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Simple Summary: Rapid early progression (REP) has been defined as increased nodular enhance-
ment at the border of the resection cavity, the appearance of new lesions outside the resection cavity,
or increased enhancement of the residual disease after surgery and before radiation. Patients with
REP have worse survival compared to patients without REP (non-REP). Therefore, a reliable method
for differentiating REP from non-REP is hypothesized to assist in personlized treatment planning.
A potential approach is to use the radiomics and fractal texture features extracted from brain tumors
to characterize morphological and physiological properties. We propose a random sampling-based
ensemble classification model. The proposed iterative random sampling of patient data followed by
feature selection and classification with radiomics, multi-resolution fractal, and proteomics features
predicts REP from non-REP using radiation-planning magnetic resonance imaging (MRI). Our results
further show the efficacy of pre-radiation image features in the analysis of survival probability and
prognostic grouping of patients.

Abstract: Recent clinical research describes a subset of glioblastoma patients that exhibit REP prior
to the start of radiation therapy. Current literature has thus far described this population using
clinicopathologic features. To our knowledge, this study is the first to investigate the potential
of conventional radiomics, sophisticated multi-resolution fractal texture features, and different
molecular features (MGMT, IDH mutations) as a diagnostic and prognostic tool for prediction of REP
from non-REP cases using computational and statistical modeling methods. The radiation-planning
T1 post-contrast (T1C) MRI sequences of 70 patients are analyzed. An ensemble method with
5-fold cross-validation over 1000 iterations offers an AUC of 0.793 ± 0.082 for REP versus non-REP
classification. In addition, copula-based modeling under dependent censoring (where a subset of
the patients may not be followed up with until death) identifies significant features (p-value < 0.05)
for survival probability and prognostic grouping of patient cases. The prediction of survival for the
patients’ cohort produces a precision of 0.881 ± 0.056. The prognostic index (PI) calculated using
the fused features shows that 84.62% of REP cases fall under the bad prognostic group, suggesting
the potential of fused features for predicting a higher percentage of REP cases. The experimental
results further show that multi-resolution fractal texture features perform better than conventional
radiomics features for prediction of REP and survival outcomes.

Keywords: rapid early progression (REP); pre-radiation MRI; radiomics; glioblastoma (GB); machine
learning (ML); survival analysis; dependent censoring; copula modeling
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1. Introduction

Brain and other central nervous system (CNS) tumors are associated with the highest
mortality and morbidity across different malignancies in the United States [1]. Glioblas-
toma (GB) is one of the most aggressive brain tumors, representing nearly half of brain
gliomas [2]. For newly diagnosed GB patients, the standard of care includes maximal safe
surgical resection followed by radiation therapy with concurrent and adjuvant temozolo-
mide (TMZ) after which tumor-treating fields are often recommended (i.e., the Novo-TTF
system, renamed Optune) [3]. Radiation therapy should ideally begin six weeks follow-
ing surgery [4]. During this time frame, GB may regrow significantly due to its highly
proliferative nature [5]. Several institutional series have been published evaluating post-
operative REP with pre-radiation MRI [6–8]. Specifically, REP is assessed by comparing
early post-operative MRI scans with radiation-planning MRI [8]. There is almost a 50%
prevalence rate for the development of REP, even if radiation is initiated earlier than six
weeks post-operatively [6–8].

MRI plays a crucial role in the evaluation of post-operative and post-treatment ef-
fects. The post-operative MRI is acquired within 3 days (preferably within 24 h) both to
assess extent of resection and to minimize the effect of enhancement due to surgery [5].
The radiation-planning MRI scan is obtained 1 to 3 weeks prior to the start of radiation
therapy to assist with target delineation. According to the guidelines [9], another MRI
(post-radiation) scan is obtained 2 to 6 weeks after the completion of treatment with
radiation therapy +/− TMZ followed by surveillance imaging every 2–4 months. The
comparison of the first post-radiation MRI (approximately after 1 month from the com-
pletion of radiation therapy) to baseline scan (post-operative MRI, more commonly being
radiation-planning scan), is often made to evaluate tumor progression as well as radiation-
induced changes (collectively termed as pseudo progression) [4]. MRI offers a detailed
characterization of the morphological, physiological, and metabolic properties of brain
tumors, particularly brain gliomas, which are complex and heterogenous malignancies [10].
Quantitative radiomics features [11,12] extracted from MRI (texture, intensity, shape, area,
and geometric features) followed by statistical and machine learning analyses have been
shown to be effective [13–15] in brain tumor volume segmentation, and classification of
normal/tumor tissues.

Patients with REP have worse survival compared to non-REP patients [7]. Overall
survival (OS) analysis refers to the time to death from the day of surgery. A patient is
censored if they are lost to follow-up prior to observing time to death [16]. Censoring
may introduce bias into statistical analysis results if censoring processes involve dropout
or withdrawal due to tumor progression, treatment toxicity, or the start of second-line
therapy [16]. Because a patient may die soon after being lost to follow-up, total survival
and dropout time may be positively associated [16]. Dependent censoring occurs when the
relationship between censoring time and survival time cannot be explained by observable
factors [16,17]. In statistical analysis, copula-based modeling is a state-of-the-art method to
model the dependency between survival and censoring time.

As alluded to above, several retrospective reviews correlated clinical and pathologic
features with REP, and found it to be an independent negative prognostic factor [4,6–8].
It remains unclear whether patients with REP have distinct molecular or radiographic
features. To the best of our knowledge, there has been no research that utilizes MRI features
for prediction of REP using radiation-planning MRI scans, which may act as a quantitative
imaging-based biomarker to stratify REP patients from non-REP patients.

The first objective of this study is to evaluate the predictive efficacy of conventional ra-
diomics and sophisticated multi-resolution fractal texture features extracted from radiation-
planning MRI for predicting REP. A second objective is to examine the survival probability
of patients using copula modeling applied to radiation-planning MRI radiomics features
within a context of dependent censoring scenario. Third objective is the binary prediction
of patients’ survival status (patients expired/dead or not) based on selected significant
(p-value < 0.005) T1C features, employing copula modeling. To assess the significance of the
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selected features, a prognostic index (PI) is calculated, derived as a linear combination of
the selected features. By utilizing this calculated PI, patients are categorized into prognostic
groups (good or bad). Additionally, within these prognostic groups, the distribution of
REP cases versus non-REP cases is constructed. The distribution of REP cases versus
non-REP cases within the defined prognostic groups further demonstrates the predictive
capability of radiomics features in identifying REP as a bad prognostic factor or indicator
of a high-risk group.

2. Materials and Methods
2.1. Patient Data

This is an institutional review board (IRB, reference #22-057)-approved retrospective
chart review of a cohort of patients treated at OhioHealth between 1 January 2015 and
1 March 2021. Relevant clinical and radiographic data have been abstracted from the
electronic health record system. Patients with a biopsy-confirmed diagnosis of World
Health Organization (WHO) grade 3 or 4 anaplastic astrocytoma or grade 4 glioblastoma
have been included in this study, with a minimum of three MRI scans (pre-operative,
early post-operative, radiation planning). Imaging studies are reviewed by board-certified
neuroradiologists. All patients have undergone surgery (biopsy, subtotal, or gross total
resection), followed by radiation therapy with or without adjuvant TMZ.

A total of 95 patient cases have been included in this study. Among these, twenty-five
cases do not have a (T1C) sequence in at least one of the MRI studies. Seventy patients with
complete radiographic data have been included in the analysis, with thirteen of them being
clinically identified as having REP and the remaining fifty-seven as non-REP. REP has been
classified as such in line with previous literature [18,19]. A detailed summary of patient
cases is presented in Table 1.

Table 1. Summary of data between the patient group.

Total (n = 70) REP (n = 13) Non-REP (n = 57)

Survival Days from Surgery

Present (patient dead/expired) 45 8 37

Lost follow-up (censored) * 22 5 17

Not dead nor censored 3 0 3

MGMT Promoter Status

Hypermethylated 23 5 18

Unmethylated 33 6 27

Indeterminate 14 2 12

IDH-1 Mutation Status

Wild type 59 12 47

Mutant 8 1 7

Indeterminate 3 0 3

1p-19q-Codeletion Status

Codeletion 2 0 2

Negative 18 1 17

Indeterminate 50 12 38
* Some of the censored patients are expired (dead); therefore, all the censored patients are not alive.

2.2. Algorithm Pipeline for Prediction of Rapid Early Progression (REP)

The overall pipeline for prediction of rapid early progression (REP) is depicted in
Figure 1. The specifics of each step are described in the subsequent sub-sections. The
predictive model is an ensemble tree-based Cat Boost classification model implemented in
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Python 3.7. The model’s performance is evaluated through 1000 iterations and 5-fold cross-
validation, resulting in 5000 different values for computing the area under curve (AUC),
positive predictive value (PPV), false positive rate (FPR), and accuracy. The statistical
distribution of the 5000 values is considered for describing the model’s performance.

Cancers 2023, 15, x FOR PEER REVIEW 4 of 26 
 

 

cross-validation, resulting in 5000 different values for computing the area under curve 
(AUC), positive predictive value (PPV), false positive rate (FPR), and accuracy. The statis-
tical distribution of the 5000 values is considered for describing the model’s performance. 

 
Figure 1. Overall pipeline for REP prediction. 

2.3. MRI Preprocessing, Tumor Volume Segmentation and Feature Extraction 
2.3.1. MRI Preprocessing 

All radiation-planning MRI images are co-registered to the same T1 anatomic tem-
plate using affine registration and resampled to 1 mm3 voxel resolution using the Oxford 
Center for Functional MRI of the Brain’s (FM-RIB’s) Linear Image Registration Tool 
(FLIRT) of the FMRIB Software(version 6.0) Library (FSL) [20]. The FSL’s Brain Extraction 
Tool (BET) [21] is utilized to skull-strip each patient’s volumetric image. For obtaining 
improved skull-stripped volumetric images, manual intervention is employed. Addition-
ally, all images are smoothed using the Smallest Unvalued Segment Assimilating Nucleus 
(SUSAN) [22], a low-level image processing technique, in order to reduce high frequency 
intensity changes (i.e., noise) in regions with a uniform intensity profile while maintaining 
the underlying structure. The intensity histograms of all modalities for all patients are 
then matched to the relevant modality of a single reference patient using the implemented 
version of the Insight Toolkit (ITK) [23]. 

2.3.2. Tumor Volume Segmentation 
The utilization of transfer learning in our study is motivated by the inherently chal-

lenging nature of limited patient data for tumor volume segmentation. Given the scarcity 
of available data, we employ transfer learning as a strategic approach to enhance the per-
formance of our segmentation model. To achieve this, we leverage a substantial dataset 
comprising 1251 GB patient cases collected from the well-established BRATS 2021 chal-
lenge [24–26]. This dataset serves as the foundation for training our segmentation model. 
By initially training the model on this larger dataset, we enable it to learn intricate features 
and patterns associated with tumor tissue segmentation. Once the model is adequately 
trained using this extensive dataset, it is subsequently deployed to segment tumor tissue 
regions in a more restricted 70 patient cohort with radiation-planning MRI volumetric 
images. This process allows the model to generalize its learned knowledge and effectively 
adapt to the specific characteristics of our target cohort, even in the presence of limited 
data. For the task of segmenting tumor tissue regions, encompassing edema, enhancing 
tumor, and necrosis, we employ a 3D UNet model specifically designed for GB patients’ 

Figure 1. Overall pipeline for REP prediction.

2.3. MRI Preprocessing, Tumor Volume Segmentation and Feature Extraction
2.3.1. MRI Preprocessing

All radiation-planning MRI images are co-registered to the same T1 anatomic template
using affine registration and resampled to 1 mm3 voxel resolution using the Oxford Center
for Functional MRI of the Brain’s (FM-RIB’s) Linear Image Registration Tool (FLIRT) of the
FMRIB Software(version 6.0) Library (FSL) [20]. The FSL’s Brain Extraction Tool (BET) [21]
is utilized to skull-strip each patient’s volumetric image. For obtaining improved skull-
stripped volumetric images, manual intervention is employed. Additionally, all images are
smoothed using the Smallest Unvalued Segment Assimilating Nucleus (SUSAN) [22], a
low-level image processing technique, in order to reduce high frequency intensity changes
(i.e., noise) in regions with a uniform intensity profile while maintaining the underlying
structure. The intensity histograms of all modalities for all patients are then matched to
the relevant modality of a single reference patient using the implemented version of the
Insight Toolkit (ITK) [23].

2.3.2. Tumor Volume Segmentation

The utilization of transfer learning in our study is motivated by the inherently chal-
lenging nature of limited patient data for tumor volume segmentation. Given the scarcity
of available data, we employ transfer learning as a strategic approach to enhance the
performance of our segmentation model. To achieve this, we leverage a substantial dataset
comprising 1251 GB patient cases collected from the well-established BRATS 2021 chal-
lenge [24–26]. This dataset serves as the foundation for training our segmentation model.
By initially training the model on this larger dataset, we enable it to learn intricate features
and patterns associated with tumor tissue segmentation. Once the model is adequately
trained using this extensive dataset, it is subsequently deployed to segment tumor tissue
regions in a more restricted 70 patient cohort with radiation-planning MRI volumetric
images. This process allows the model to generalize its learned knowledge and effectively
adapt to the specific characteristics of our target cohort, even in the presence of limited data.
For the task of segmenting tumor tissue regions, encompassing edema, enhancing tumor,
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and necrosis, we employ a 3D UNet model specifically designed for GB patients’ T1C MRI
scans [13,14].This approach capitalizes on the model’s inherent ability to capture complex
spatial relationships within the volumetric images, further enhancing the precision and
accuracy of tumor tissue segmentation. The tumor regions are rigorously validated by two
expert radiation oncologists specializing in primary and secondary brain tumor treatment,
who achieve consensus.

2.3.3. Feature Extraction

A total of 600 features have been extracted from the tumor tissue volume segments
in this study. These features include texture, volume, and the area of the tumor and its
sub-regions (edema, enhancing tumor, and necrosis). Forty-one texture characteristics have
been derived from the whole tumor volume in the raw MRI (T1C) sequence, as well as the
tumor sub-regions. The conventional texture features are extracted using a grey-tone spatial
dependence matrix (GTSDM), neighborhood grey-tone difference matrix (NGTDM), and
grey level size zone matrix (GLZSM). The fractal texture features encompass the piecewise
triangular prism surface area (PTPSA) for fractal characterization, multi-resolution Brown-
ian motion (mBm) analysis, and tumor region characterization with Holder Exponent (HE)
modeling, termed as generalized multi-resolution Brownian motion (GmBm). The PTPSA,
mBm, and HE computational algorithms are detailed in [27–29]. Multi-resolution fractal
features depict textural variation in tumor tissue across various image resolutions [30]. Six
histogram-based statistics (mean, variance, skewness, kurtosis, energy, and entropy) are
also derived from the distinct tumor sub-regions. We further extract volumetric features:
the volume of the entire tumor, the volume of the whole tumor in relation to the brain, and
the volume of sub-regions. Vallières et al.’s [31] MATLAB-based software (version R2019b)
is utilized for analyzing texture features. For fractal characterization, multi-resolution frac-
tal characterization, HE characterization, and volumetric characteristics, MATLAB-based
in-house software is employed.

2.4. Selection of Radiomics Features and Model Building

To evaluate the efficacy of fractal features and conventional radiomics features, we
consider two model configurations. These model configurations include (a) a non-fractal
model (a model containing only conventional volume, area, and texture features), and
(b) a fractal model (a model incorporating multi-resolution fractal features along with
conventional volume, area, and texture features) [32]. For feature selection, a two-step
feature selection process (details of feature selection and statistical analysis can be found
in Appendix A) results in three significant (p-value < 0.05) features for both the fractal
and non-fractal models, respectively. Radiomic modeling of REP classification using the
selected features is implemented using a nested paradigm involving 1000 iterations and
5-fold cross-validation with random sampling (details of the algorithms are provided in
Appendix A). The objective of cross-validation is to offer a robust estimate of a model’s
performance on unseen data [33]. In a k-fold cross-validation, the data are partitioned
into k-subsets, of approximatively equal sizes. Moreover, typically calculated from the
formula: n = k×m, where n is the sample size, k is the number of folds, and m the number
of observations in each fold or subset. For 70 patient cases, where n = 70, k = 5, and m = 14,
70 = 5 × 14, we see that 5-fold may be a reasonable choice for the fold numbers.

2.5. Survival Analysis Modeling under Dependent Censoring

The Kaplan–Meier estimator and the Cox proportional hazard model are typical
methods for survival analysis and feature selection [17]. These techniques manage censor-
ing under the presumption that overall survival time and censoring time are statistically
independent. Therefore, a copula-based approach [17] is employed to estimate the depen-
dence parameter by utilizing cross-validation to select significant genes or features for
survival prediction. The dependency between survival and censoring time is modeled by
copula functions.
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Considering the censoring scenario as presented in Table 2, we propose the copula
method (details are presented in Appendix B) for feature selection in survival analysis.
First, we identify the dependency parameter utilizing the survival data and the extracted
radiomics features matrix. In addition to imaging features, molecular features are also
included in the feature matrix. The significant (p-value < 0.05) features are then utilized to
make binary predictions regarding whether the patient has expired or is alive.

Table 2. Stratification of patients’ censored and expiration status.

Expired/Dead (Denoted as 1) Alive (Denoted as 0)

Non-Censored Patients (n = 45) 45 None

Censored/Lost Follow-up
Patients (n = 22) 9 13

2.6. Survival Prediction

Figure 2 illustrates the comprehensive pipeline for predicting overall survival (OS). The
objective is to predict the status of patients who have expired. Given that the copula-based
method is computationally demanding [33], we perform feature selection in two steps. In
the first step, we use our proposed algorithm (shown in Algorithm A1 in Appendix A).
Subsequently, based on the F1-score range (0.2–0.84), we initially select features with F1-
scores greater than 0.7. The number of selected features in the first step is 124 and 87 for
the non-fractal and fractal models, respectively. These initially selected features serve as
input for a second-step feature selection using the copula model, with the aim of iden-
tifying significant features (p-value < 0.05). These final selected features are associated
with patients’ OS probabilities. Additionally, we examine whether the inclusion of molec-
ular features (MGMT status, IDH status) is statistically significant in relation to patient
survival probability.
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3. Results
3.1. Predictive Performance of Rapid Early Progression (REP) Classification

The comparative performance of the two model configurations is illustrated in Table 3.
When we compare the performance of the fractal model to the non-fractal model, the
fractal model attains an AUC of 0.793, while the non-fractal model attains an AUC of 0.673.
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A significant difference (determined through ANOVA tests, p-value < 0.001) exists in terms
of accuracy, AUC, PPV, and FPR between the two model configurations, as presented
in Figure 3.

Table 3. Comparison between model configurations for 5-fold cross--validation over 1000 iterations
with subject independent random sampling for REP classification.

Model Configurations Area under
Curve (AUC) Accuracy (%) Positive Predictive

Value (PPV)
False Positive

Rate (FPR)

Non-Fractal Model 0.673 ± 0.082 63.5 ± 0.069 0.617 ± 0.067 0.262 ± 0.177

Fractal Model 0.793 ± 0.082 78.1 ± 0.071 0.761 ± 0.069 0.145 ± 0.107
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The statistically significant features (please refer to Table A1 in Appendix A) in the
non-fractal model are the eccentricity in the edema region, the second axis (y-axis) length
in the necrosis region and the autocorrelation of GTSDM from T1C, respectively. For our
statistical analysis, a p-value ≤ 0.05 is considered significant. We observe the significant
differences in the features between the two groups. For instance, the median and mean
value of the necrosis region for the REP group are higher than those of the non-REP.
A similar trend is also observed in the autocorrelation of GTSDM from T1C between the
two groups (please refer to Table A3 and Figure A2 in Appendix A).

For the fractal model, the statistically significant features (please refer to Table A2 in
Appendix A) are GmBm of the NGTDM of T1C, the strength of NGTDM from the 37th
direction of T1C, and the strength of NGTDM. We observe that the feature distribution is
not normal in each group. Therefore, the Wilcoxon–Mann–Whitney test is performed to
determine the significant difference (p-value < 0.05) in the feature distributions between the
two groups. In the fractal model, the significant selected features comprise texture features.
The median value of the selected features is higher in the non-REP group compared to the
REP group (please refer to Table A4 and Figure A3 in Appendix A).

3.2. Survival Probability Analysis under Dependent Censoring

First, we analyze the impact of dependent censoring on feature selection for survival
probability. For this purpose, we evaluate the significant (p-value < 0.05) features using the
Cox proportional hazard model with independent censoring (please refer to Table A5 in
Appendix B). The features selected with independent censoring are compared with those
selected with dependent censoring. Table 4 presents the significant features (p-value < 0.05)
obtained with dependent censoring using copula modeling. In the case of non-fractal
models, no significant features are selected when applying Cox modeling. To examine the
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effect of dependent censoring on feature selection, we compare the survival probability
curves utilizing the top two features in the fractal model. Since only two features are
selected with independent censoring, we proceed to analyze the survival marginal curves
with and without censoring dependency.

Table 4. Significant features using copula modeling (dependent censoring). The features are ordered
according to p-value.

Fractal Model Features

Features Name Co-Efficient p-Value

ET2 1 −1.58 0.0045

T1C_ptpsa_GLZSM_Low_Gray_Level_Zone_Emphasis 1.33 0.0110

L2_Orientation 2 0.74 0.0183

edema_FirstAxisLength 3 −0.91 0.0194

wt_MajorAxisLength 4 −0.93 0.0198

L1_Extent 2 0.76 0.0218

L3_Orientation 2 0.70 0.0261

T1C_mBm_GLZSM_LargeZoneLowGrayEmphasis 2.27 0.0316

nec_SecondAxis_1 5 −1.06 0.0355

T1C_ED_Histogram_Mean 6 1.09 0.0434

Non-Fractal Model Features

Features Name Co-Efficient p-Value

ET2 1 −1.58 0.0045

L2_Orientation 2 0.74 0.0183

edema_FirstAxisLength 3 −0.91 0.0194

wt_MajorAxisLength 4 −0.93 0.0198

L1_Extent 2 0.76 0.0218

L3_Orientation 2 0.70 0.0261

nec_SecondAxis_1 −1.06 0.0355

T1C_ED_Histogram_Mean 6 1.09 0.0434

ED_up_left_y * 0.83 0.0585

T1C_ED_Histogram_Skewness * −1.18 0.0718

* Features are not significant, only eight features are significant in non-fractal configurations. 1 Eccentricity of
whole tumor region; 2 L1, L2, L3 indicates x, y, z axis of whole tumor region; 3 major or first axis length from
edema region, 4 major or first axis length of whole tumor region, 5 second or y-axis length of necrotic region, and
6 histogram statistics of edema region with a T1C sequence.

For a patient case with feature vector x = (x1 ,x2, . . . ., xp)′, survival prediction is

analyzed using the PI defined as ˆβ(α)′x, where ˆβ(α)′ =
(

β̂1 (α),. . .., β̂p (α) [16,34]. If α = 0,

then PI = ˆβ(0)′x which is based on Cox modeling under independent censoring (α = 0).
Therefore, the PI for the fractal modeling with the cox model with two significant features
is the following.

PI (with independent censoring) = (5.46 × T1C_mBm_GLZSM_LargeZoneLowGrayEmphasis)
+ (2.46 × T1C_ptpsa_GLZSM_LargeZoneLowGrayEmphasis).

(1)
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However, considering dependent censoring (α = 18) and utilizing the copula modeling the
top two selected features as shown in Table 4 and the PI for the fractal model is the following:

PI (with dependent censoring) = (−1.58 × ET2) + (0.74 × L2_Orientation). (2)

Using the PI, we randomly divide the 67 patient cases into two groups of equal sample
size (n1 = 33, n2 = 34). Patients in the good(low-risk) prognostic group have low PIs, and
patients in the bad (high-risk) prognostic group have high PIs [16,17,35]. The two survival
curves are determined by the copula graphic (CG) estimator [36,37] with the Clayton copula
as presented in Figure 4. The difference between the two curves is calculated by the average
vertical difference [16,17,38]. The p-value is calculated between the two groups using
1000 permutation tests [16,17,39]. From Figure A5a, we observe that the vertical distance
(D = 0.128) between the two groups with independent censoring (α = 0), is not signifi-
cant (p-value = 0.1422). However, considering the dependent censoring in Figure A5b
(α = 18, c-index= 0.519), the distance (D = 0.185) between two prognostic groups is signifi-
cant (p-value = 0.0047).
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3.3. Binary Prediction of Survival

Through the analysis, we observe the effect of dependent censoring on feature selection
and survival probability (please refer to Figure A4 in Appendix B). Therefore, for binary
survival prediction, we utilize the features selected through copula modeling. Table 4
presents the significant (p-value < 0.05) features for the fractal and non-fractal models. For
the experimental analysis of the selected features, we consider the top three, five, seven,
and nine features for binary classification of survival (whether the patient is expired or not).
In the case of the fractal model, 10 features are significant for survival probability analysis
while for the non-fractal model, 8 features are significant as presented in Table 4. First, we
analyze the vertical distance between the good prognostic and bad prognostic groups with
3, 5, 7, 9, and 10 features (please refer to Table A6 in Appendix B). Subsequently, based on
the significance of the feature combinations, we compute binary predictions of survival.

Using the selected top three, five, seven, and nine features, we apply our proposed
algorithm (refer to Algorithm A2 in Appendix A) for binary prediction of survival. The
predictive results for 5-fold cross-validation with 1000 iterations are presented in Table 5.
In the case of binary survival prediction, we emphasize the precision of the models for
the selected number of features. Higher precision corresponds to a lower false positive
rate, as indicated in Table 5. Moreover, following the algorithm (refer to Algorithm A2 in
Appendix A), we consider balanced number of expired/dead (n = 25, randomly sampled
from 54 dead cases) and not dead (n = 13) cases in each iteration. It is observed (please
refer to Appendix B) that when utilizing seven features, both model configurations (fractal,
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non-fractal) achieve a higher PPV or precision. Therefore, the performance of the model
configurations is based on the top seven features. While comparing the fractal and non-
fractal model performance for binary survival prediction, a significant difference in the
area under the curve (AUC) is observed with a p-value of 0.005 from ANOVA analysis.
Furthermore, in terms of PPV (p-value < 0.01), accuracy (p-value < 0.001),and false positive
rate (p-value < 0.01), a significant difference exists between the performance of the fractal
and non-fractal models.

Table 5. Comparison across model configurations of mean test performance across 5-fold with 1000
iterations for binary prediction of patient survival (patient expired (dead) or not).

Number
of Features

Model
Configurations

Area under
Curve (AUC) Accuracy (%) Positive Predicted

Value (PPV)
False Positive

Rate (FPR)

Top 3 features
Non-Fractal Model 0.730 ± 0.235 74.018 ± 0.045 0.843 ± 0.054 0.351 ± 0.088

Fractal Model 0.659 ± 0.241 67.67 ± 0.040 0.817 ± 0.058 0.453 ± 0.088

Top 5 features
Non-Fractal Model 0.783 ± 0.199 73.22 ± 0.048 0.847 ± 0.057 0.356 ± 0.098

Fractal Model 0.658 ± 0.243 70.03 ± 0.048 0.811 ± 0.059 0.420 ± 0.090

Top 7 features
Non-Fractal Model 0.735 ± 0.219 73.05 ± 0.045 0.872 ± 0.054 0.339 ± 0.106

Fractal Model 0.762 ± 0.214 74.39 ± 0.046 0.881 ± 0.056 0.311 ± 0.109

Top 9 features
Non-Fractal Model 0.725 ± 0.224 71.00 ± 0.049 0.861 ± 0.059 0.378 ± 0.115

Fractal Model 0.719 ± 0.214 70.37 ± 0.048 0.844 ± 0.061 0.397 ± 0.107

In addition to radiomics features, we analyze the survival probability and binary
prediction of survival using molecular information (MGMT methylation status, IDH status).
Therefore, with the top seven selected features we include MGMT status and IDH mutation
status as additional features. In both the fractal and non-fractal models, the MGMT status
does not hold significance (p-value = 0.9651) under dependent censoring copula modeling.
However, the IDH mutation status is significant (p-value = 0.04). Consequently, we added
the IDH mutation status to the top seven features and computed model performance, as
presented in Table 6. With the inclusion of additional molecular features, the distance
between marginal survival curves remains almost the same. The vertical distance is
D = 0.171, with p-value = 0.0085, as depicted in Figure 5 for the fractal model. In the
non-fractal model, the vertical distance is D = 0.173, with p-value of 0.0084.

Table 6. Comparison across model configurations (top seven features with molecular status (IDH
mutation) of mean test performance across 5-fold with 1000 iterations for binary prediction of patient
survival (patient expired (dead) or not).

Model Configurations Area under Curve Accuracy (%) Positive Predictive
Value (PPV) False Positive Rate (FPR)

Non-Fractal Molecular 0.757 ± 0.214 72.36 ± 0.046 0.866 ± 0.058 0.354 ± 0.109

Fractal Molecular 0.762 ± 0.214 73.48 ± 0.047 0.883 ± 0.057 0.322 ± 0.114

For both the fractal-molecular and non-fractal-molecular models, there exists a signifi-
cant difference between the models in terms of accuracy, PPV and FPR. However, there is
no significant difference between the model configurations regarding AUC. The reason for
this could be illustrated in Figure 5, where the survival probability demonstrates almost
the same vertical distance and p-value for both models with the addition of the molecular
features to the seven radiomics features. Moreover, with inclusion of molecular features,
there is no increase in model performance in terms of PPV and FPR compared to model
configurations without molecular feature.
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3.4. Analysis of Prognostic Groups and Its Association with REP Status

Based on Table 4, it is observed that for the non-fractal model, a total of eight features
are found to be significant (p-value < 0.05), whereas for the fractal model, the number is 10.
To analyze the distribution of REP patients in prognostic (good or bad) groups, we consider
the top eight features in both the fractal and non-fractal models. As a result, the PI for the
fractal and non-fractal models are as follows:

PI (Fractal model)) = (−1.58 × ET2) + (1.33 × T1C_ptpsa_GLZSM_LGLZE) + (0.74 × L2_Orientation) +
(−0.91*edema_First_Axis_Length) + (−0.93 × wt_Major_Axis_Length) + (0.76 × L1_Extent) +

(0.70 × L3_Orientation) + (2.27 × T1C_mBm_GLZSM_LZLGE),
(3)

and

PI (Non-fractal model) = (−1.58 × ET2) + (0.74 × L2_Orientation) +
(−0.91 × edema_First_Axis_Length) + (−0.93 × wt_Major_Axis_Length) +
(0.76 × L1_Extent) + (0.70*L3_Orientation) + (−1.06 × nec_Second_Axis_1).

(4)

The PI is computed using the selected radiomics and multi-resolution fractal fea-
tures from radiation-planning MRI. The only difference between the PI of the fractal and
non-fractal models lies in the inclusion of multi-resolution fractal texture features in the
fractal models, in addition to conventional texture features. The sixty-seven patients are
divided into good prognostic and bad prognostic groups. Using a CG estimator, two
marginal survival curves are determined. In the fractal model, the distance between the
two marginal curves is D = 0.157 (p-value = 0.014), while in the non-fractal model, it is
D = 0.128 (p-value = 0.038).

Figure 6 displays the distribution of REP cases within the prognostic groups. The
scatter points depict the prognostic index for each patient. The darker point indicates the
mean PI within each group, while the bars represent the corresponding standard deviation.
For instance, in Figure 6a, within the scatter plot, the group labeled “c” corresponds to
the patients in the bad prognostic group, which also includes REP cases. As indicated by
Figure 6, we can observe that patients with a low prognostic index (PI)/lower risk are
placed in the good prognostic group while those with a higher PI/higher risk are placed
in the bad prognostic group. Furthermore, in the case of fractal model, based on the PI,
84.62% (11 out of 13 cases) of REP cases fall under the bad prognostic group, as depicted in
the matrix representation of Figure 6a. In the non-fractal model, 76.92% (10 out of 13 of
REP cases belong to the bad prognostic group, as presented in in the matrix representation
of Figure 6b.
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The percentage of REP cases in the bad prognostic group is higher for the fractal
model compared to the non-fractal model. Therefore, we have calculated whether there
exists a significant difference between groups in terms of survival time, as illustrated in
Table 7. In both groups, there is a significant (p-value < 0.05) difference in survival time.
Test of normality and the appropriate test (ANOVA/Wilcoxon–Mann–Whitney) have been
conducted between the two groups. From Table 7, the median number of survival days for
REP is 172 days, in contrast to the non-REP group’s 474.50 days, highlighting the significant
difference between their survival times. Moreover, within each prognostic group (good or
bad), there is also a significant difference in survival days between the groups. The median
survival days for the bad prognostic group is 329 days, which is significantly different from
the median survival days of 511 days for the good prognostic group.
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Table 7. Statistical analysis of Survival time (includes censoring time) in prognostic and REP groups
for the fractal model.

Group Name Number
of Cases Mean Standard

Deviation Standard Error Median Range p-Value

Bad Prognostic 34 420.382 335.353 57.513 329.00 48.00–1211.00
0.02

Good Prognostic 33 678.424 494.209 86.031 511.00 57.00–1821.00

Non-REP 54 604.259 441.961 60.143 474.50 48.00–1821.00
0.006

REP 13 311.615 340.626 94.472 172.00 57.00–1211.00

In addition, we have analyzed each individual significant feature of the fractal model
in relation to the REP status. For each individual feature, a test of normality, specifically the
Shapiro–Wilk test, has been performed, followed by an appropriate test (ANOVA/Wilcoxon–
Mann–Whitney) to determine the significance of each feature with respect to the REP status.
As depicted in Figure 7, it can be observed that two features from the fractal survival
probability exhibit a significant association (p-value < 0.05) with the REP status. Among
these two features, the fractal features belong to the top eight features of the fractal model.
Therefore, the higher percentage of REP cases in the fractal model can be associated with
the significance of this feature with the REP status. The multifractal feature from T1C is
significantly linked to the dependent censoring survival probability and REP status.
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4. Discussion

This study proposes the feasibilty of radiomics and sophisticated multi-resolutional
fractal texture features for prediction of REP status in GB patients from a radiation-planning
T1C sequence MRI. Two models (non-fractal and fractal) are constructed utilizing random
sampling 5-fold crossvalidation as presented in Table 3. The predictive performance of
the fractal model is an AUC of 0.793 ± 0.082, with an FPR of 0.145 ± 0.107, while that of
the non-fractal model is an AUC of 0.673 ± 0.082 with an FPR of 0.262 ± 0.177. There is a
significant difference (p-value < 0.001) between the fractal and the non-fractal models for
the prediction of REP status.

Furthermore, copula-based modeling for survival analysis of dependent censoring
has been obtained using survival time, censoring time, and radiomics features. For binary
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prediction of patient survival, the selected significant features (p-value < 0.05) from survival
analysis have been incorporated. The predictive precision performance for patient survival
in the fractal model is 0.881 ± 0.056, with an FPR of 0.311 ± 0.109, while that of the non-
fractal model is 0.872 ± 0.054, with an FPR of 0.339 ± 0.106. Moreover, the inclusion of
IDH mutation status in addition to radiomics features holds significance (p-value = 0.04)
for the survival probability analysis of patients.

Note a direct comparison of our proposed method with the existing literature may
not be feasible due to the differences in patient dataset and the analysis methods. The
methods in the existing literature primarily focus on describing REP and assessing its
impact on disease outcomes using pre-radiation MRI. Additionally, a limited number of
studies [4,35] have concentrated on determining the significance of radiation-planning
MRI for assessing pseudo-progression. Previous studies [7] investigated the intergration
of REP and MGMT status for the overall survival of patients. Patients with both REP
and unmethylated MGMT status exhibit a worse prognosis compared to non-REP and
methylated patients (10.2 months versus 16.5 months, p-value = 0.033).

In comparison to the existing literature on REP in pre-radiation MRI, our method
focuses on evaluating the diagnostic and prognostic ability of radiomics features in both
identifying REP in patients with glioblastoma, and predicting their survival outcomes
under dependent censoring. We first extract radiomics features from radiation-planning
T1C MRI and assess their ability to predict REP. Our analysis shows that the inclusion of
multi-resolution fractal features improves model performace significantly (p-value < 0.05)
when compared to the non-fractal feature model. We then carry out survival anlysis utlizing
copula-based modeling of the occurrence of dependent censoring. The CG estimator is used
to straify good and bad prognostic groups based on radiomics and multi-resolution fractal
feature-based PI. Median survival in days is higher for the good progostic group compared
to the poor prognostic group (511.0 versus 329.0; p-value = 0.02). Similarily, median sur-
vival is higher in the non-REP versus the REP group (474.5 versus 172.0; p-value 0.006).
Moreover, a fractal texture feature (T1C_mBm_GLZSM_LargeZoneLowGrayEmphasis)
is found significant (p-value < 0.05), along a with histogram mean (edema tumor region)
feature, for the stratification of prognostic groups as presented in Figure 7. As for incorpo-
rating molecular data, the inclusion of IDH mutation status with the radiomics features is
significantly associated with survival as shown in Figure 5. Despite this association being
reported in the literature [15,40,41], our analysis shows that MGMT promoter methylation
status is not associated with survival outcomes (p-value = 0.9651), similar to that in the
literature [8]. This may be explained by the fact that MGMT promoter methylation status is
missing in 14 patients.

Our findings are consistent with earlier research employing sophisticated imaging
features, including conventional shape, volumetric, histogram statistics, texture, and fractal-
based texture features, as well as radiogenomics, in brain tumor segmentation, classification,
survival prediction, and molecular mutation characterization [10,28,42]. Several studies
focus on the application of machine or deep learning models for survival predicition and
psudeoprogression prediction with radimics features extracted from structuralor advanced
MRI [10,43–46]. The inclusion of fractal-based features with conventional radiomics features
in the fractal model increases predictive performance significantly compared to using
only conventional radiomics features in the non-fractal model. The feasibility of using
fractal-based features is also observed in prognostic grouping using the CGestimator. The
percentage of REP cases is higher (84.62%, 11 out of 13) with fractal features-based PI
compared to non-fractal feature-based PI (76.92%, 10 out of 13). Futhermore, a multi-fractal-
based texture feature extracted from T1C is signifiant in prognostic grouping and REP
status stratification.

Limitations of our study include the indeterminate status of molecular markers for
some patients. The molecular marker of 1p/19q co-deletion status is diagnostic for oligo-
dendroglioma which is a different type of glioma, so it is not included in our analysis.
The indeterminate status of MGMT methylation and IDH mutation may also impact the
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analysis of these molecular markers. Moreover, the sample size of our study is rather small
and may restrict the generalizability of this study. Attempts have been made to address
these challenges. Random sampling with 5-fold cross-validation has been performed for
feature selection and model evaluation to balance the number of patient cases in each
iteration. In addition, only statistically significant features have been included in REP
classification and survival modeling. For survival analysis, copula modeling has been
utilized to circumvent the assumption of independent censoring.

Future studies with a larger sample size and MRIs from different institutions/scanners
are needed for improved generalizability of our model. Including additional sequences
(i.e, T2/FLAIR) in addition to T1C may improve REP modeling, both in pre-operative
and radiation-planning scans. The ability to predict who will develop rapid progression
and where spatially using pre-operative scans can provide valuable insights for guiding
surgical and radiation-planning decisions.

5. Conclusions

The most aggressive glioma in adults is GB, and REP is a negative prognostic factor.
Our study demonstrates that utilizing both conventional and sophisticated multi-resolution
fractal image features from the radiation-planning T1C MRI sequence provides a useful
tool for predicting REP in GB patients. Additionally, the copula-based feature selection
modeling and survival analysis under dependent censoring indicate the feasibility of fractal
and radiomics features for predicting REP in GB patients utilizing radiation-planning MRIs.

Author Contributions: Conceptualization: K.M.I., J.D.P., M.H., M.M.B. and W.F.; methodology:
K.M.I., W.F. and N.D.; software: W.F. and N.D.; validation: K.M.I., N.D., Z.A.S., M.M.B., M.H.
and J.D.P.; formal analysis: W.F., N.D. and K.M.I.; investigation: W.F., K.M.I. and N.D.; data cu-
ration: M.H., M.M.B., M.M.L., S.D., K.M.I. and W.F.; writing—original draft preparation: W.F.;
writing—review and editing: K.M.I., N.D., Z.A.S., M.H., M.M.B., M.M.L., J.D.P. and S.D.; visualiza-
tion: W.F.; supervision: K.M.I., N.D., M.M.B., J.D.P. and M.H.; project administration: K.M.I. and
M.M.L. All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge partial support for this work from National Institute of Health grant
#R01 EB020683.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Old Dominion University.

Informed Consent Statement: Informed consent was waved because this is a retrospective study.

Data Availability Statement: Data may be available subject to appropriate IRB approval.

Acknowledgments: The authors thank Jay Anderson, Amanda Magee and Ben Purugganan for their
assistance in patients’ data collection and administrative support. We extend our appreciation to
Megan A. Witherow for generously offering her expertise to review and edit this article.

Conflicts of Interest: The authors declared no conflict of interest.

Appendix A

The complete algorithm for the initial step of subject-independent random feature
selection is depicted in Algorithm A1.

The group DP presents the data frame of 13 patients (shown in Table 1) with their
REP class (indicated as 1) and DN denotes non-REP patients (presented as 0). Since there
is class size imbalance, a subsample of group DN (lines 4–5 in Algorithm A1) is selected,
repetitively under a bootstrap algorithm and compared with group DP. Using the bootstrap
algorithm [47], we repeatedly sample data from non-REP patients in each iteration to
create a data frame called D. This data frame is then saved during each iteration (lines
4–8 in Algorithm A1). We create resampled datasets D to build a sampling distribution of
prediction results along with their standard deviation.
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For each iteration i, 20 patients are randomly sampled from 57 non-REP cases. The
reason for selecting 20 samples is to have approximately 40–50% cases from the REP group
and the rest from the non-REP group in each ith iteration. Under each ith iteration, we
perform n-fold cross-validation (line 10 in Algorithm A1). Under each nth fold, there
is a feature matrix

{
Xj
}

j=1 to k, where k denotes 600 extracted features (lines 11–12 in
Algorithm A1). For each of the 600 features, we apply a decision tree (DT) classifier to the
training portion of data frame D. This classifier is then tested on the corresponding test
portion of D to obtain an F1-score (lines 12–17 in Algorithm A1). The F1-score represents
how well a feature performs in categorizing the positive (minority) data, making it an
important indicator when the underlying data distribution is unbalanced [48].

After completing total, I iterations, the average F1-score is computed for all 600 features
to establish their rankings (lines 19–21 in Algorithm A1). From our analysis, the range of
mean F1-scores for the 600 features is 0.0–0.74. The features that score greater or equal to 0.6
(threshold value) are chosen. The threshold value of 0.6 is chosen because it is close to 1.00,
which represents the highest F1-score and indicates better performance. There are seven
features after applying this threshold for the non-fractal and fractal models as presented in
Figure A1.

In the second step of our feature selection approach, the statistically significant
(p-value < 0.05) feature(s) among the selected seven features are depicted in Table A1
for the non-fractal model, and in Table A2 for the fractal model. Finally, there are three
features that are statistically significant for the fractal and non-fractal models. A detailed
statistical analysis of the selected features is presented below.

Algorithm A1: Subject Independent random sampling with i iteration for feature ranking.

1: Input: total iteration number I, number of folds n, Radiomics feature data frame D, data frame with REP status Dp, data frame
with non-REP status DN
2: Define SN as 20 patients randomly sampled from 57 non-REP DN in each iteration i, Sp 13 patients with REP status in each
iteration i
3: Define Y as target class vector and

{
Xj

}
j=1 to k the feature matrix in the data frame D, k is number of total features.

4: for iteration I = 1 to I do
5: Initialize SN
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DN, randomly sample 20 patients from 57 non-REP patients.
6: Initialize SP = DP
7: Initialize D = {DN, DP}
8: Save D after each ith iteration
9: within D split the target variable vector y and feature variable matrix as

{
Xj

}
j=1 to k

10: for fold = 1 to n do
11: enumerate train and test indices for nth-fold in

{
Xj

}
j=1 to k and y

12: for j = 1 to k do
13: fit a DTon the train indices of

{
Xj

}
14: predict ŷ on the test indices of

{
Xj

}
15: calculate F1-score based on true y and predicted ŷ of the test indices of

{
Xj

}
16: assign the score as the feature score of each

{
Xj

}
17: end for
18: end for
19: Output: Cumulative F1-score after n-fold cross-validation
20: end for
21: Output: Ranked features based on cumulative score after I iterations

Appendix A.1. Model Building Algorithm

The model for REP prediction follows the n-fold cross--validation with total I iterations
as illustrated in Algorithm A2. The selected features (XS in Algorithm A2) for each of the
non-fractal and fractal models are used to evaluate the respective model performance. The
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model performance evaluation metric P denotes the accuracy, AUC, PPV and FPR while R
denotes the ranking score of features.

In each of the i iterations, dataset D (as shown in Algorithm A2, line 4) is initialized through
random sampling, following the process described in Algorithm A1. The feature matrix XS and
the target vector y are set up using the data from dataset D (Algorithm A2, line 5).

In the ith iteration, a n-fold cross-validation (with n = 5) is carried out (Algorithm A2,
lines 6–12). The training fold involves fitting the classifier C (implemented as a CatBoost
model in Python 3.7) and subsequently testing it on the corresponding testing fold across
the five folds (Algorithm A2, lines 8–9).

Following the n-fold cross-validation, the average value of the performance metric
P is computed (Algorithm A2, line 12). Finally, the mean and standard deviations of the
performance metrics after I iterations are calculated. (Algorithm A2, lines 13–14).

Algorithm A2: Subject independent n-fold cross-validation with i iteration for model evaluation.

1: Input: D after each i iterations, ranking score R for each feature in matrix
{

Xj

}
j=1 to k

2: Define {XS} selected feature matrix based on R which is a subset of
{

Xj

}
j=1 to k, Classification

model C, Model performance evaluation metrics P
3: for iteration = 1 to I do
4: Initialize D = {DN, DP}
5: Initialize {XS} based on R and target vector y from D
6: for fold = 1 to n do
7: enumerate train and test index for n-fold in {XS} and y
8: fit classifier model C to the train index of {XS} and y
9: evaluate C on the test index of {XS}
10: Save P after each n
11: end for
12: Output: Cumulative P after n fold
13: end for
14: Output: Mean values of P after I iterations
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Table A1. The final three significant selected features in the non-fractal model for REP prediction.

Original Extracted Features for Non-Fractal Model Significant (p-Value < 0.05)
Features from Second-Step Feature Selection (Rank Score)

41 texture features extracted from raw T1C • Autocorrelation GTSDM from T1C (0.677)

12 volumetric features None

9 area-related features
• Eccentricity in edema region (0.654)
• Second axis (y-axis) length in necrosis region (0.744)

6 histogram statistics None

Table A2. The final three significant selected features in the fractal model for REP prediction.

Original Extracted Features for Fractal Model Significant (p-Value < 0.05)
Features from Second-Step Feature Selection (Rank Score)

41 texture features extracted from PTPSA, mBm
and GmBm of T1C (fractal features)

• GmBm of T1C (0.744)

41 texture features extracted from raw T1C • Strength of NGTDM from 37th direction on basis of T1C image size (0.642)
• Strength of NGTDM from raw T1C (0.648)

12 volumetric features None

9 area-related features None

6 histogram statistics None

Appendix A.2. Detailed Statistical Analysis of Selected Features

To identify the significant difference in features between REP and non-REP groups, we
first observe the distribution of features within each group. The Shapiro–Wilk test is performed
to analyze the underlying distribution of each feature vector. In the case of eccentricity in
edema region the distribution is not normal. Therefore, the Wilcoxon–Mann–Whitney test is
performed. However, for the other two features, the distribution is normal and ANOVA tests
are performed. For statistical analysis, a p-value ≤ 0.05 is considered significant.

In the fractal model, the significant selected features are texture features. The median
value of the selected features is higher in the non-REP group compared to the REP group
as shown in Table A4 and Figure A3. In Figure A3, GmBm is represented as the holder
exponent (HE) as discussed in Section 2.3.3.

Table A3. Descriptive statistics of selected features in the non-fractal model.

Non-REP (n = 57) REP (n = 13) p-Value

Eccentricity in edema region 0.0446

Mean (±std) 0.8320 ± 0.1771 0.7779 ± 0.1184

Standard error 0.0235 0.0328

Median 0.8922 0.8109

Second axis (y-axis) length
in necrosis region 0.0116

Mean (±std) 0.5445 ± 0.1995 0.7072 ± 0.2239

Standard error 0.0264 0.0621

Median 0.5597 0.8085

Autocorrelation of GTSDM from T1C 0.0262

Mean (±std) 0.3731 ± 0.2125 0.5137 ± 0.1381
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Table A3. Cont.

Non-REP (n = 57) REP (n = 13) p-Value

Standard error 0.0281 0.0383

Median 0.3522 0.4984
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Figure A3. Column (a) presents density distributions of the three selected features for REP (1) and
non-REP (0) in the fractal model; column (b) represents the feature distributions in discriminating
REP status.

Table A4. Descriptive statistics of selected features in the fractal model.

Non-REP (n = 57) REP (n = 13) p-Value

GmBm * of T1C 0.0296

Mean (±std) 0.3587 ± 0.2012 0.2372 ± 0.1272

Standard error 0.0267 0.0353
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Table A4. Cont.

Non-REP (n = 57) REP (n = 13) p-Value

Median 0.3325 0.1918

Strength of NGTDM from 37th
direction of T1C 0.0019

Mean (±std) 1.9390 ± 0.5780 0.8260 ± 0.4864

Standard error 0.0415 0.1349

Median 1.2292 0.6970

Strength of NGTDM 0.0013

Mean (±std) 0.1224 ± 0.0665 0.0389 ± 0.0299

Standard error 0.0221 0.0083

Median 0.0752 0.0252
* GmBm: generalized multi-resolution Brownian motion.

Appendix B

Considering random variables, if T is the survival time and U is the censoring time
and Xi = (Xi1, Xi2,. . ., Xip) are the p vectors of features for each patient [16], the response or
the target is (ti, δi, Xi) where ti = min{T, U} and δi = I {Ti ≤ Ui}, where I {.} is the indicator
function which indicates whether the time is survival time or censoring time. The univariate
cox hazard model [49] is represented as,

h
(
t
∣∣xij ) = ho(t)eβij xij , j = 1, 2, . . . . . . p, (A1)

where p indicates the number of predictors. The estimator β̂ j is used to obtain the p-value
from the Wald test under the null hypothesis Hoj : Bj = 0. The features or genes that are
selected have p-values under a certain threshold level of significance. The estimator β̂ j can
correctly estimate β j if the independence assumption is satisfied [34].

A copula model for dependent censoring [35] is presented as,

Pr(T > t, U > u) = Ca(ST (t), SU(u)), (A2)

where Ca is a bivariate copula function and ST (t) = Pr(T > t) and SU(u) = Pr(U > u)
indicate marginal survival. Under the independence assumption, α = 0 which leads to
Cα (u, v) = uv [35]. The resultant p-values are the same as univariate cox model p-values.
Equation (2) under the independence assumption can be written as the following:

Pr(T > t, U > u) = Pr(T > t)Pr(U > u). (A3)

However, there are bivariate copula functions that may be considered for potential
correlation between the censoring and the survival times. We select the Clayton copula
because of its mathematical simplicity [16]. It is suitable for statistical analysis because of
the positive dependence structure property and captured by parameter alpha (α) described
in Equation (A2). Moreover, the Clayton copula may be particularly applicable in cancer
survival because it concentrates on the reliance in the lower tail of the bivariate density
function, which represents the prevalent circumstance in which a rapid time to progression
leads to a rapid time to death [50].

Under dependence censoring [35], the Clayton copula Cα (u, v) can be represented as
the following,

Cα(u, v)= (u−α + v−α − 1)−
1
α , α > 0. (A4)

The parameter α depicts the degree of dependence [17] and can be converted to
Kendall’s tau (τ). Under the Clayton copula, τ = α/(α + 2). Under this assumption, all the
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observed times are unique (ti 6= tj ,where i 6= j) among patients. The number of patients
at-risk at time ti, ni = ∑n

l=1 I(tl ≥ ti), under Clayton copula, has the graphic estimator [35],
which is presented as,

ŜT(t) = [ 1 + ∑
ti≤t,δi=1

{( ni − 1
n

) −α

− (
ni
n
)
−α
} ]
−1/α

, (A5)

The CGestimator is equivalent to the Kaplan–Meier estimator under the independence
copula [16]. Given survival data

{(
ti, δi, xij

)
; i = 1, . . . , n

}
for j-th feature (j = 1, 2,. . . p), the

data are modeled using the following copula equation.

Pr
(
T > t, U > u

∣∣xj
)
= Cα

{
Pr
(
T > t

∣∣xj
)
, Pr
(
U > u

∣∣xj
)}

, (A6)

where Pr
(
T > t

∣∣xj ) = exp
{
−∧0j (t) exp

(
β jxj )}, Pr

(
U > u

∣∣xj ) = exp
{
−Γoj(u)exp

(
Yjxj )},

and the same copula Cα is used for every j. Here, β j, Yj, β j = (βoj,β1j,. . .., βpj
)
; are the re-

gression co-efficients and ∧0j, Γoj are the cumulative baseline hazard functions which are
unspecified [16]. For α, the semiparametric maximum likelihood estimator (β̂ j(α), Ŷj(α),
∧̂oj(α), Γ̂oj(α)) determined using the dependCox.reg() function in R [17]. Harrell’s concor-
dance c-index [51,52] is a robust predictive measure to calculate α. Therefore, α is selected
by maximizing the cross-validated c-index. The c-index is a measure of concordance be-

tween the outcome or target (ti , δi) and the predictors ∑j∈Ω
ˆ

β
(−i)
j (α)xj. For a given xj, the

bivariate survival function [16] is the following:

Pr
(
T > t, U > u

∣∣xj
)
= φβ(−j),Y(−j)

[
φ−1

β(−j)

{
Pr
(
T > t

∣∣xj
)}

, φ−1
Y(−j)

{
Pr
(
U > u

∣∣xj
)}]

, (A7)

where φβ(−j),Y(−j)(u, v) = E{exp(−uXj − vYj)|xj}, φβ(−j)(u) = φβ(−j),Y(−j)(u, 0), and
φY(−j)(v) = φβ(−j),Y(−j)(0, v) are Laplace transforms. For β = γ, Equation (A7) is called
the Archimedean copula model and is represented as follows to model the survival model
under censoring:

Pr
(
T > t, U > u

∣∣xj
)
= φβ(−j)

[
φ−1

β(−j)

{
Pr
(
T > t

∣∣xj
)}

+ φ−1
β(−j)

{
Pr
(
U > u

∣∣xj
)}]

. (A8)

The dependency between T and U for a given xj, is described as in Equation (A6)
under Sklar’s theorem [16,53]. The copula reduces the restrictive independent condition of
Cα (u, v) = uv. Using dependCox.reg.CV( ) [34], we determine β̂1(α̂),. . ., β̂p(α̂).
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Table A5. Significant features using cox proportional hazard model (independent censoring).

Features Name Coefficient p-Value

T1C_mBm_GLZSM_LargeZoneLowGrayEmphasis 1 5.46 0.002

T1C_ptpsa_GLZSM_LargeZoneLowGrayEmphasis 2 2.46 0.038
1 Multi-resolution Brownian motion (mBm); gray level size zone matrix (GLZSM) of a T1C MRI sequence.
2 Piecewise triangular prism surface area (ptpsa) of a T1C MRI sequence.

From Table A5, we observe the two selected features by the Cox model under independent
censoring assumptions. Both features refer to fractal texture features extracted from MRI.

Table A6. The average vertical difference between the two survival curves is based on the top 3,
5, 7, 9, and 10 features for the fractal and non-fractal models. The p-value is calculated from the
permutation test of randomly splitting the total samples into equal portions.

Fractal Model Non-Fractal Model

Feature Numbers Difference in Survival
Curves (p-Value *)

Difference in Survival
Curves (p-Value *)

3 0.261 (0.0001) 0.198 (0.003)

5 0.168 (0.010) 0.161 (0.013)

7 0.169 (0.009) 0.173 (0.007)

9 0.183 (0.004) 0.128 (0.039)

10 0.169 (0.008) 0.127 (0.04)
* Smaller p-value indicates better separation between survival curves.
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