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Simple Summary: Hepatocellular carcinoma (HCC) represents one of the main indications for liver
transplantation. Over recent years, immune checkpoint inhibitor (ICI) therapy has improved its
management, making patients with more advanced HCC potential candidates for transplantation.
However, acute rejection has been observed after ICI therapy, challenging its safety in transplant
settings. We summarize and discuss the preclinical and clinical data exploring the use of ICI prior to
and after liver transplantation. We identify a three-month ideal minimum period between ICI and
transplantation to decrease the risk of rejection. We also warn about its use after liver transplantation
and speak about the need for more robust prospective data in the field.

Abstract: Immune checkpoint inhibitors (ICIs) have improved the management of patients with
intermediate- and advanced-stage HCC, even making some of them potential candidates for liver
transplantation. However, acute rejection has been observed after ICI therapy, challenging its safety
in transplant settings. We summarize the key basic impact of immune checkpoints on HCC and liver
transplantation. We analyze the available case reports and case series on the use of ICI therapy prior
to and after liver transplantation. A three-month washout period is desirable between ICI therapy
and liver transplantation to reduce the risk of acute rejection. Whenever possible, ICIs should be
avoided after liver transplantation, and especially so early after a transplant. Globally, more robust
prospective data in the field are required.

Keywords: immune checkpoint inhibitors; hepatocellular carcinoma; liver transplantation; acute
rejection

1. Introduction

Hepatocellular carcinoma (HCC) arises in the setting of chronic liver disease [1].
Following the trend of obesity and metabolic syndrome, the incidence of HCC is rising.
With 830,000 deaths annually and a global 5-year survival rate of approximately 18%,
it remains a major global health issue [2]. Therapeutic strategies for HCC rely on the
Barcelona Clinic Liver Cancer staging system [3]. In patients with early-stage HCC (Stage 0
and A), the removal/destruction of a tumor can be achieved by local ablation methods,
such as radiofrequency (RFA) and microwave ablation (MWA), surgical resection, and
liver transplantation (LT). In the presence of intermediate-stage HCC (stage B), intra-
arterial therapies, such as transarterial chemoembolization (TACE) and selective internal
radiotherapy (SIRT), are first-choice treatments. In patients with more advanced forms of
HCC, systemic treatment can be considered [4].
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Since 2007, kinase inhibitors, like sorafenib, have been the first line of systemic treat-
ment, offering a median overall survival (OS) of 11 to 14 months [5]. By 2017, one could
see progress with the introduction of immune checkpoint inhibitors (ICIs), which tar-
get the programmed death 1 receptor (PD-1) and its ligand (PD-L1). Nivolumab and
pembrolizumab, two monotherapy anti-PD-1 monoclonal antibodies, initially failed to
show improved survival compared to sorafenib in their respective randomized controlled
trials [6,7]. However, more recently, the combination of atezolizumab (anti-PD-L1) and
bevacizumab (anti-VEGF) demonstrated better outcomes than sorafenib, with an overall
survival of 19 months in patients with advanced HCC [8]. This combination has now
become the standard of care for first-line systemic HCC treatment [4,9]. The Himalaya trial
also showed a significantly better OS (16.4 months) with the combination of tremelimumab
and durvalumab in comparison to sorafenib (13.8 months) [10].

Liver transplantation is considered in patients with single nonresectable or multiple
HCCs [11]. It leads to a 5-year survival of approximately 80% when the Milan criteria are
respected (one lesion < 5 cm, up to three lesions each being < 3 cm, and the absence of
extrahepatic lesions or macrovascular invasion) [12]. Over the years, in order to offer access
to transplantation to more patients, extended criteria have been introduced, such as the
prospectively validated University of California San Francisco criteria (one lesion ≤ 6.5 cm,
up to three lesions with the largest being ≤4.5 cm, and a total tumor diameter of ≤8 cm) [13].
Additionally, one moved from purely morphometric criteria to criteria combining morphol-
ogy and biology, including the French AFP model (combining AFP, tumor size, and number)
and the total tumor volume (≤115 cm3)/alpha fetoprotein (≤400 ng/mL) score [14,15].

When patients outside of these criteria have been successfully downstaged prior to
being listed, they can also be considered for transplantation [16,17]. However, due to their
immunological impact and the potential risk of post-transplant rejection, such situations
can be highly challenging when ICIs have been used for downstaging. With the wider
adjuvant use of atezolizumab/bevacizumab after liver resection, based on its described
improved recurrence-free survival in the IMbrave 050 trial, one may observe an increase in
the number of such transplant candidates in the coming years, which is another cause for
concern [18].

Studies report acute rejection, graft loss, and death in patients that receive an anti-PD1
antibody (nivolumab, toripalimab, camrelizumab, or pembrolizumab) prior to transplan-
tation, regardless of the time between the end of treatment and transplantation [19–23].
In the absence of guidelines on the topic, these reports raise the question of the safety
of transplantation after ICI therapy. Additionally, one still needs to explore the potential
underlying mechanism, the need to respect a minimum safety period between the end of
ICI therapy and transplantation, and the potential to identify patients at risk of rejection
based on immune markers. Finally, one must also assess the adoption of preconditioning
measures to prevent rejection. This review aims to summarize the available data on liver
rejection in patients that have received ICI treatment before or after liver transplantation,
to report on the availability of preclinical data, and to identify areas of future research.

2. Preclinical Mechanisms of Rejection

Immunosuppressive drugs and ICI therapy are two opposing immune treatments.
The former mitigates the allogeneic response, whereas the latter suppresses the negative
immune feedback mechanisms that destroy cancer cells. They share common immune
targets, including the programmed death 1 receptor (PD-1) and its ligand, PD-L1, and the
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4).

It is well established that, among other aspects, the PD-1/PD-L1 interaction partici-
pates in the induction and maintenance of solid organ tolerance. PD-1 and PD-L1 expression
is upregulated on activated lymphocytes, and on antigen-presenting cells (APCs) such as
dendritic cells, B cells, and monocytes [24,25]. PD-1/PD-L1 interaction results in regulatory
T cell (Treg) development and maintenance, suppresses T cell activation and induces their
exhaustion [26], and reduces IFN-γ expression [27], which together create a tolerogenic
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environment that promotes graft survival [28]. As an illustration, PD-1 -/- or PD-L1 -/-
recipient mice reject cardiac allograft transplantation, in contrast to control wild-type (WT)
mice, even when given immunosuppressive treatment [29]. While grafts survive > 120 days
in WT mice using CD154 mAb in association with either donor splenocyte transfusion or
CTLA-4Ig, acute rejection is observed in PD-1 -/- or PD-L1 -/- mice, even after the admin-
istration of the aforementioned immunosuppressive regimen [29]. Moreover, the benefits
obtained in WT mice in graft survival using CD154 mAb + CTLA-4Ig are abrogated when
mice are given anti-PD-1 mAb or anti-PD-L1 after transplantation [29,30]. Interestingly,
PD-L1-deficient heart grafts are accepted by WT recipients treated with CTLA-4Ig but
develop signs of severe chronic rejection and vasculopathy [30]. Similarly, blocking the
PD-1/PD-L1 pathway via anti-PD-L1 antibodies or using PD-L1 KO mice as donors led to
graft rejection in a mouse model of liver transplantation [31]. These experiments suggest
that the expression of PD-L1 on the recipient’s cells (like host antigen-presenting cells) and
on graft cells is critical for the maintenance of graft acceptance.

Compared to PD-1/PD-L1, CTLA-4 appears to have less of an impact on allograft
acceptance. It participates in the development of an immunoprivileged environment that
helps graft acceptance, although it appears to play a less significant role in maintaining
it [32,33]. To illustrate this, the use of anti-CTLA-4 early after mice cardiac allograft
transplantation leads to rejection, whereas blocking CTLA-4 later after transplantation does
not result in rejection [32,34]. Additionally, using a mouse model of graft versus host disease
(GVHD), anti-CTLA4-treated animals experienced less GVHD and a lower mortality rate
than mice treated with anti-PD-1 [35]. Clinical observations that show that fewer patients
appear to experience organ rejection after anti-CTLA-4 treatment compared to anti-PD-1
could support these findings [36–38]. Altogether, these data point to a preclinical link
between ICIs and allogeneic rejection. Based on the weak data currently available, anti-
CTLA-4 may be less of a problem, especially when used late after transplantation.

The underlying liver disease also appears to play a role in the response to ICIs. Using
a meta-analysis (CheckMate-459, IMbrave 150, and KEYNOTE-240), Pfister et al. demon-
strated that patients with virus-related HCC benefit more from ICI therapy than those with
nonviral liver diseases (NASH and NAFLD) [39]. Nonviral liver damages could alter the
liver microenvironment and impair the immune surveillance. Patient stratification based
on the cause of the liver disease may be needed for personalized HCC therapy.

We summarized the ICI impact on the immune system in pre- and post-transplantation
in Figure 1.
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3. Tregs, ICIs, and Transplantation

Beyond their contribution to various autoimmune diseases [40], Treg cells act in the
tumor microenvironment and can promote cancer immune evasion through checkpoint
inhibitors [41]. They can reduce the function and expansion of CD4 and CD8 T cells, B cells,
natural killer cells, and APCs, and their presence in tumor tissue is associated with poorer
oncological outcomes [42]. Interestingly, the increase in immune response secondary to
anti-CTLA4 treatment appears more linked to Treg activity than to effector T cells [43]. The
Treg depletion and blockage that ICIs induce result in a robust antitumor response [41].
However, this positive effect is sometimes obtained at the cost of autoimmune phenomena,
such as hypophysitis with anti-CTLA-4 and hypothyroidism with anti-PD-1 [44]. Glob-
ally, Tregs are crucial for allograft tolerance and immunological escape from malignancy.
Consequently, Tregs can significantly impact the use of ICIs [45].

4. Tissue-Resident Memory T Cells, Exhausted T Cells, ICIs, and Transplantation

Intratumoral subtypes of T cells, their state (naive, effector, dysfunctional, or ex-
hausted), and their contribution to immune homeostasis in the tumor microenvironment
have been previously reviewed [46]. Interestingly, the level of T cell dysfunction within
a tumor in lung and skin cancer, and the level of protein expression, such as PD-1 and
CTLA-4, are predictors of the response to ICI therapy [47,48]. Two categories of T cells
have received attention in recent years for their role in cancer and the response to ICIs:
tissue-resident memory T (TRM) cells and exhausted T (TEX) cells.

The presence of TRM (CD103+CD69+CD8+) cells with high expression of PD-1 in the
HCC microenvironment is associated with a better response to ICIs and better oncological
outcomes [49–51]. Adding to these data, a correlation was observed between the quantity
of tumor TRM cells and patient survival in melanoma patients [52]. Interestingly, this
cell subset showed increased immune checkpoint expression, especially PD-1 and 2B4,
which suggests a role in antitumor immunity after ICI treatment. More recently, Barsch
et al. went a step further in HCC; they reported that high levels of TEX cells with the
increased expression of PD-1 and other immune checkpoints, including LAG-3 and CTLA-
4, had a negative impact on the prognoses of patients [53]. They went on to demonstrate
that a higher ratio of CD103 + TRM/TEX cells within the tumor offers a better prognosis
associated with a better response to anti-PD-1 therapy. These findings reveal a high
degree of heterogeneity in T cell subpopulations and in various states within the tumor,
which is indicative of complex interactions. This may partially account for the conflicting
results observed in the literature, such as the absence of a correlation between total tumor-
infiltrating CD8 T cells and the response to nivolumab observed in the CheckMate 040
study [54]. Overall, we can assume that intratumoral TRM cells are important surrogates
that allow us to predict the response to ICI therapy and, thus, the prognosis. The proportion
of TEX cells present in a tumor seems to correlate with poor outcomes.

The role of memory T cells has also been explored after allogenic transplantation [55,56].
Some have suggested that, after repeated exposure to alloantigens, T cells become exhausted
over time, which contributes to graft acceptance [57]. However, others have demonstrated
that TRM cells migrate to the graft after allogenic mouse kidney or islet transplantation
and participate in chronic rejection, and that only a small percentage of them exhibit ex-
haustion [58–60]. Interestingly, a brief course of cyclosporine delayed allogeneic kidney
rejection but did not prevent the migration of CD103+ TRM cells in the graft [61]. The
initial hypothesis behind TRM cell exhaustion and ICI therapy was that ICI therapy targets
exhausted T cells, which become reinvigorated and act against tumor cells or, in the case
of allografts, participate in rejection. The hypothesis of T cell exhaustion is counteracted
by the potential absence of TRM cell exhaustion and may depend on a recipient’s immuno-
suppressive status. This is reinforced by the absence of rejection even after the repeated
administration of anti-PD-1 after transplantation.

However, the link between memory T cells, ICIs, and rejection deserves further explo-
ration, especially in the liver, which allows for a specific tolerogenic environment despite
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the infiltration of TRM cells [62]. As potential targets for therapies that prevent ICI-induced
rejection, they may serve as biomarkers of an increased risk of rejection.

We summarized the implicated immune cells and their actions on HCC, ICI and
transplantation in Table 1.

Table 1. Implicated immune cells in HCC, ICIs, and transplantation.

Cell Type Implication

HCC ICI Transplantation

Regulatory T cells
(Treg)

- Promote tumor cell evasion
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5. PD-1/PD-L1 Expression on Tumor, Immune, and Transplanted Liver Cells

The level of PD-L1 expression on tumor cells correlates with the response to ICI therapy
in various types of cancers, including non-small-cell lung cancer [63,64]. In the KEYNOTE-
224 trial, the combined expression of PD-L1 on immune and HCC cells showed the best
prediction for HCC [65]. Furthermore, Kim et al. demonstrated that a subpopulation of
CD8 + T cells in the tumor microenvironment that express PD-1 highly can predict tumor
aggressiveness and ICI responses [66]. Finally, PD-1 expression could be evaluated in
peripheral blood, removing the need for invasive biopsies. Another group also validated
the correlation between PD-1 expression in peripheral blood and that within a tumor [67].

Liver grafts do not show systematic PD-L1 expression prior to transplantation [19].
After transplantation, hepatocytes, cholangiocytes, and sinusoids express some level of
PDL-1. In parallel, PD-1 was also highly expressed by recipient T cells that had been
infiltrated. This combination contributes to the counter-regulation of rejection events, as
illustrated by higher rates of rejection associated with specific donor PD-L1 and recipient
PD-1 single-nucleotide polymorphisms [68]. Blocking this interaction via ICI therapy
also alters the immune-protective state associated with it and can result in acute rejection.
Further research should assess the relationship between PD-L1 liver grafts and PD-1
levels of expression and polymorphisms in peripheral T cells, as well as the risk of ICI-
promoted rejection.
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6. Use of ICIs Prior to Liver Transplantation

Immune checkpoint inhibitors can be used as downstaging or bridging therapies
prior to liver transplantation for HCC. In patients with HCC, they have shown promising
results, with a significantly higher overall survival rate and a longer median progression-
free survival [8]. Despite being acceptable in patients outside the transplantation field,
their safety in patients on a liver transplant waiting list needs further validation [69,70].
Furthermore, locoregional therapies (LRTs), such as TACE and TARE, are already being
widely used in order to reduce and control HCC lesions during the waiting time prior
to transplantation. Llovet et al., among others, reviewed the potential to combine LRTs
with ICI therapy, aiming to potentialize the effect on tumor control and destruction. After
LRTs, necrotic tumor cells release antigens that can be recognized by the increased immune
system, boosted by ICI therapies. This will probably shape the future of HCC management
in intermediate and advanced HCC and will probably increase the amount of patients
receiving ICI therapies on the waiting list [71].

Up to May 2023, we found 14 studies that assessed patients with pretransplant ICIs.
These studies included seven case reports [19,20,22,23,72–74], six case series [21,75–79],
and one multicenter study [80]. With the exception of the study by Tabrizian et al., which
included patients prospectively, all reports are single-center, retrospective studies. Study
characteristics are presented in Table 2. One review exists and includes six of the aforemen-
tioned studies [81]. In total, 54 patients received ICIs prior to liver transplantation, 37 of
whom were men, 6 of whom were women, and 11 of whom were of an unspecified gender.
The most common underlying liver disease was viral hepatitis, and the most commonly
used ICI was nivolumab. Other agents included toripalimab, durvalumab, pembrolizumab,
sintilimab, and camrelizumab. The duration of treatment ranged from 6 weeks to 34 months.
In total, 20 patients (37.0%) experienced acute rejection and, among them, three patients
(5.6%) died because of graft loss. Two patients (3.7%) underwent successful retransplanta-
tion and thirteen patients (24.1%) underwent successful treatment through adaptation of
the immunosuppressive regimen, corticosteroid use, or antithymocyte globulin treatment.
Data are missing for two patients regarding the management of the rejection. Of note,
one rejection was attributed to insufficient immunosuppression. Most rejections occurred
after nivolumab, except for two patients who received toripalimab and pembrolizumab.
Interestingly, nivolumab has a reported half-life of approximately 25 days [82,83]. For the
eleven patients with acute rejection, the washout period (the time between the last dose of
ICIs and transplantation) ranged from 8 days to 93 days, with most of the patients receiving
transplants between 30 and 40 days following the last dose of ICIs. In the cases reported by
Dave et al., the washout period for all patients with acute rejection was fewer than 90 days,
whereas the washout period for all patients without rejection was longer than 90 days [77].
In the most recent case series, Wang et al. revealed a significant difference in the washout
times between the rejection group and the no rejection group, of 21 days (15.5–27.5) and
60 days (24–167), respectively [78]. All patients without rejection had a washout period of at
least 24 days. Similarly, in the largest prospective study currently available, Tabrizian et al.
found that patients with a washout period longer than 90 days had a significantly lower
probability of rejection [80]. They looked at 80 HCC patients who received ICI therapy
and were eligible for LT. Sixty-seven percent were downstaged, mainly due to locoregional
therapy. In total, 30 patients (37.5%) were transplanted; 33 discontinued treatment (17 due
to tumor progression); and 15 were still on the waiting list. A total of five patients (16.6%)
experienced allograft rejection, three of whom did so because of low immunosuppression.
They found that a shorter washout period—less than 3 months—was linked to a greater
rejection rate.
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Table 2. ICIs before liver transplantation.

Study Study Type
Number of Patients

Receiving ICIs
Pre-Transplantation

(Rejections)
Age/Sex Underlying

Liver Disease ICI Duration Washout Period
(Days)

Rejection
Proved by

Biopsy
Retransplantation Postoperative

Follow-Up

Schwacha-
Eipper,

2020 [22]
Case report 1 (0) 62/M ALD Nivolumab 34 cycles 105 No rejection - 12 months

Nordness,
2019 [19] Case report 1 (1) 65/M HCV Nivolumab 24 months 8 POD 6 No, deceased at

POD 10 -

Chen G, 2021 [20] Case report 1 (1) 39/M HBV Toripalimab 10 months 93 POD 2 No, deceased at
POD 3 -

Dehghan,
2021 [23] Case report 1 (1) 65/F HCV Nivolumab 15 months 35 POD 10 Yes, POD 34 18

Aby, 2021 [72] Case report 1 (1) 64/M HCV Nivolumab 23 months 16 POD 9 No, high-dose
corticosteroids 16 months

Sogbe, 2021 [73] Case report 1 (0) 61/M HBV Durvalumab 18 months 92 No rejection - 24 months

Tabrizian,
2021 [75] Case series 9 (2 *) N/D HBV Nivolumab N/D 1–253 N/D N/D N/D

Qiao Z, 2021 [21] Case series 7 (1) Mean age 53
+/− 12.1/M N/D Pembrolizumab

or camrelizumab N/D 40 on average POD 11 No,
corticosteroids N/D

Schnickel,
2022 [76] Case series 5 (2) 60/F

65/M
HCV
HCV

Nivolumab
Nivolumab

18 months
8 months

35
10

POD 14
<POD 14

No,
corticosteroids

No, rATG,
rituximab, or

IVIGs

38 months
3 months

Dave, 2022 [77] Case series 5 (2) Mean age 61
+/−6.52/N/D

N/D
N/D

Nivolumab
Nivolumab

N/D
N/D

<90 days
<90 days

Yes
Yes

Yes, successful
No, death

2 months after
transplantation

N/D
N/D

Kang, 2022 [74] Case report 1 (0) 14 None Pembrolizumab 3 138 No No 96 months

Chen, 2021 [79] Case series 5 (0)
Mean age
53.2 +/−

5.4/4M, 1F
N/D Nivolumab N/D 63.80 ± 18.3 No No 12 months

Wang, 2023 [78] Case series 16 (9) 37–67/14
M–2 F

14 HBV
2 ALD

2 nivolumab,
7

pembrolizumab,
4 sintilimab,

2 camrelizumab,
and

1 multiple

1–27 cycles 7–184 352.5 (median)

ALD: alcohol-associated liver disease, IC: immune checkpoint, ICI: immune checkpoint inhibitor, N/D: not disclosed, M: male, F: female, POD: postoperative day, rATG: rabbit
antithymocyte globulin, IVIGs: intravenous immune globulins, HCV: hepatitis C virus, HBV: hepatitis B virus, and HCC: hepatocellular carcinoma. * One attributed to low
immunosuppression levels.
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Therefore, it appears that a minimum washout period of 30 days should be respected,
if possible, to reduce the risk of rejection. However, even with prolonged washout periods,
outliers with rejection have been reported, which suggests that the target occupancy
and action of anti-PD-1/PD-L1 exceed their half-lives. After a single administration of
nivolumab, Brahmer et al. reported PD-1 occupancy on lymphocytes of up to 100 days [84].
To unravel the underlying mechanisms, preclinical and translational studies are necessary.

7. ICIs after Liver Transplantation

The population of liver transplant recipients in need of cancer treatment is grow-
ing [85]. This is linked to an increased propensity for cancer recurrence due to the use
of extended inclusion criteria combined with the effect of immunosuppression [86,87].
ICI-based treatment for this specific population requires increased investigation, especially
regarding the safety, indications, dosages, and durations of treatment [88]. As summarized
in Table 3, we found 33 studies that report using ICIs after liver transplantation [89–120].
Altogether, these studies report 57 patients, with a mean age of 57.4 years and the majority
being men (75.5%). HCC and decompensated cirrhosis were the main indications for
LT. The majority of immunosuppressive regimens were a combination of mycophenolate
mofetil and calcineurin/mTOR inhibitors; however, around 26% of patients were under
monotherapy, mainly calcineurin inhibitors. Following LT, indications for ICIs were pri-
marily HCC recurrence and novel appearances of melanoma and lung cancers. More than
88% of the patients received anti-PD1 therapy, with nivolumab being the most frequently
used. Four patients received a combination of atezolizumab and bevacizumab after LT in
three studies without experiencing graft rejection [89–91]. The follow-up, however, was
short and ranged from 7 to 10 months. With a mortality rate of 12.1%, the liver rejection
rate was 25.9%.
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Table 3. ICIs after liver transplantation.

Author Year of
Publication n Acute Graft

Rejection Rate
Death Due to

Rejection OS (Months)
Most

Commonly
Used ICIs

IS While on ICI Tumor PD-L1
Staining Indication

Time from
Transplant to ICI
Initiation (Years)

De Toni [92] 2017 1 No No 7 Nivolumab Tacrolimus / HCC recurrence 11

Brumfiel [93] 2021 1 No No 15 Nivolumab MMF + prednisone +
tacrolimus / Cutaneous SCC >21

Bittner [94] 2021 1 Yes No >14 Nivolumab

MMF relayed by
tacrolimus and

everolimus due to
rejection

Positive PTLD 11

Ben Khaled [91] 2021 1 No No (POD) / Atezolizumab/
bevacizumab - / HCC recurrence 4

Kondo [95] 2022 1 No No (POD) / Nivolumab Cyclosporine + MMF Positive Hypopharyngeal
SCC >3

Tsung [96] 2021 2 No No / Cemiplimab Tacrolimus / Cutaneous SCC /

Owoyemi [97] 2020 8 1/4 No (POD) /
Nivolumab 75%
Pembrolizumab

25%

Calcineurin inhibitors
alone 65%, tacrolimus +
prednisone 13%, MMF

and pred 13%, other

/
1/8 SSC, 5/8

HCC, 2/8
melanoma

3

Al Jarroudi [98] 2020 3 No No >4 months Nivolumab Tacrolimus / HCC recurrence 1 to 3

Braun [99] 2020 1 Accelerated
chronic rejection Yes 2 Nivolumab Tacrolimus / Lung NSCLC 3

Anugwom [100] 2020 1 Hepatitis linked
to ICIs No 2 Nivolumab Tacrolimus Negative Metastatic HCC

+ NSCLC 1

Pandey [101] 2020 1 No No >27 Ipilimumab Tacrolimus / HCC recurrence 7.5

Amjad [102] 2020 1 No No >24 Nivolumab +
prednisone Tacrolimus + MMF Positive HCC recurrence 2

Zhuang [103] 2020 1 No No 20 Nivolumab Tacrolimus / HCC recurrence 2

Lee [104] 2019 1 Yes Yes, delayed / Nivolumab Everolimus / SCC 1

Chen [105] 2019 1 No No / Pembrolizumab
+ prednisone Tacrolimus / Metastatic CRC 4

Deleon [107] 2018

5 1/5 /
/

Nivolumab Sirolimus or tacrolimus
or MMF + sirolimus Positive 1/5 HCC 3.92 (mean)

2 1/2 / Pembrolizumab Sirolimus or tacrolimus
or MMF + sirolimus Positive 1/2 Melanoma 4.3 (mean)

Tio [108] 2018 1 Yes Yes / Pembrolizumab Cyclosporine / Melanoma /

Nasr [109] 2017 1 No No >12 Pembrolizumab Tacrolimus + MMF / HCC recurrence 4
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Table 3. Cont.

Author Year of
Publication n Acute Graft

Rejection Rate
Death Due to

Rejection OS (Months)
Most

Commonly
Used ICIs

IS While on ICI Tumor PD-L1
Staining Indication

Time from
Transplant to ICI
Initiation (Years)

Guoying [110] 2016 1 Hepatitis linked
to ICIs No / Pembrolizumab Tacrolimus + sirolimus / HCC recurrence 1

Gassmann [111] 2018 1 Yes Yes / Nivolumab MMF + everolimus / HCC recurrence 2

Rammohan [112] 2018 1 No No > 10 Pembrolizumab Rapamycine +
tacrolimus / HCC recurrence 3

Kuo [113] 2018 1 No No /
Ipilimumab,

followed with
pembrolizumab

Sirolimus / Melanoma 1

Biondani [114] 2018 1 No No (POD) / Nivolumab +
prednisone Tacrolimus + everolimus / Lung NSCLC 13

Varkaris [115] 2017 1 No No (POD) / Pembrolizumab Tacrolimus / HCC 8

Friend [116] 2017 2 Yes Yes / Nivolumab Sirolimus or tacrolimus Positive HCC 3 and 4

Dueland [117] 2017 1 Yes Yes / Ipilimumab Prednisolone / Ocular
melanoma 1.5

Schvartsman [118] 2017 1 Hepatitis linked
to ICIs No >6 Pembrolizumab MMF / Melanoma >20

Morales [119] 2015 1 No No >4 Ipilimumab Tacrolimus / Melanoma 8

Ranganath [120] 2015 1 No No >5 Ipilimumab Tacrolimus / Melanoma 8

Abdel-
Wahab [106] 2019 11 4/11 1/11 / Ipilimumab/nivolumab/pembrolizumab/ /

6/11 melanoma
4/11 HCC
recurrence

6.87 (mean)

POD: progression of disease, ICI: immune checkpoint inhibitor, SCC: squamous cell carcinoma, HCC: hepatocellular carcinoma, NSCLC: non-small-cell lung cancer, CRC: colorectal cancer.
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Globally, the timing of immunotherapy after transplant appears of most importance.
Patients with the longest time after transplantation appear to be less at risk of rejection [121].
The mean time between LT and ICI use was 6 years. Interestingly, Kayali et al. observed
that patients responding to ICI therapy had a longer interval between LT and ICI therapy
than nonresponder patients (6 vs. 3 years) [122]. Furthermore, though not statistically
significant, they observed that patients who experienced graft rejection had a shorter period
from LT to ICI therapy (2 vs. 4 years). Additionally, the nonresponder patients showed
increased graft rejection. When further in time from LT, the better response to ICI therapy
can be partially explained by the progressive reduction in immunotherapy.

In addition to timing, a high PD-1/PD-L1 expression level in the liver graft also
appears to be a predictor of rejection. Zhang et al. showed that recipients with positive
PD-L1 staining showed increased rejection rates and higher mortality compared to those
with no detectable PD-L1 expression [123]. Similarly, Munker et al. evaluated three biopsies
with the same findings [124]. The use of a biopsy prior to treatment initiation is supported
by the link between positive PD-L1 staining on histology and graft rejection.

8. Prevention and Management of ICI-Induced Liver Graft Rejection

In the studies mentioned here, the reported immunosuppression in patients who
receive ICI therapy before LT is relatively standard. Most often, it consists of induction with
methylprednisolone followed by mycophenolate mofetil (MMF), a calcineurin inhibitor,
or occasionally an mTOR inhibitor and prednisone weaned over a few weeks. During
induction, some groups also administered basiliximab or antithymocyte globuline (ATG),
though this did not completely prevent rejection [21,77,78].

After LT, acute rejection management is relatively standardized, with methylpred-
nisolone used as the first-line treatment and resulting in a 90% success rate in reversing
rejection [125]. In cases of steroid-resistant acute rejection, the use of ATG proved to be
effective [126–128]. The use of plasmapheresis is thought to increase the likelihood of
overcoming acute rejection, in part because it may remove ICIs from the organism [129]. In
addition, changing baseline immunosuppression may also improve outcomes. However,
salvage was not uniform, with a few patients needing retransplantation [23,76].

9. Adjuvant ICIs after Curative HCC Treatment

The adjuvant use of ICIs following ablation or surgical resection has been assessed
previously [130]. These investigations have been conducted based on the finding that even
small HCCs (≤2 cm) have a 10% likelihood of developing intrahepatic metastasis [131].
Among the five ongoing clinical trials, three (NIVOLVE, CheckMate, and KEYNOTE-
937) have explored the adjuvant effect of ICIs in monotherapy, using nivolumab for the
first two and pembrolizumab for the third. Two other clinical trials explored the ben-
efit of the durvarumab/bevacizumab combination (EMERALD-2) and that of the ate-
zolizumab/bevacizumab combination (IMbrave 050). The latter is a phase 3 randomized
clinical study that compares the combination of atezolizumab/bevacizumab against active
surveillance in patients at a high risk of recurrence following HCC ablation or resec-
tion, including those with an HCC size >5 cm, >three tumors, microvascular invasion,
minor macrovascular invasion (Vp1/Vp2), or a grade 3/4 pathology [18,132]. For the
first time, the preliminary results of the IMbrave study have demonstrated a statistically
significant improvement in recurrence-free survival (RFS) in patients with adjuvant ate-
zolizumab/bevacizumab compared to patients with active surveillance [18]. At 12 months,
78% of patients in the atezolizumab/bevacizumab group had RFS, compared to 65% of
those in the active surveillance group (HR = 0.72 (95% CI: 0.56, 0.93; p value = 0.012)) [133].
At the first clinical cutoff of 17.4 months, 40% of patients in the active group experienced
disease recurrence or death, compared to 33% of those in the ICI group [133]. The 12-month
recurrence-free rate in the ICI group was 34%, compared to 20% in the active surveillance
group (HR = 0.67 (95% CI: 0.52, 0.88; p value 0.003)). Such data could change clinical prac-
tice and have a significant impact on the number of ICI patients that are downstaged and
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ultimately fulfill the criteria for transplantation. Among the dozen of ongoing clinical trials
studying the use of atezolizumab/bevacizumab for advanced stages, we found four trials
(NCT05185505, NCT04721132, NCT05137899, and NCT05908786) evaluating the benefit of
using ICIs in a neoadjuvant setting before liver surgery and only one of them is evaluating
its effect before LT (NCT05185505). Most of these trials take place in North America and
their results could also impact the number of patients with a history of ICIs use on the
waiting lists, especially the trial looking at the possibility to downstage patients outside the
Milan Criteria, with 6 months of atezolizumab/bevacizumab, which could allow one to
bridge these patients to LT. The ongoing trials are listed in Table 4 (www.clinicaltrials.gov,
accessed on 11 September 2023).

Table 4. Ongoing clinical trials on ICI use in neo/adjuvant setting.

Name Number of
the Study Study Start Phase Main

Outcome

Expected
Study

Termination
Location

Atezolizumab and
Bevacizumab Pre-Liver

Transplantation for
Patients with

Hepatocellular
Carcinoma Beyond Milan

Criteria

NCT05185505 30.01.23 4

Proportion of
patients

receiving liver
transplant

experiencing
acute rejection

31.10.27 Houston, USA

Atezolizumab and
Bevacizumab before

surgery for the treatment
of resectable liver cancer

NCT04721132 10.02.21 2
Pathologic
complete

response rate
31.12.27 Houston, USA

Neoadjuvant
combination of ate-

zolizumab/bevacizumab
versus Neoadjuvant

radiation therapy

ADVANCE
HCC NCT05137899 18.10.22 2

Proportion of
patients who

undergo
hepatectomy in

each arm

30.06.26 Canada

A study of atezolizumab
plus bevacizumab versus

active surveillance as
adjuvant therapy in

patients with
hepatocellular carcinoma
at high risk of recurrence
after surgical resection or

ablation

IMbrave050 NCT04102098 31.12.19 3
Recurrence-

free
survival

16.07.27

International (USA,
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NCT05908786 01.09.23 Ib/2
Major

pathologic
response rate

31.03.25 USA, Canada

This development further supports the need for studies defining ICI management
prior to transplantation.

10. Conclusions

The field of HCC management is undergoing rapid change, with the most recent
advances linked to the introduction of immunotherapy as both primary and adjuvant lines
of treatment. They are associated with improved response rates and have the potential to
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lead patients, via downstaging, toward resection or transplantation. These positive aspects
do, however, also present new immune challenges. ICIs are designed to promote immunity
that acts against both the HCC and allogeneic liver. Their effect against a graft could be
mediated via memory cells and Treg cells and appears more active when PD-1 and PDL-1
are expressed at high levels in the liver.

ICI-promoted rejections have been reported in patients who were responding well
to ICIs, have been downstaged, and are now meeting transplant criteria. The most recent
case series, however, did not reveal the original, alarmingly high levels of rejection rates
described in case reports, most likely due to high reporting bias in the first patients. While
further data are needed, transplanting such patients appears feasible. However, a 90-day
break from ICIs is desirable prior to a transplant; appropriate immunosuppression should
be used, including the use of induction and steroids; and early liver graft biopsy as well as
treatment are recommended in the event of a suspected rejection.

The use of ICIs following liver transplantation is more challenging and should only
be considered in extremely select and unusual patients, where no alternative oncological
option is available. Ultimately, the benefits of ICIs should outweigh any potential harmful
effects of rejection, and salvage immunosuppression should be introduced early in the case
of a suspected rejection.

11. Future Directions

Within the coming years, HCC management will likely further evolve. ICIs could
be used in combination with locoregional treatments, and as neoadjuvants/downstaging
in view of surgery or transplantation. As a result, the number of patients exposed to ICI
therapy on the waiting list could increase. We collectively need to explore a number of
key questions: Based on their higher risk of post-transplant recurrence, which patients
would benefit from pretransplant ICIs the most? What should this selection be based on?
Additionally, which ICI drug should be favored? What is the best immunosuppression
strategy? Is liver donor liver transplantation acceptable? Such data will allow for the safer
use of peritransplant ICIs and globally for HCC management.
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