A preclinical trial combining an-
giogenesis inhibitors and immune checkpoint inhibitors produced promising results in
targeting the intricate interplay between angiogenesis and immunological responses in
lung cancer, demonstrating the potential for combination therapy to improve patient
outcomes [31,33–35]. All of this emphasizes the significance of this research, which aims
to reassess growth factors in order to better understand their role in the spectrum of lung
cancer angiogenesis.

3. The Epidermal Growth Factor (EGF) Family, Their Receptors, and the Downstream

The EGF family is a group of glycoproteins that play roles in cell growth, survival,
proliferation, and differentiation. These molecules are distinguished by a structural feature
known as the “EGF-like domain,” which differentiates them from the others. This domain
is in charge of the binding and activation of EGF receptors (EGFR) or similar receptors.
Transforming growth factor alpha (TGF-alpha), amphiregulin (AREG), heparin-binding
EGF-like growth factor (HB-EGF), beta-cellulin (BTC), epiregulin (EREG), and epigene
(EPGN) are all members of the EGF family. Although each of these proteins has a unique bi-
ological function, they all have the ability to interact with EGFR to activate the downstream
signaling pathways that drive cell proliferation, migration, and invasion [36–38].

In a number of malignancies, including lung cancer, EGFR have been shown to be
found in very high concentrations and also play an important role in angiogenesis, tumor
formation, and progression. Indeed, members of the EGF family are especially prevalent
in lung cancer, not only because of the cancerous inflammatory process, but also because
these patients are vulnerable to external attacks by various pathogens, which maintain the
inflammatory reaction and thus constantly stimulate EGF production. All these thereby
promote the occurrence of EGF mutations [39–41]. When EGFR are activated, multiple
downstream signaling pathways are activated, including the PI3K-Akt and MAPK-ERK
pathways, which have been found to stimulate the production of pro-angiogenic factors,
such as VEGF and bFGF (basic Fibroblast Growth Factor). Furthermore, stimulation of
EGFR can activate downstream transcription factors, such as hypoxia-induced factor 1
(HIF-1), which will stimulate the production of VEGF genes, genes that will trigger the
synthesis of pro-angiogenic VEGF molecules via the translation process. Pro-angiogenic
molecules, such as VEGF, bFGF, and HIF-1, are thus boosted through these several processes,
promoting the proliferation, migration, and formation of new blood vessels [25,42–45].
Figure 1 depicts the several pathways that will be activated upon receptor stimulation that
ultimately contribute to the process of angiogenesis.

Gefitinib, the first approved EGFR-TKI (EGFR—Tyrosine Kinase Inhibitors), was
shown to be effective in treating non-small cell lung cancer (NSCLC) patients with EGFR
mutations, leading to improved progression-free survival and response rates. Since then,
many generations have been developed, and the fourth generation is now on the pre-clinical
stage of development and aims to solve not only the problem of mutation of EGFR, but
also resistance to the drugs of the third generation (Rociletinib and Osimertinib) [39,47].
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Figure 1. Associated receptors and their signaling pathways involved in angiogenesis. On the figure
we can identify the different angiogenesis receptors and the pathways they stimulate. These stimu-
lations ultimately lead to a variety of processes involved in angiogenesis, such as cell proliferation,
migration, and survival. EGFR stimulates the RAS/RAF/ERK/MAPK (also called MAPK-ERK)
and the PI3K/Akt signaling pathways. These pathways are also stimulated by VGFR, PDGF, and
FGFR. The latter (FDFR) also triggers the STAT3/NF-κβ pathway. Data source: Review article
“Molecular mechanisms involved in angiogenesis and potential target of anti-angiogenesis in human
glioblastomas” by Xu Y, Yuan FE, Chen QX, and Liu BH [46] and published in an open access journal.

Recent laboratory and clinical studies, such as that of Nakagawa et al. and that of
Subbiah et al., have revealed new targets and therapeutic treatments centered on EGF
family members and their influence on lung cancer angiogenesis [48–50]. In 2022, a study
published by Nakagawa et al. found that targeting the EGF receptor in conjunction with
anti-VEGF medication results in improved survival rates in lung cancer patients, pinpoint-
ing the potential advantage of targeting several pro-angiogenic pathways [48]. However,
this should be approached with caution because certain studies have identified the possibil-
ity of toxicity leading to therapeutic termination [48,51]. Other studies also found that the
EGF-like domain of HB-EGF increases angiogenesis in lung cancer by stimulating VEGF
production and then driving endothelial cell migration and neovascularization [21,52].

In a clinical trial conducted by Rosell in 2017, the combination of the EGFR inhibitor
erlotinib and the VEGFR inhibitor bevacizumab led to an increase in survival in individuals
having advanced NSCLC, probably due to the synergistic effects of blocking both the
EGF and VEGF pro-angiogenic pathways [53]. Other clinical trials have focused on the
development of new EGF/EGFR targeted therapies, such as monoclonal antibodies and TKI,
which may provide patients with lung cancer with better therapeutic alternatives [54,55].

Many clinical trials have primarily targeted the EGF pathway alone or in conjunction
with other neighboring pathways, the leader of which is VEGF. Table 1 is a collection
of some intriguing research on lung cancer, gathered from freely accessible American
and European databases that cover many studies, among which clinical trials have been
conducted or are in progress around the world [56,57].



Cancers 2023, 15, 4648 5 of 16

Table 1. Some additional researches in the subject of growth factor-based targeted therapy in lung
cancer (data consulted on 6 July 2023) [56,57].

Last Update Location and
Study Identifier Study Type Study Title Condition Intervention Status Findings

May
2023

United
Kingdom

NCT04179890

Observational
and retrospective

The study observes how
long patients with
non-small cell lung

cancer (NSCLC) benefit
from treatment with

epidermal growth factor
tyrosine kinase inhibitor
(EGFR-TKI) when given

either for uncommon
mutations or for

common mutations in
the sequence afatinib

followed by osimertinib
(UpSwinG)

Non-squamous,
Non-Small Cell
Lung Cancer,

Observation of
EGFR-TKI:
-Afatinib
-Erlotinib
-Gefitinib

-Osimertinib

Complete

treatment with
EGFR-TKI
should be

considered as
standard for

most patients
with uncommon

mutations

February
2023

USA
NCT05062980 Clinical Trial

Quaratusugene
Ozeplasmid (Reqorsa)
in combination with
Pembrolizumab in
previously treated

Non-Small Cell Lung
Cancer (Acclaim-2)

Phase I/II

Non-Small Cell
Lung Cancer

A:
Quaratusugene

ozeplasmid
(pan-TKI: EGFR

and Akt
inhibitor) +

Pembrolizumab
(VEGFR

downstream
inhibitor: PD1

inhibitor)
B: Docetaxel
(microtubule
inhibitor) +

ramucirumab
(VEGFR

inhibitor) + 3rd
molecule

proposed by
physician

On going /

May
2019

United
Kingdom

NCT02109016
Clinical Trial

A single arm,
open-label, phase II
study to assess the
efficacy of the dual

VEGFR-FGFR tyrosine
kinase inhibitor,

Lucitanib, given orally
as a single agent to

patients with
FGFR1-driven lung

cancer.

Advance stage of
Small and

Non-small cell
lung cancer with

adenomatous,
squamous, and

large cell
histologies, as
well as FGF,

VEGF, or PDGF
genetic

alterations.

Lucitanib, a
VEGFR-FGFR
tyrosine kinase

inhibitor

Terminated

Interim analysis
was either

impossible (due
to short time

data collection)
or showed low
probability of

clinically
significant result

January
2013

USA
NCT00862134 Clinical Trial

Randomized,
Multi-center,

Open-label, Study of
PR104 Versus

PR104/Docetaxel in
Non-Small Cell Lung

Cancer (NSCLC)
Phase II

Non-Small Cell
Lung Cancer

A: Docetaxel
(microtubule

inhibitor)
B: Docetaxel +

PR104 (hypoxia-
activated

prodrug) +
G-CSF for

prophylaxis

Terminated

Interim analysis
indicated low
probability of

clinically
significant result

4. Vascular Endothelial Growth Factor (VEGF)

VEGF are growth factors that stimulate the formation of new blood vessels from
pre-existing ones. Several VEGF family members have been identified, each with distinct
and partially overlapping activities [58,59].

Today, we know that the VEGF family consists of six separate members, which are
VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placental growth factor (PlGF). The
different members differ in their binding affinity and specificity to the three receptors
VEGFR1, VEGFR2, and VEGFR3. The most intensively researched member of the family,
VEGF-A, has been found to be a powerful proangiogenic agent. It is expressed by a wide
range of cells, including tumor cells, and binds to its endothelial cell receptors, VEGFR1
and VEGFR2, to drive blood vessel growth [58,60].
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The mechanism of action of VEGF in angiogenesis is complex and involves the in-
teraction of VEGF with its receptors on endothelial cells. The interaction triggers a series
of events that promote endothelial cells to multiply, relocate, and to survive, ultimately
leading to the formation of new blood vessels [60–62]. VEGF also promotes the formation
of the extracellular matrix and the recruitment of pericytes, both of which help to stabilize
newly created vessels [63,64].

The overexpression of VEGF, frequently seen in lung cancer, is associated with en-
hanced angiogenesis, tumor development, and metastasis. Anti-VEGF medication be-
vacizumab has been approved as one of the possible choice to treat advanced cases of
NSCLC [65]. Anti-VEGF medication improves progression-free survival and overall sur-
vival in people with advanced NSCLC, according to several trials. Novel anti-angiogenic
drugs and combination therapies that target several pathways involved in tumor angio-
genesis have recently been investigated in the field of angiogenesis in lung cancer. In a
phase II clinical trial lead by Horn L. et al., for example, the VEGFR inhibitor bevacizumab
was added to etoposide and cisplatin and used as a first-line therapy for people with ad-
vanced stage small cell lung cancer (SCLC), and this resulted in an increase in the survival
rate compared to historical controls who received this chemotherapy regimen without
bevacizumab [66]. Furthermore, combining the EGFR inhibitor, erlotinib, with the VEGFR
inhibitor, bevacizumab, has also been shown to improve survival rates in advanced cases
of non-small cell lung cancer [53]. For more information, see Table 1.

5. Colony Stimulating Factors (CSF)

CSF are a group of cytokines that regulate the production, differentiation, and function
of white blood cells. They have been demonstrated to play a role in angiogenesis in addition
to their involvement in regulating white blood cell formation and differentiation. [67,68].
There are four canonical members in the family, including [69]:

- Granulocyte colony-stimulating factor (G-CSF): A cytokine that promotes the creation
and development of neutrophils, a kind of white blood cell, from bone marrow
progenitor cells;

- Granulocyte-macrophage colony-stimulating factor (GM-CSF): A cytokine that stim-
ulates the development and differentiation of bone marrow progenitor cells into
neutrophils, monocytes, and macrophages;

- Macrophage colony-stimulating factor (M-CSF): A cytokine that induces the produc-
tion and maturation of macrophages from bone marrow progenitor cells;

- Interleukin 3 (IL-3 or multi-CSF): A hematopoietic cytokine and colony-stimulating
factor that aids in the growth and maturation of erythroid, myeloid, megakaryocyte,
and lymphoid progenitors.

The exact mechanism by which G-CSFs regulate angiogenesis is not fully understood,
but it is thought to involve the recruitment and activation of bone marrow-derived en-
dothelial progenitor cells (EPCs). EPCs are cells that help to generate new blood vessels
from circulating endothelial progenitors during postnatal vasculogenesis. G-CSFs have the
ability to mobilize EPCs from the bone marrow and boost their differentiation, proliferation,
and migration, resulting in increased angiogenesis [67,70,71]. However, the therapeutic im-
plication of such a discovery remains very controversial since G-CSF is used in prophylaxis
to avoid the febrile neutropenia often observed during chemotherapy, and this considerably
reduces the interest in developing G-CSF inhibitors [72]. For additional information, see
Table 1.

G-CSFs, especially G-CSF and GM-CSF, have been studied for their potential relevance
in lung cancer. G-CSF levels were discovered to be associated with an unfavorable prognosis
in cases of NSCLC. Other findings revealed that G-CSF and GM-CSF can accelerate tumor
development and angiogenesis in lung cancer as well as inhibiting G-CSF signaling can
diminish angiogenesis and tumor growth. [67,73–75]. Taking these factors into account,
recent advances in the study of angiogenesis in lung cancer have focused on the possible
use of G-CSFs as therapeutic targets [73].
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IL-3 has not been widely explored in relation to lung cancer angiogenesis. However,
there are some findings stating that it may play an essential part in inducing angiogenesis
in other forms of cancer. IL-3 may increase cancer cell proliferation and survival via
mechanisms such as tumor microenvironment modification and the activation of cell
multiplication and sustainment signaling pathways [76,77]. More research is required to
fully comprehend this cytokine’s potential role in angiogenesis and lung cancer progression.

6. Bone Morphogenetic Protein (BMP)

BMPs are a type of signaling molecule that belongs to the TGF-beta (transforming
growth factor-beta) family. After being recognized for its ability to stimulate bone formation,
BMPs were shown to have various additional activities, including influencing cell growth,
differentiation, and death [78].

It has been demonstrated that BMPs have a complex and context-dependent role
in angiogenesis. They can increase angiogenesis in specific circumstances by boosting
endothelial cell differentiation, proliferation, and migration [79–81]. In other contexts, some
evidence suggests that BMPs may decrease angiogenesis by increasing the expression of
angiogenesis inhibitors, but the precise mechanism remains unknown [79,82,83].

BMPs have been identified as having a key role in lung cancer tumor angiogenesis and
progression. BMPs, particularly BMP-2, BMP-4, and BMP-7, have been discovered to be
elevated in lung cancer tissues and have been linked to a bad prognosis in these individuals.
BMPs have also been demonstrated to induce the production of pro-angiogenic factors,
resulting in angiogenesis stimulation and tumor growth in lung cancer [28,84–86]. As a
result, recent research has focused on BMP signaling targeting as a viable therapeutic for
lung cancer with substantial angiogenesis [87]. In 2021, Meng et al. suggest BMP5 as a
potential crucial target for lung adenocarcinoma treatment [84].

7. Fibroblast Growth Factors 1 and 2 (FGF1 and FGF2)

FGF1 and FGF2 are potent angiogenic agents that increase vascular endothelial cell
development, displacement, and survival. They attach to heparan sulfate proteoglycans on
endothelial cell surfaces, activating both the FGFR1 and FGFR2 endothelial cell isoforms.
This activates downstream signaling pathways, such as ERK, PI3K, and PLC, which pro-
mote angiogenesis by increasing the synthesis and secretion of pro-angiogenic molecules,
such as VEGF and platelet-derived growth factor (PDGF) [88,89].

FGFs, especially FGF1 and FGF2, play a complex and context-dependent involvement
role in lung cancer. FGFs have an important role in tumor angiogenesis and growth
in early-stage lung cancer because they encourage the production of new blood vessels,
which deliver nutrition and oxygen to the tumor cells [19,90,91]. FGF2 expression has
been observed to be elevated in lung cancer and is associated with a bad prognosis [92].
FGFs can also contribute to anti-angiogenic therapy resistance since tumors can shift to an
alternate angiogenic pathway that is not targeted by current therapies [19,93–95]. Figure 2
depicts an example where VEGFR is targeted and demonstrates the many compensatory
angiogenic factors/signaling routes that tumors use to sustain the angiogenic process, with
several growth factors, including FGF, being involved [96].

Recent research has focused on developing FGF signaling pathway inhibitors as
potential lung cancer therapeutics. BGJ398, for example, is a selective inhibitor of the
FGFR signaling pathway that has demonstrated potential anticancer effects in preclinical
investigations and is currently being tested in clinical trials in patients with FGFR-mutant
NSCLC [97,98].
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Figure 2. Compensatory angiogenic factors/signaling routes, including FGF, after blockade of VEGF
axis. The inhibition of the VEGF axis causes tissue hypoxia, which the body interprets as a lack
of vessels, preventing blood from reaching the appropriate areas. This activates pro-angiogenic
factors, such as HGF, FGF, PDGF, interleukins, Ang-1&2, and ephrin A, resulting in a cascade of
events leading to angiogenesis. Data source: Review article “Compensatory angiogenesis and tumor
refractoriness” by Gacche [96], published in an open access journal.

8. Interleukins (IL)

Interleukins are a type of cytokine that is involved in immunological modulation as
well as physiological processes, such as development, angiogenesis, and hematopoiesis.
The interleukin family contains around 40 members, each with its own distinct function in
the immune system [99,100].

Several interleukins, including IL-1 beta, IL-6, and IL-8, have been identified to be
dysregulated in lung cancer. These interleukins have been demonstrated to stimulate tumor
growth by angiogenesis as well as cell proliferation, survival, and invasion. For example,
IL-6, IL-8, and IL-17 have been shown to increase VEGF expression in lung cancer cells,
which increases angiogenesis [28,101–103].

Research has focused on targeting interleukins as a potential lung cancer therapy
strategy [104,105]. Many researches have shown that IL-6 interacts with other molecules,
notably VEGF to ultimately promote angiogenesis [106,107]. Figure 3 illustrates interleukin-
6 in the tumor microenvironment, depicts how it interacts with other molecules as well
as the VEGF pathway to promote the angiogenesis process and therefore favor the tu-
mor progression, and also shows anti-IL-6 possible targeted molecules used in cancer
therapy [106,108–113].
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Figure 3. Interleukin-6 in the tumor microenvironment and its action on VEGF axis. The formation of
IL-6 from stimulated IL-6 mRNA, leads to a release of IL-6, in high concentration, in the extracellular
milieu. After connecting to its receptors, IL-6 initiates a chain of reactions that will ultimately
lead to the synthesis of VEGF and therefore to angiogenesis. The figure also shows the different
therapeutic molecules used to inhibit this pathway and therefore treat cancer. Data source: Adapted
figure from the article “Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers
therapeutic opportunities in cancer” by Ray K, Ujvari B, Ramana V and Donald J. [113]. Re-use
License number 5615250558075.

Researchers currently believe that certain interleukins have diagnostic and prognostic
value when combined with other molecules. In 2022, a study lead by Yan X., for example,
found that IL-6 and IL-8 could be used as possible molecular biomarkers to diagnose and
predict lung cancer metastasis regardless of pathological type or to improve the specificity
and sensitivity for the diagnosis of lung cancer when paired with Carcinoembryonic antigen
(CEA) [114].

9. Others Growth Factors

- Hepatocyte Growth Factor (HGF): It is a cytokine with two different domains, one
N-terminal and one C-terminal, each with its own set of biological activity. The
C-terminal domain of HGF mediates its ability to induce angiogenesis by activat-
ing subsequent signaling pathways, such as the PI3K/Akt and MAPK/ERK path-
ways [115,116]. Its rise in lung cancer has been linked to a poor prognosis and resis-
tance to anti-angiogenic therapy. Recent research found that an anti-HGF monoclonal
antibody can inhibit HGF-induced angiogenesis and tumor growth in preclinical
models of lung cancer, providing a potential therapeutic strategy for lung cancer
patients [116,117].

- Human Epidermal Growth Factor Receptors 2 and 3 (HER2 and HER3): These two
belong to the family of tyrosine kinases receptors and are overexpressed or mutated
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in many cancers and increase angiogenesis by activating both the PI3K/Akt and
MAPK/ERK signaling pathways [118]. Several HER2-targeting therapy treatments,
including monoclonal antibodies and tyrosine kinase inhibitors (TKIs), such as afatinib
and neratinib, have demonstrated success in preclinical and clinical trials. Moreover,
many researchers are working to bring out new therapies targeting HER-2 in the field
of lung cancer [119,120].

- Platelet Derived Growth Factor (PDGF) α/β: They belong to the PDGF receptor ty-
rosine kinase family and have been linked to lung cancer angiogenesis. PDGFR-alpha
and PDGFR-beta are both overexpressed in lung cancer, and their presence has been
linked to a bad prognosis. In preclinical lung cancer models, blocking PDGF signaling
has been shown to diminish tumor formation and angiogenesis [22,121]. As for the
others, combination treatments targeting both the PDGF and VEGF signaling path-
ways in lung cancer have been examined. In one trial, the anti-PDGF agent nintedanib
was coupled with the anti-VEGF agent bevacizumab in lung cancer patients, resulting
in an improvement in progression-free survival when compared to bevacizumab
alone [122].

- Soluble Tie 2 (sTie2) is a shortened version of the Tie2 receptor, which is an an-
giopoietin receptor expressed on endothelial cells and is involved in angiogenesis and
vascular stabilization [123]. Its expression has been linked to unfavorable outcomes in
several malignancies, including lung cancer, and research is being conducted to see
how it can be targeted for therapy [124].

- Soluble Neuropilin 1 (sNRP1) is a shortened version of the neuropilin 1 receptor
that is produced on endothelial cells and impacts angiogenesis by acting as a VEGF
coreceptor [125]. As with soluble Tie 2, large levels of sNRP1 expression have been
linked to a worse prognosis, and it is also a molecule of interest in the realm of targeted
therapeutics for lung cancer [126,127].

10. Conclusions and Perspectives

Growth factors have a strong pro-angiogenic effect because they encourage the de-
velopment of new vessels through many pathways, resulting in tumor progression and
metastasis: That is why they constitute one of the therapeutic targets against cancers.

In lung cancer, in view of the rapid and unfavorable evolution sometimes observed,
even in patients undergoing treatment, new therapeutic approaches have been proposed,
and the first evaluations are encouraging.

Considering the complexity of the processes involved in angiogenesis and the multi-
tude of growth factors that promote the therapeutic escape mechanism, combined therapies
and therapies targeting the downstream signaling pathways are now being extensively
explored as potentially of interest in the management of this disease. In the meantime, the
literature remains favorable on the central role of EGFR-TKI-based treatment, even in the
case of uncommon mutations.

A personalized approach with a prior analysis of genetic and molecular profiles in
search of the presence of mutations in patients (EGFR mutations) is strongly recommended.
Special attention should also be paid to the risk of toxicity when launching a therapeutic
regimen because it constitutes one of the main complications of combined therapies and
can thus justify the discontinuation of the treatment regimen.

Finally, we believe it is critical to emphasize the importance of continuing to con-
duct research in search of new lung cancer biomarkers, identifying all of the factors and
mechanisms responsible for mutation occurrence, and deepening our understanding of the
processes by which lung cancer cells develop resistance to anti-angiogenic therapies.
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PDGF-c Platelet-Derived Growth Factor C
PDGFR Platelet-Derived Growth Factor Receptor

PDZ
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SOCS3 Suppressor Of Cytokine Signaling 3
STAT Signal Transducer and Activator of Transcription
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TGF-alpha Transforming growth factor alpha
TGF-beta Transforming Growth Factor-beta
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TKI Tyrosine Kinase Inhibitors
VEGF Vascular Endothelial Growth Factor
VEGFR Vascular Endothelial Growth Factor Receptor
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