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Simple Summary: Immune system counteracts tumor growth through a coordinated action of
several innate and adaptative cells able to detect and eliminate altered cells. Among immune cells
able to kill tumor cells, Natural killer (NK) cells belong to the innate arm of the immune system
and distinguish cancerous from healthy cells thank to the expression of a wide array of activating
and inhibitory receptors. DNAM-1 is an activating receptor that binds PVR and Nectin2 adhesion
molecules frequently overexpressed on the surface of cancerous cells, thus representing a central
receptor in tumor recognition. However, PVR and Nectin2 are also recognized by inhibitory receptors
that are upregulated in tumor microenvironment and can counteract DNAM-1 activation, leading
to NK cells hypo-functionality. This review focuses on the main potential molecular mechanisms
responsible for the impairment of DNAM-1 functionality during tumor progression. Moreover,
therapeutic approaches able to reverse DNAM-1 dysfunction and NK cell hypo-responsiveness will
be also summarized.

Abstract: NK cells play a pivotal role in anti-cancer immune responses, thanks to the expression of
a wide array of inhibitory and activating receptors that regulate their cytotoxicity against transformed
cells while preserving healthy cells from lysis. However, NK cells exhibit severe dysfunction in the
tumor microenvironment, mainly due to the reduction of activating receptors and the induction or
increased expression of inhibitory checkpoint receptors. An activating receptor that plays a central
role in tumor recognition is the DNAM-1 receptor. It recognizes PVR and Nectin2 adhesion molecules,
which are frequently overexpressed on the surface of cancerous cells. These ligands are also able
to trigger inhibitory signals via immune checkpoint receptors that are upregulated in the tumor
microenvironment and can counteract DNAM-1 activation. Among them, TIGIT has recently gained
significant attention, since its targeting results in improved anti-tumor immune responses. This review
aims to summarize how the recognition of PVR and Nectin2 by paired co-stimulatory/inhibitory
receptors regulates NK cell-mediated clearance of transformed cells. Therapeutic approaches with
the potential to reverse DNAM-1 dysfunction in the tumor microenvironment will be also discussed.

Keywords: NK cell immune surveillance; DNAM-1 activating receptor; DNAM-1 dysfunction;
tumor microenvironment

1. Introduction

Together with cytotoxic CD8+ T lymphocytes (CTL), Natural Killer (NK) cells exert
a fundamental role against cancer development thanks to their ability to specifically induce
lysis of transformed cells [1–3]. However, NK cells are innate lymphocytes that do not
express an antigen-specific T cell receptor and have been recently classified as innate
lymphoid cells (ILCs), which include five prototypical subsets that parallel the functions of
CTL and CD4+ helper T cells [4]. Based on their functional properties and developmental
trajectories, NK cells belong to group 1 ILCs together with ILC1: NK cells and ILC1 share
the ability to produce Interferon (IFN)-γ, as well as the expression of the transcription factor
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T-bet [3,4]. Unlike the tissue-resident ILC1, NK cells are circulating cells that, in addition
to cytokine production, also exert a cytotoxic function. Indeed, they release the content of
preformed cytoplasmic granules against target cells, thus inducing perforin and granzyme
B-mediated apoptosis of virus-infected and transformed cells [1,2].

In humans, peripheral blood NK cells are characterized by the surface expression
of CD56 and the low-affinity FcγRIIIA receptor (CD16), and are classically split into two
subsets: CD56brightCD16− that produce high amounts of IFN-γ, and CD56dimCD16+ that
are more cytotoxic [1,4].

NK cells activation is finely modulated by the integration of inhibitory and activating
receptors [3,4]. Among activating receptors, Natural-Killer receptor group 2, member
D (NKG2D), Natural cytotoxicity receptors (NCRs) and DNAX-associated molecule-1
(DNAM-1 or CD226) are mainly involved in tumor immune surveillance, since they bind
self-proteins that are normally absent or poorly expressed on healthy cells and up-regulated
upon tumor transformation. Their peculiarity is the ability to bind more than one ligand:
NKG2D ligands include MHC-I related proteins, MICA/B and ULBP1-6 proteins in hu-
mans, and Rae-1α-ε, MULT1 and H60a-c in mice [5,6]; DNAM-1 ligands consist of two
adhesion molecules, CD155 (PVR/Necl5) and CD112 (PVRL2/Nectin-2) [7,8]; NCR ligands
include transmembrane, nuclear or soluble self-proteins as well as molecules derived from
pathogens [9].

The main inhibitory signal for NK cells is provided by Major Histocompatibility
Complex (MHC)-class I molecules. Receptors for these molecules include Ly49 receptors in
mice or the Killer-cell immunoglobulin-like receptor (KIRs) in humans and CD94/NKG2A
heterodimers. KIR and Ly49 receptors bind classical MHC-I molecules while CD94/NKG2A
recognize human HLA-E and mouse Qa1. Upon ligand binding, these receptors trigger
negative signals that prevent NK cell responses against healthy cells [10,11].

Down-regulation of MHC-I molecules (the missing self mechanism) and/or up-
regulation of ligands for activating receptors (the induced self mechanism) frequently
occurs in neoplastic cells, leading to the recognition and killing of target cells and the
release of pro-inflammatory cytokines including IFN-γ and TNF-α [3,4,10]. In addition,
CD16 binding to the Fc region of IgG results in perforin-mediated lysis of immunoglobulin-
opsonized target cells through a mechanism named antibody-dependent cellular cytotoxic-
ity (ADCC) [1,4]. Thus, NK cell infiltration in cancer is a generally favorable prognostic
factor. However, it is likely that soluble factors present in the tumor microenvironment,
including TGF-β, Indolemine-2,3-dioxygenase (IDO) and prostaglandin E2, or hypoxic
conditions shape NK cell phenotype and functions. Indeed, tumor infiltrating NK cells can,
in some cases, show pro-tumoral activity, characterized by decreased proinflammatory and
cytolytic functions and the production of the pro-angiogenic factor VEGF [12].

Moreover, during tumor growth, NK cells progressively acquire a dysfunctional phe-
notype characterized by the down-regulation of activating receptors and the up-regulation
of inhibitory receptors, which shift the balance toward suppressive signals and promote
NK cell functional exhaustion [13]. Of note, on chronically activated NK cells, additional
inhibitory receptors called immune checkpoint receptors can be up-regulated. They con-
tribute to the acquisition of a dysfunctional phenotype and include not only programmed
cell death protein-1 (PD-1), which is highly expressed on a subset of circulating NK cells [14],
but also lymphocyte activation gene 3 (LAG3); T cell immunoglobulin- and mucin-domain-
containing molecule 3 (TIM-3); T cell immunoreceptor with Ig and ITIM domains (TIGIT);
and T cell-activated increased late expression (Tactile or CD96) [15].

Several features characterize NK cell dysfunction in the tumor microenvironment.
NK cells decrease the expression of granzyme B and perforin as well as that of ligands
for death receptors, including FasL and TRAIL. They also produce lower amounts of
cytokines [16–19]. Adoptive transfer experiments in mice demonstrated that the NK cell
dysfunctional phenotype is specifically induced through contact with transformed cells in
the tumor microenvironment [20]. Conversely, the expression of activating receptors on the
surface of NK cells is restored in patients who undergo remission [16].
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A pivotal role in NK cell tumor immune surveillance is played by the DNAM-
1/TIGIT/CD96/CD112R axis, a set of immunoglobulin immune receptors. This axis is
characterized by the DNAM-1 activating receptor and the inhibitory receptors TIGIT, CD96
and CD112R, which share the ligands PVR and Nectin2 with DNAM-1, thus counteracting
its positive action (Figure 1) [21,22].
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and CD112R and Nectin2.

In particular, DNAM-1 and TIGIT bind PVR and Nectin2 while CD96 recognizes PVR.
Of note, both inhibitory receptors show a higher affinity than DNAM-1 for the common
ligand PVR [23,24]. Moreover, the recent identification of PVRIG (CD112R), an inhibitory
receptor for Nectin2, has introduced an additional level of complexity [25].

On NK cells, DNAM-1 recognition of its ligands initiates an activation signal that
leads to the release of cytotoxic granules and the production of pro-inflammatory cy-
tokines [26,27]. On CTL, DNAM-1 co-stimulates TCR activation, and its expression charac-
terizes a more active subset compared with DNAM-1 negative/low T cells [28,29]. However,
even though PVR and Nectin2 overexpression represents a danger signal that renders tu-
mor cells susceptible to cytotoxic cell-mediated lysis, several mechanisms—including the
increased expression of inhibitory receptors for these ligands—hamper DNAM-1 activation
in advanced tumor stages [22].

This review recapitulates how NK cell function is regulated by the DNAM-1 recep-
tor and its inhibitory counterparts, summarizing the therapeutic approaches that can be
exploited to shift this receptor axis towards DNAM-1-mediated NK cell activation.

2. DNAM-1 Role in NK Cell Biology

DNAM-1 was originally described as a T-cell lineage-specific antigen (TLiSA-1), a spe-
cific marker of the differentiation of cytotoxic T cells [30]. Its role in the adhesion and
cytotoxic function of NK and CTL was demonstrated years later by employing a specific
monoclonal blocking antibody [31].

DNAM-1 is constitutively expressed on T and B lymphocytes and monocytes, and is
a member of the immunoglobulin (Ig) superfamily, containing two Ig-like domains in its
extracellular portion [21].
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On cytotoxic lymphocytes, the interaction between DNAM-1 and its ligands promotes
an activating signal that depends on its physical association with the integrin lymphocyte
function-associated antigen 1 (LFA-1) [32]. DNAM-1 aggregation results in the protein-
kinase C (PKC)-dependent phosphorylation of a serine residue on its cytoplasmic domain.
This phosphorylation promotes the association with LFA-1 and the activation of the Fyn
tyrosine-protein kinase that, in turn, phosphorylates a tyrosine residue in DNAM-1 cy-
toplasmic tail, thus initiating signal transduction [32–35]. Additional biochemical events
triggered by DNAM-1 crosslinking have been described in mice, and a critical role for
the cytoplasmic ITT domain has been envisaged [35]. Once phosphorylated, this motif
associates with the adaptor Grb2 allowing the activation of Vav1, phosphatidylinositol
3′-kinase (PI3K) and phospholipase C-γ1. The same cytoplasmic domain is responsible
for the activation of ERK1/2 and Akt serin/threonine kinases. All together, these molec-
ular pathways promote actin reorganization that is required for both cytotoxic granule
polarization and cytokine production.

However, on human NK cells, the simultaneous co-engagement of at least two acti-
vating receptors is required to induce cytotoxicity and IFN-γ production. In particular,
DNAM-1 co-aggregation with 2B4 or NKp46 is necessary for the intracellular Ca2+ mobiliza-
tion required for the initiation of the NK cell functional program [36]. The co-engagement of
DNAM-1 with 2B4 enhances the tyrosine phosphorylation of adaptor molecule SLP-76 and
the activation of exchange factor Vav-1, which overcomes signals by inhibitory receptors
and triggers cytotoxicity [37].

DNAM-1 role in NK cell biology is not restricted to the activation of cytotoxic function
but also involves maturation and education. NK cell maturation occurs in bone marrow,
both in humans and in mice, from common lymphoid precursors that, through different
intermediate stages, reach the optimal functional status before their egress from bone
marrow and migration into the periphery [38,39]. During this process they undergo
education, a process during which, through the recognition of self MHC-I molecules via
their specific inhibitory receptors, NK cells acquire the ability to tolerate healthy cells [40].
The subset of NK cells that do not express inhibitory MHC-I-specific receptors are called
uneducated and become hypo-responsive. Educated NK cells also acquire the ability
to “sense” a decreased expression of the same MHC-I on infected or transformed cells,
triggering cytotoxicity [10,40].

DNAM-1 is expressed early during murine NK cell maturation and its expression
correlates with the NK cell’s ability to perform missing self recognition [41]. However,
results obtained using a DNAM-1-deficient mouse model show that DNAM-1 presence is
not required to induce education. Indeed, mature NK cells have the same ability to lyse
MHC-I-deficient tumor cells as wild type mice [42]. DNAM-1 is present in about 50% of
mature murine NK cells. Its presence alters NK cells ability to release cytokines and increases
their proliferative potential. In particular, DNAM-1− cells display reduced pro-inflammatory
cytokine production, but higher chemokine secretion compared to DNAM-1+ cells [42].

On human NK cells, DNAM-1 expression is higher in educated compared to uneducated
NK cells and correlates with the number of inhibitory receptors and the amount of cytolytic
potential [43]. Upon target recognition, DNAM-1 facilitates the localization of the active form
of LFA-1 integrin at the immunological synapse, promoting target cell killing [43].

Another important feature of NK cell biology is the ability of cytomegalovirus (CMV)-
specific NK cells to expand in response to CMV infection. These NK cells are characterized
by the expression of NKG2C receptor in humans and Ly49H in mice, and show some
adaptative and memory-like phenotype in case of reinfection [44]. By using an anti-DNAM-
1 blocking antibody and DNAM-1-deficient mice, a pivotal role for DNAM-1 expression in
the expansion of CMV-positive cells was demonstrated [45]. Of note, the expansion of this
subset upon transplantation into leukemic patients correlates with better prognoses and
suggests a potential role for memory-like NK cells in anti-tumor responses [44]. However,
whether DNAM-1 may contribute to the expansion or effector functions of this particular
NK cell subset in tumors is still unknown.
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3. DNAM-1 and Its Ligands: Regulation and Function in the Tumor Microenvironment

The two known ligands for DNAM-1, PVR and Nectin-2, are Ig-like transmembrane
proteins involved in cell adhesion via homophilic and heterophilic interactions between
nectin family members and/or components of the extracellular matrix (ECM) [7,8,46].

Although DNAM-1 interacts with both purified ligands with a comparable affinity
in vitro, the strength of the interaction of DNAM-1 with membrane-bound PVR is higher
compared to Nectin2 (Figure 1). Thus, PVR is considered the main ligand for DNAM-1 [8].

PVR and Nectin2 are poorly expressed on healthy cells and are restricted to a few cell
types including spinal cord motor neurons, endothelial cells and some immune cells [47,48].
On antigen presenting cells (APC), the expression of DNAM-1 ligands can be induced by
Toll-like receptor signaling through the activation of the NF-κB transcription factor [49,50].
This up-regulation promotes APC interaction with NK cells, thus regulating their matura-
tion and polarization [49,51].

On tumor cells, several different molecular pathways are implicated in the tran-
scriptional upregulation of DNAM-1 ligands, including DNA Damage Response (DDR)
pathways, Sonic-Hedgehog signaling pathway, cytokine production and Fibroblast Growth
Factor receptor stimulation [52–57].

Once transcribed, human PVR mRNA can be processed in different spliced variants,
raising in four proteins that share the same extracellular domains: two soluble β and γ
isoforms that are released in extracellular milieu, and two transmembrane α and δ isoforms
that possess distinct cytoplasmic domains [58,59]. The expression of α and δ isoforms on
the membrane of tumor cells may impact PVR function, since only α isoform can transduce
intracellular signals thanks to the presence of an ITIM motif in its cytoplasmic domain. The
ITIM confers to PVR the ability to trigger the activation of different signaling pathways
leading to cell proliferation, inhibition of adhesion and the induction of cell migration,
representing an intrinsic advantage for tumor growth and spread [60–62].

High expression of PVR and Nectin2 has been demonstrated on the surface of different
solid and hematological human cancers [63–72], which become more sensitive to NK
cell-mediated killing in vitro [63–70] and in vivo [67].

Several in vivo lines of evidence highlight the crucial role of DNAM-1 in tumor
immune surveillance. Transplanted murine lymphoma cells were rejected more efficiently
when transfected with PVR or Nectin2 [73]. In a genetic model of spontaneous B-cell
leukemia, the activation of the DNA damage response during the early stages of tumor
progression is responsible for the expression of PVR that, in turn, is sufficient to activate T
and NK cell-mediated tumor regression [74]. Accordingly, DNAM-1-deficient mice showed
increased tumor development and mortality after transplantation with tumors that express
PVR, due to a reduction in the ability of NK and cytotoxic T cells to recognize and kill
tumor cells [75]. These mice also reject chemically-induced cancers less efficiently than
wild-type mice.

DNAM-1 role in tumor clearance appears to be particularly important for tumors
that do not express other ligands for activating NK cell receptors (for example NKG2D),
suggesting that the DNAM-1/DNAM-1 ligand axis extends NK cells capability to eliminate
tumor cells [76].

In addition, DNAM-1-deficient mice are more susceptible than wild-type mice to the
development of melanoma lung metastases as well as chemically-induced fibrosarcoma [24].
Moreover, in genetic models of spontaneous Multiple Myeloma (MM) development, a lack
of DNAM-1 resulted in faster tumor progression and an impaired response to therapy with
immune checkpoint blocking antibodies [77].

All together, these data demonstrate that DNAM-1 limits tumor development and
progression in vivo.

However, several mechanisms may be responsible for the dysregulation of DNAM-1
activation in advanced tumor stages and will be discussed in the following subsections
and paragraphs.
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3.1. Ligand-Induced DNAM-1 Internalization Results in Impaired NK Cell Effector Functions

Upregulated NK cell receptor ligands on the surface of transformed cells may have
paradoxical immune suppressive consequences. Indeed, several activating receptors are
down-modulated upon a chronic engagement by their respective ligands expressed on
tumor cells. The most striking example is given by NKG2D that is internalized and de-
graded in lysosomes upon sustained engagement both in human and murine NK cells [78].
Receptor down-modulation was also observed in NCRs in patients affected by myeloid
leukemia, ovarian carcinoma and neuroblastoma [79–83].

Regarding DNAM-1, a reduction of its surface expression has been observed in NK
cells from peritoneal effusions of ovarian carcinoma patients compared to their circulating
counterparts [84]. This down-modulation is probably due to sustained interaction with PVR
expressed on the surface of ovarian carcinoma cells, since co-incubation of peripheral blood
NK cells with tumor cells reproduces DNAM-1 down-modulation [84]. In patients affected
by different solid tumors, DNAM-1 down-modulation correlates with the activation of KIR
receptor expression and impacts disease outcomes [85,86].

Moreover, compared to healthy donors, circulating NK cells derived from leukemic
patients show reduced DNAM-1 expression that is likely induced by the interaction with
its ligands [68,87,88].

Accordingly, in murine models of lung and breast cancer, increased expression levels
of PVR on tumor cells is responsible for DNAM-1 down-modulation on both NK and T
cells and correlates with tumor metastasization [57,89]. Mechanistically, in CTL, it has been
formally demonstrated that upon PVR binding, DNAM-1 undergoes tyrosine phospho-
rylation in its cytoplasmic tail that promotes its ubiquitin-dependent internalization and
proteasomal degradation [89]. It is likely that a similar mechanism is also operating on
human NK cells, suggesting that DNAM-1 internalization may represent a mechanism
responsible for NK cell dysfunction during tumor progression (Figure 2A).
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engagement of DNAM-1 with its ligands promotes receptor internalization and impairs DNAM-1-
mediated functions. (B) Post-translational modifications are responsible for PVR and Nectin2 intracellular
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retention and/or degradation, thus preventing tumor cell recognition by NK cells. Soluble PVR iso-
forms can bind DNAM-1, interfering with recognition of membrane-bound ligands. (C) In advanced
tumor stages, the up-regulation of checkpoint receptors competing with DNAM-1 for ligand binding
hampers DNAM-1 anti-tumor functions. (D) PD-1 engagement is followed by dephosphorylation of
DNAM-1 intracellular domains preventing signal transduction. NKG2D chronic engagement by
tumor cells directly interferes with DNAM-1-triggered signaling and indirectly inhibits DNAM-1
activation by the up-regulation of TIGIT expression.

3.2. Impairment of DNAM-1 Functionality by Altered Ligand Expression on Tumor Cells

Additional mechanisms responsible for DNAM-1 hypo-functionality in advanced
tumors comprise post-translational ligand modifications or the release of ligands as soluble
forms, with a consequent reduction of their expression on the surface of tumor cells
(Figure 2B).

Post-translational protein modifications include reversible modifications, whereby
ubiquitin or ubiquitin-like proteins are covalently attached to a substrate that subsequently
becomes a target for proteasomal degradation or undergoes non-degradative functional
alterations [90]. These pathways are often up-regulated in cancer and contribute towards
modifying the cancer cell phenotype [91,92].

In hepatocellular carcinoma cells the activation of the unfolded protein response
induces a constitutive PVR degradation [93], suggesting a role for the ubiquitin pathway.
Our group showed the involvement of a different post-translational modification in MM
cells, demonstrating that PVR is directly modified by the SUMO pathway [94]. This
modification results in the intracellular retention of PVR and the reduction of its surface
expression, leading not only to impaired NK cell immune surveillance, but also to reduced
MM adhesion to bone marrow stromal cells [61,94].

Nectin2 surface expression also appears to be regulated by post-translational modifi-
cations. Indeed, a constitutive ubiquitination and proteasomal degradation render tumor
cells, including MM, less susceptible to NK cell recognition and killing [95]. Accordingly,
the therapeutic use of proteasomal inhibitors such as Bortezomib increases Nectin2 levels
in this hematological malignancy [54,96].

All together, these data support a role for post-translational modification in reducing
surface levels of DNAM-1 ligands, preventing NK cell recognition during tumor progression.

Unlike murine, human PVR is expressed not only as a transmembrane protein but
also in a soluble form (sPVR) revealed in different body fluids such as blood, cerebrospinal
fluid and urine [58,59]. Of note, DNAM-1 had a greater affinity than TIGIT and CD96
for sPVR [97], suggesting that the soluble ligand form of PVR preferentially bound
to DNAM-1.

In patients affected by different epithelial cancers, the serum level of sPVR increases
in relation to healthy donors and, in the case of gastric and breast tumors, correlates
with disease progression [98,99]. Thus, high concentration of sPVR has been proposed as
a marker of a poor prognosis.

Although it remains unclear whether increased production of sPVR represents a cause
of cancer development, soluble ligand forms may act as a decoy protein, preventing the
interaction of DNAM-1 with PVR-positive tumors. Accordingly, using lung metastasis
models, Okumura and co-authors reported that sPVR inhibits DNAM-1-mediated NK cell
cytotoxicity, exacerbating lung colonization by B16/BL6 melanoma cells [97]. It still remains
undetermined whether sPVR affects not only NK cell function but also CTL anti-cancer
activity. Moreover, how the expression of sPVR is regulated during tumor progression is
still unclear.
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4. DNAM-1 Dysfunction Caused by Inhibitory Checkpoints and Other
Unrelated Receptors

Activated NK and CTL express a series of inhibitory receptors called checkpoints able
to limit their function and prevent excessive activation. Of note, in the tumor microenviron-
ment, these inhibitory receptors are over-expressed and render cytotoxic cells functionally
defective in their immune surveillance activity [100]. In particular, the inhibitory check-
point receptors TIGIT and CD96 are up-regulated during tumor progression and are able
to compete with DNAM-1 for ligand binding.

Moreover, DNAM-1-triggered signal transduction may also be directly dampened
by other unrelated receptors. These two additional mechanisms are both responsible
for DNAM-1 hypo-functionality in the tumor microenvironment (Figure 2C) and will be
further discussed.

4.1. DNAM-1 Inhibition by Checkpoint Inhibitory Receptors

The main inhibitory receptor that restricts DNAM-1 responses in the tumor microenvi-
ronment is TIGIT. TIGIT was initially identified on T cells as an inhibitory molecule able
to promote immunoregulatory DC function [101]. Moreover, it can also exert an intrinsic
inhibitory function on T cells, preventing their activation [102]. On naïve T cells, TIGIT
is expressed only upon activation, while on NK cells it is constitutively expressed and its
up-regulation in tumor-bearing mice and patients with colon cancer was associated with
NK cell exhaustion [103].

TIGIT/PVR engagement can down-regulate both NK and T cell cytotoxicity [23,104,105].
TIGIT binding affinity for PVR is higher compared to DNAM-1, thus the main mechanism
of DNAM-1 inhibition is the competition for PVR binding. TIGIT can also interact with
Nectin2 but with lower affinity, thus its inhibitory action is probably predominantly exerted
by PVR binding.

TIGIT contains an immunoglobulin domain in its extracellular region, and both
an ITIM motif and one immunoglobulin tyrosine tail (ITT-like motif) in its cytoplasmic
portion [106]. The ITIM domain, once phosphorylated upon TIGIT crosslinking, recruits
the inositol phosphatase SHIP-1 that mainly prevents activation of the PI3K pathway [104].
In mice, besides the ITIM motif, the ITT domain is also required for inhibitory function [23].
Indeed, the ITT domain can recruit the cytosolic adaptor proteins growth factor receptor-
bound protein 2 (Grb2) and β-arrestin2, both able to activate the inositol phosphatase
SHIP-1 [107,108]. Through the recruitment of SHIP-1, Grb2 contributes to the inhibition
of the PI3K pathway, but also to the dampening of the mitogen-activated protein kinase
(MAPK) pathway, resulting in the inhibition of cytotoxic granule polarization and NK
cell killing capability [107]. The recruitment and activation of SHIP-1 is also facilitated by
β-arrestin2 and results in the inhibition of NF-κB activation and IFN-γ production [108].

Additional mechanisms of TIGIT inhibition have been described in T cells: TIGIT
could directly interact with DNAM-1, reducing its ability to form homodimers and to signal.
Moreover, it can induce inhibitory signals dephosphorylating DNAM-1 itself [29,109]. Even
though it is not clear whether these latter mechanisms are involved in TIGIT-mediated
inhibition of DNAM-1 in NK cells, a TIGIT blockade improves NK cell effector func-
tions. A polyclonal anti-TIGIT antibody enhanced NK cell-mediated killing of tumor cells
in vitro [23], demonstrating that TIGIT inhibition has the potential to improve NK cell
anti-tumor functions.

During tumor progression, TIGIT is the main checkpoint responsible for functional
exhaustion in NK cells [103]. Indeed, TIGIT deficiency or an antibody-mediated TIGIT
blockade was sufficient to reverse NK cell exhaustion in murine models of subcutaneously
implanted colon cancer, breast cancer, melanoma and chemically-induced fibrosarcoma,
with the consequent impairment of tumor growth [103]. These results demonstrate that
NK cells play a crucial role in responses to anti-TIGIT therapies.

Beside NK cells, several ex vivo studies in humans and the use of murine models have
demonstrated that anti-TIGIT treatment can highly increase the efficacy of anti-PD-1 or anti-
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PD-L1 to reverse T cell exhaustion [109–111], explaining why the TIGIT/PVR axis raised
great interest as a novel target for ICI treatments, mainly in combination with PD-1/PD-L1
pathway inhibition [112]. Several monoclonal antibodies blocking TIGIT interaction with
PVR are in different phases of clinical trials and have already shown exciting results in
non-small-cell lung cancer and melanoma [113]. However, their efficacy in hematological
malignancies and other solid cancers is still unclear.

As an additional receptor of the DNAM-1 axis, CD96 interacts with PVR with an affin-
ity that is intermediate between TIGIT and DNAM-1 (Figure 1) [114]. It is a transmembrane
receptor belonging to the Ig superfamily and, besides NK cells, it is also expressed on
activated T cells.

CD96 was initially found to facilitate adhesion between NK cells and their targets,
thus favoring NK cell cytolysis [115]. However, CD96−/− mice revealed an inhibitory role
for CD96, since its absence improves IFN-γ production and reduces melanoma metastasis
formation in the lungs [24]. Moreover, high CD96 expression correlates with poor prognoses
in hepatocellular carcinoma patients [116]. Human CD96 can exert positive and negative
actions on NK cell functions, since it contains in its cytoplasmic tail both the ITIM domain
and the YXXM motif that can recruit the p85 subunit of PI3 kinase. This motif is absent
in murine CD96 [117]. Moreover, human receptors can be expressed in different isoforms,
raising from alternative splicing and displaying a different extracellular domain that results
in variable binding affinity for PVR [118]. Therefore, even though CD96 function in NK
cells is still debated, preclinical studies support the use of blocking anti-CD96 antibodies as
a tool in anti-cancer therapy. Indeed, upon CD96 inhibition, NK cell anti-metastatic activity
increased in murine models [119,120]. Of note, as observed in TIGIT, CD96 blocking may
be combined with anti-PD-1 therapy administration. Indeed, treatment with anti-CD96
improves the efficacy of anti-PD-1 mAbs in a murine model of pancreatic cancer [121].

KIR2DL5 represents the most recently identified inhibitory receptor able to bind to
PVR [122]. It is expressed on mature NK cells and belongs to the human KIR family.
Interaction between KIR2DL5 and PVR occurs in a site of PVR that is distinct from the
binding domain of DNAM-1, TIGIT and CD96. Thus, KIR2DL5 does not compete with
other receptors for PVR binding. However, upon PVR binding, KIR2DL5 undergoes
phosphorylation of ITIM and ITSM domains in its cytoplasmic tail, allowing the recruitment
of Src homology regions 1 and 2 (SHP-1 and SHP-2) which dampen Vav1/ERK1/2/NF-κB
signaling pathways. Of note, while DNAM-1 expression on circulating NK cells correlates
with better prognoses in bladder cancer patients, KIR2DL5 expression worsens disease
outcomes [123]. Accordingly, monoclonal antibodies inhibit KIR2DL5 interaction with
PVR reduced tumor growth in several humanized tumor models [124], suggesting the
blockade of the KIR2DL5/PVR interaction as a novel method of immunotherapy for treating
human cancers.

DNAM-1 function can also be impaired by an inhibitory receptor that exclusively
recognizes Nectin2 and that was originally named CD112R, and then termed PVRIG since
it belongs to the family of PVR-like proteins [25]. It is composed of a single extracel-
lular immunoglobulin variable-like (IgV) domain, a transmembrane region and a long
intracellular domain containing an ITIM motif. Its expression is restricted to NK cells
and effector/memory CD8+ T cells [25]. It is highly upregulated on the surface of tumor-
infiltrating NK and T cells, especially in patients affected by solid tumors in areas including
the breast, kidney, lung, prostate, ovary and endometrium [125,126].

CD112R binds Nectin2 with higher affinity compared to DNAM-1 (Figure 1), and
dampens DNAM-1-mediated signaling by inhibiting the nuclear factor of activated T cells
(NFAT) transcription factor [25]. Its inhibitory role in NK and CTL activation was further
demonstrated by CD112R-deficient mice [127,128], and preclinical studies suggested the
use of blocking antibodies, alone or in combination with TIGIT and PD-1 blockades, in
anti-cancer therapy [125,127,128]. These promising results prompted the introduction of
CD112R blocking antibodies in clinical trials.
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It has recently been demonstrated in T cells that engagement of the checkpoint receptor
PD-1 hampers DNAM-1 functions through the recruitment of SHP-2 phosphatase that de-
phosphorylates the DNAM-1 intracellular domain, thus interfering with DNAM-1-triggered
signals (Figure 2D) [129,130]. Thus, PD-1-mediated inhibition represents an additional
mechanism impairing DNAM-1 functions in murine tumor-infiltrating CD8+ T cells, and
can be counteracted by treatments with anti-PD1 blocking antibodies [129]. Accordingly,
the individual response to immune checkpoint inhibitor (ICI) therapy is largely dependent
on the DNAM-1 expression levels in cytotoxic lymphocytes [28,89,130], highlighting a key
role for DNAM-1 in the regulation of cytotoxic lymphocyte tumor immune surveillance.
Whether this mechanism is also active in NK cells is currently unclear.

4.2. DNAM-1 Inhibition upon Chronic Stimulation of NKG2D

A recent report from our group has revealed a novel interplay between DNAM-1 and
NKG2D. We have provided evidence that supports a role for NKG2D stimulation in damp-
ening DNAM-1-mediated signaling. Indeed, we have demonstrated that upon sustained
NKG2D stimulation with MICA in human NK cells, DNAM-1-triggered Pyk2 and ERK1/2
phosphorylation became defective, with a consequent impact on lytic granule polarization
and the killing of PVR-expressing targets [131]. Even though the underlying molecular
pathways are not completely clarified, this could represent an additional mechanism that
dampens DNAM-1 function during tumor progression (Figure 2D).

Indeed, sustained NKG2D stimulation is a typical hallmark in the tumor microenvi-
ronment: high expression of NKG2D ligands promotes receptor down-modulation from
the cell surface, with a consequent impairment of NK cell functions both in humans and in
mice [78]. Accordingly, NK cell exhaustion does not occur in mice lacking NKG2D [132],
supporting the notion that NKG2D is required for the induction of NK cell exhaustion in
murine models. Moreover, in vitro NKG2D stimulation of the human NK cell is responsible
for TIGIT upregulation [131,133], and this up-regulation represents an additive mechanism
of DNAM-1-impaired activation. Further research is necessary to confirm these results
in vivo and to clarify whether NK cell activating receptors other than NKG2D, such as
NCRs, may play a similar role, being responsible for DNAM-1 hypo-functionality in the
tumor microenvironment.

5. Concluding Remarks and Future Perspectives

Several reports have highlighted the importance of DNAM-1 activating receptor and
that of its inhibitory counterparts in the regulation of NK cell-mediated immune responses.
However, although accumulating results have clarified the molecular pathways that mod-
ulate the DNAM-1/TIGIT/CD96/CD112R axis in the tumor microenvironment, several
questions remain unanswered. In particular, whether the expression of DNAM-1 ligands
on tumor cells in vivo is beneficial or detrimental for tumor suppression is still unclear.
An open question is whether PVR and Nectin2 interaction with DNAM-1 is useful only
in the early stages of tumor development, before inevitably being completely overcome
by inhibitory receptors in the more advanced and metastatic stages. This can open the
possibility of therapeutic approaches intended to boost DNAM-1 ligand expression only
during the early stages of tumor progression, while targeting checkpoint receptors may
be indispensable at later stages. Another poorly defined aspect is the relative contribution
of different inhibitory receptors to tumor progression. Moreover, whether the expressions
of PVR and Nectin2 in humans have different clinical outcomes is largely unexplored. Of
note, the presence of soluble PVR may exacerbate tumor progression through the selec-
tive inhibition of DNAM-1 functions. Understanding the mechanisms that regulate PVR
alternative splicing in tumors may provide additional tools for therapeutic intervention.

In conclusion, DNAM-1 represents an important receptor in cancer immune surveil-
lance, and new therapeutic approaches aiming to revert its dysfunction in the tumor
microenvironment could result in the improvement of patient survival rates.
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60. Kucan Brlić, P.; Lenac Roviš, T.; Cinamon, G.; Tsukerman, P.; Mandelboim, O.; Jonjić, S. Targeting PVR (CD155) and its receptors
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