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Simple Summary: The study compares two groups of breast cancer (BC) identified by estrogen
receptor (ER) expression, using an epimutation score calculated from three public methylation
datasets, based on the presence of epimutations and on the deviation amplitude of the methylation
outlier value. Firstly, for each dataset, a pathway enrichment analysis was performed on the functional
gene region with the highest epimutation score; then, the common pathways were found. A higher
and significant epimutation score due to hypomethylation in ER-positive BC is present in the promoter
region of the genes belonging to the estrogen receptor signaling (ERS) mediated pathway. This is
consistent with an active pathway mediated by estrogen function in the group of ER-positive BC. A
higher and significant epimutation score due to hypermethylation in ER-positive BC is present in the
promoter region of the genes of the SUMOylation and Notch pathways which are associated with
BC pathogenesis and play distinct roles in the two BC subgroups. We speculated that the altered
methylation profile play a role in regulating pathways with specific functions in the two subgroups
of BC.

Abstract: Oestrogen receptor expression in breast cancer (BC) cells is a marker of high cellular
differentiation and allows the identification of two BC groups (ER-positive and ER-negative) that,
although not completely homogeneous, differ in biological characteristics, clinical behaviour, and
therapeutic options. The study, based on three publicly available EWAS (Epigenetic Wide Association
Study) datasets, focuses on the comparison between these two groups of breast cancer using an
epimutation score. The score is calculated not only based on the presence of the epimutation, but
also on the deviation amplitude of the methylation outlier value. For each dataset, we performed a
functional analysis based first on the functional gene region of each annotated gene (we aggregated
the data per gene region TSS1500, TSS200, first-exon, and body-gene identified by the information
from the Illumina Data Sheet), and then, we performed a pathway enrichment analysis through the
REACTOME database based on the genes with the highest epimutation score. Thus, we blended our
results and found common pathways for all three datasets. We found that a higher and significant
epimutation score due to hypermethylation in ER-positive BC is present in the promoter region of
the genes belonging to the SUMOylation pathway, the Notch pathway, the IFN-γ signalling pathway,
and the deubiquitination protease pathway, while a higher and significant level of epimutation due
to hypomethylation in ER-positive BC is present in the promoter region of the genes belonging to the
ESR-mediated pathway. The presence of this state of promoter hypomethylation in the ESR-mediated
signalling genes is consistent and coherent with an active signalling pathway mediated by oestrogen
function in the group of ER-positive BC. The SUMOylation and Notch pathways are associated with
BC pathogenesis and have been found to play distinct roles in the two BC subgroups. We speculated
that the altered methylation profile may play a role in regulating signalling pathways with specific
functions in the two subgroups of ER BC.
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1. Introduction

Breast cancer (BC) is the most-common tumour in women around the world [1].
Several classification methods have been used to capture the wide heterogeneity of BC:
immunohistochemical techniques, molecular features, histological phenotypes, and gene
expressions. Immunohistochemically (IHC), BC can be classified based on the expression
of the oestrogen receptor (ER), the progesterone receptor (PR), and the receptor tyrosine-
protein kinase erbB-2 (HER2) [2]. The immunohistochemical guidelines recommend that
BC is considered ER-positive if at least one percent of the nuclei of BC cells are stained
and otherwise ER-negative [3]. ER expression is considered a marker of high cellular
differentiation, plays an important role in prognosis, and is a predictive marker of the
response to endocrine therapy. Although the two BC groups identified in this way (ER-
positive/ER-negative) are not completely homogeneous, they differ in their biological
characteristics, clinical behaviour, and therapeutic options [4].

Although BC is known to arise from an accumulation of genetic and epigenetic al-
terations, the molecular pathogenesis of this tumour is still not fully understood. DNA
methylation is one of the best-characterised epigenetic alterations involved in carcinogene-
sis [5]. There are a growing number of reports demonstrating the importance of epigenetic
processes in BC pathogenesis and treatment resistance. Several studies have investigated
the DNA methylation pattern in BC using genome-wide arrays and the DNA alteration
profiling. DNA methylation changes are considered early events in breast cancer progres-
sion and are widely accepted as early molecular markers for the diagnosis, prognosis, and
prediction of invasive recurrence [6–9].

In the scientific literature, different kinds of epigenetic cancer analysis can be found.
In most reports, the mean methylation level (differential methylation), calculated for each
CpG site in human BC, is compared with that in adjacent non-cancerous breast tissue
or in normal breast tissue from cancer-free women [10,11]. Other reports have investi-
gated the presence of epigenetic mutations—also defined as “epimutations” or stochastic
epigenetic mutations (SEMs)—in breast tissue or in white blood cells from patients with
breast cancer [12,13]. However, different definitions of epimutation have been reported
in the literature based on the variability or interquartile range of the distributions of the
methylation beta values [14,15], and their biological significance is not yet clear. In any case,
both types of epigenetic studies (based on differential methylation or epimutations) usually
involve a gene-centred analysis, capturing genes that have an altered mean differential
methylation or a different epimutation burden. However, detecting the recurrence of rare
alterations often requires a large number of samples and presents an even greater challenge
in distinguishing between functionally relevant or “driving” alterations and non-oncogenic
“passenger” events that may have no functional impact, particularly in tumour types with
a high background of genetic or epigenetic alterations [16]. Pathway-focused analysis,
as opposed to a gene-focused one, allows the identification of recurrent altered signals
or functions in cancer, based on changes found in different genes belonging to the same
pathway, but not altered at the same frequency [16].

This study evaluated the presence of epimutations in the two main groups of BCs (ER-
positive/ER-negative) identified by the presence of oestrogen receptors as used in clinical
practise and defined by current IHC guidelines. We retrieved data from three publicly
available datasets and examined the presence of epimutations for each dataset, weighted by
their difference from the interquartile range of the distribution of methylation levels in the
samples of the entire dataset. We then calculated an epimutation score aggregating the data
per gene region (TSS1500, TSS200, first-exon, gene-body) for each gene in each BC sample.
Then, we performed a pathway enrichment analysis through the REACTOME database,
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based on the genes with a significantly higher epimutation score. Finally, we intersected
the pathways found in the three datasets. These molecular pathways were characterised by
a significantly higher epimutation score in the promoter regions in ER-positive BC samples
due to hypomethylation or hypermethylation. The SUMOylation, the Notch, the interferon-
γ, and the deubiquitination protease pathways were identified by a significantly higher
epimutation score due to hypermethylation. The ESR-mediated signalling pathway, on the
other hand, was the pathway with a higher epimutation score due to hypomethylation.
Interestingly, for all these pathways, there are many studies demonstrating their role in the
development of BC, especially for the SUMOylation and Notch pathways, which are directly
or indirectly (by affecting many other pathways) involved in the development, progression,
relapse, and treatment resistance of BC. Therefore, we speculate that our findings may
highlight the importance of the epimutation process in the pathogenesis of different types
of breast cancer and that a deeper knowledge of these pathways could likely lead to new
therapeutic options to differentially and specifically treat different BC entities. In addition,
it cannot be excluded that different mechanisms of molecular alterations (for example,
epigenetic versus gene mutation) could involve different genes and signalling pathways.
In fact, we observed that the Notch and the SUMOylation pathways are overloaded with
epimutations and do not have a high number of genetic mutations, as confirmed by other
gene expression studies [17,18]. Finally, since the epimutations affected a few specific
signalling pathways, it cannot be excluded that an apparently stochastic process such as the
epigenetic one could be at least partially under deterministic control, as already suggested
by other authors [19].

2. Materials and Methods
2.1. Selection, Downloading, and Preprocessing of the Datasets

For our study, we selected publicly available datasets with methylation profiles of
breast cancer tissue in patients of Caucasian ethnicity. The presence of immunohistochemi-
cal assessment of oestrogen receptor status on breast cancer cells was a preferred indicator
for dataset selection. Other clinical characteristics included patient age and tumour stage,
which are generally considered associated with cancer cell methylation status [5,14]. We
identified three datasets: TCGA-BRCA and the TGCA-27k from the TCGA data portal [20],
with raw idat files, and the GSE69914 dataset [21], from the GEO data portal, with a matrix
of beta values already subjected to preliminary quality control.

The TCGA-BRCA and GSE69914 datasets were created using Illumina methylation
technology with 450k probes, while the dataset TCGA-BRCA-27k was created using Illu-
mina methylation technology with 27k probes. All three datasets contain information on
immunohistochemically identified oestrogen receptor status according to the latest clinical
guidelines, while age and staging are only available for the two TCGA datasets.

The characteristics of the three datasets are summarised in Table 1.

Table 1. Characteristics of the three datasets used for our analysis.

Dataset Name Number of
Samples

Age
Available Technology Format Number of Probes

(% of Total)

TCGA-BRCA [20] 521 Yes Human Methylation 450 Raw (idat files) 385,578 (79.41%)
TCGA-BRCA-27K [20] 180 Yes Human Methylation 27 Raw (idat files) 25,522 (92.54%)

GSE69914 [21] 302 No Human Methylation 450 TXT (beta-value matrix) 290,250 (59.78%)

The datasets were downloaded using the R GenomicDataCommons 1.24.2 [22] pack-
age for the TCGA platform and the R GEOquery 2.68.0 [23] package for the GEO Accession
Omnibus [24] platform. All data processing was performed using the R 4.2.2 ecosystem on a
server with 32 cores, 128 Gb of RAM, and a 4 Tb hard disk. Data from the TCGA-BRCA and
TCGA-BRCA-27K datasets were imported using the ChAMP package 2.30.0 [25], removing
probes with missed values, or a detection p-value greater than 1%, or with a bead count
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of less than three in 5% or more of the samples. A sample was removed if more than 10%
of the probes were lost due to quality issues. Probes related to SNPs and multi-hit probes
were removed. The datasets were also normalised using the SWAN method. Probes on
sexual chromosomes remained intact. The GSE69914 dataset is a matrix of beta values that
had already undergone preprocessing quality control as indicated in the poster information
on the GEO website. Table 1 shows the characteristics and the number of probes of each
dataset after quality preprocessing.

After the preprocessing steps, the resulting matrix expresses the beta- value coefficients
of methylation. The beta-value method has a direct biological interpretation—it roughly
corresponds to the percentage of a site that is methylated. However, from an analytical
and statistical perspective, the beta-value method has strong heteroskedasticity outside the
mean methylation range, which is a major problem in the application of many statistical
models. In comparison, the M-value method, which is roughly equivalent to a logarithmic
transformation of the beta-value, is statistically more valid in differential and other statisti-
cal analyses because it is approximately homoscedastic and the difference of the M-value
can be interpreted as the fold-change [26]. Therefore, we applied a transformation of the
beta-value to the M-value to our data and performed our next analysis with the M-values.
The M-values were obtained directly via the ChAMP package after a preprocessing check
for the TCGA data portal datasets, while we transformed the beta-values of the GEO dataset
into M-values via the beta2m function of the lumi R package 2.52.0 [27].

2.2. DNA Methylation Analysis

Since DNA methylation is a process known to correlate with age, the biological age
for the GEO dataset GEO69914 was derived using the GP-age package, even though
this process is only validated for blood and not for all tissue types. We then calculated
the epithelial component for each sample using EpiDISH 2.16.0 [28], an R package for
deriving the proportions of a priori known cell types in a sample representing a mixture
of such cell types. This package can be used for DNAm data from whole blood, general
epithelial tissue, and breast tissue. Finally, PCA analysis of the methylation data assessed
the correlation of the methylation M-values with age, epithelial components of breast tissue,
and tumour stage.

2.3. Epimutation Detection

To identify an epimutation, the method described by Gentilini et al. [5] was used.
A stochastic epigenetic mutation or “epimutation” (SEM), at a given CpG site, was defined
as an extreme outlier of the DNA methylation value distribution across individuals [5].
At the beginning, each dataset was considered as an independent experiment. For each
dataset, the distribution of the M-values of each CpG probe in the dataset population was
calculated. Then, we obtained the inter-range quantile (IRQ) of the distribution of the
M-values of each CpG probe. Then, we defined as epimutated the M-value of a probe in a
sample if this M-value was outside the interval defined in the following equations for the
lower limit:

Lmin = Q1 − (3× IQR) (1)

and the following equation for the upper limit:

Lmax = Q3 + (3× IQR) (2)

where Q1 and Q3 are, respectively, the first and the third quartile and IQR is the interquar-
tile range.

Using the package semseeker [29] with the semseeker function, we calculated the
absolute value of the difference (which we called delta, δ) between the M-value of each
probe minus the corresponding limit of the interval used to define an epimutation for all
probes: |MValue − Lmax| if it was a hypermethylated probe or |MValue − Lmin| if it was a
hypomethylated probe. Figure 1 shows in a schematic way the definition of epimutation and
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of delta. The probes with an M-Value within the defined range between Lmax and Lmin were
set to zero. In turn, we calculated the distribution of the deltas for both hypermethylated
probes and hypomethylated probes. We then applied the quartile ranking of absolute
delta values to the whole genome and assigned a score from 1 to 4 to each quartile. In this
way, we not only determined the presence of a single epimutation, but also ranked the
epimutation weight in the whole genome; the higher the deviant value was, the higher was
the rank of the epimutation. The quartile ranking was applied to eliminate technical bias in
methylation measurement.

Figure 1. The figure shows the ranges used to define the epimutations; the upper part of the figure
shows the epimutations due to hypermethylation, and the lower part shows two epimutations due
to hypomethylation.

Then, all the probes were annotated using the official Illumina manifest file [30], using
the hg19 genome version as the reference, in order to quantify the total epimutation weight
in each gene region (TSS1500, TSS200, first-exon, body-gene).

Finally, the ranks of the probes belonging to the same gene region (TSS1500, TSS200,
first-exon, body-gene) were summed for each annotated gene. At the end, we obtained two
synthetic values for each gene region for each sample: one for the hypermethylated probes
and one for the hypomethylated probes. We called these two values weighted stochastic
epimutation scores (WSEMSs).

Finally, for each gene region, a quantile regression model (at the median) was applied
between the WSEMSs obtained for both the hypomethylated and hypermethylated gene
regions and oestrogen receptor status using age, epithelial proportion, and clinical stage
(available for both TCGA datasets) as covariates.

ERstatus ∼ EpimutationBurden + Age + Stage + Epithelialcomponent (3)

The quantile regression model was calculated using the R package lqmm [31]. All
results were corrected for multiple testing using [32] the Benjamini and Hochberg method.

2.4. Identification of Genes and Pathways

Quantile regression results were filtered to identify gene regions with statistically sig-
nificant epimutation burden (hypomethylated or hypermethylated), and pathway analysis
was performed using the pathfindR R package [33]. As a result, pathfindR generates a table
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with the ID and the name of the pathway resulting from the enriched analysis with the
significant gene regions, the lowest adjusted p-value of the given term over all iterations
(lowestp), the highest adjusted p-value of the given term over all iterations (highestp), and
the number of occurrences of this gene in the pathway over all iterations. Finally, the path-
ways identified in each dataset were intersected to find the common pathways among
all datasets (Section 3.5).

2.5. Workflow

For each dataset, the adopted workflow is shown in Figure 2.

Figure 2. Pipelines adopted to conduct the study.

3. Results
3.1. Clinical and Biological Characteristics of BC Patients and Tumour Samples

We began by downloading three publicly available datasets. Table 2 summarises the
clinical and biological characteristics of the patients in the three datasets.
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Table 2. The clinical characteristics of the patients and the tumour samples of the three datasets used
for our analysis.

Dataset Age (std) Stage I Stage II Stage III Stage IV ER+ ER− n (Patients)

TCGA-BRCA 57.65 (12.74) 91 (17%) 281 (54%) 145 (28%) 4 (0.77%) 426 (82%) 95 (18%) 521 (52%)
GSE69914 49.93 (5.62) - - - - 254 (84%) 48 (16%) 302 (30%)

TCGA-BRCA-27k 59.19 (13.11) 46 (26%) 107 (59%) 20 (11%) 7 (3.89%) 140 (78%) 40 (22%) 180 (18%)

Anamnestic personal age is not available in the GSE69914 dataset; therefore, the
biological age was derived from the same methylation data using an algorithm based on
blood methylation data, although only cancer tissue data were available. The mean age
was 57.65 ± 12.74 years in the TCGA-BRCA dataset, 49.93 ± 5.62 years in the GSE69914
dataset, and 59.19 ± 13.11 years in the TCGA-BRCA-27k dataset. The clinical stage was
not included in the GSE 69914 dataset. The distribution of the clinical stage of BC in the
other two datasets for which it was available was similar and consistent with reports in
the literature, with the most part of the cases occurring in the first two stages of BC [1].
As reported in the literature, the ratio of ER-positive to ER-negative BC was also about
20–80% as in Table 3 [34].

Table 3. HER2 distribution in the breast cancers of the 450k-TCGA dataset.

ER− ER+ Total

Undetermined 31 (32.5%) 128 (30%) 159
HER2− 55 (58%) 244 (57.3%) 299
HER2+ 9 (9.5%) 54 (12.7%) 63

Total 95 (100%) 426 (100%) 521

The presence of HER2 expression was evaluated in the BC samples of the 450k TCGA
dataset (for which these data were available). The most part of BC was HER2-negative, both
in ER-positive BC (57.3%) and in ER-negative BC (58%). HER2-positive BC corresponded
to 12.7% in ER-positive BC and to 9.5% in ER-negative BC, respectively. The number of
HER2+ BC was only a minimal part of the total BCs, and the percentages of HER2+ and
HER2- were similar in both groups of ER-positive and ER-negative BCs. Moreover, we
executed a Pearson’s Chi-squared test, whose p-value was 0.527, confirming a non-statistical
significance dependence of the two variables. Therefore, we considered the presence of
HER2 non-determinant of the difference between ER-positive and ER-negative, and we
did not use HER2 as a covariate in our analysis, as in other similar studies comparing
characteristics between ER-positive and ER-negative BC.

3.2. Analysis of Methylation Profiles of BC Tissues

After preprocessing analysis, the correlation was evaluated between the methylation
profile of BC samples and the following three factors: patient age, clinical stage, and epithe-
lial components of BC samples, which are known variables affecting the methylation profile
of BC tissues [5,6]. Therefore, we performed PCA analysis and confirmed that these vari-
ables were correlated with the methylation data for the TCGA datasets (Figures 3 and 4).
For the third dataset (GSE69914), the PCA correlation of age and methylation profile is
shown only for completeness, since age was calculated on the methylation data (Figure 5).
Finally, we included the epithelial component, patient age, and clinical stage as covariates
in our final regression model (as described in Section 2).
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Figure 3. The corplot diagram of the correlation test between each principal component and pheno-
typic trait for the GSE69914 study. Asterisks have the following correspondence p-value ’****’ = 0,
’***’ = 0.0001, ’**’ = 0.001, ’*’ = 0.01, ‘ ’ = 0.05.

Figure 4. The corplot diagram of the correlation test between each principal component and pheno-
typic trait for the TCGA-BRCA study. Asterisks have the following correspondence p-value ’****’ = 0,
’**’ = 0.001, ’*’ = 0.01, ‘ ’ = 0.05.
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Figure 5. The corplot diagram of the correlation test between each principal component and phe-
notypic trait for the TCGA-BRCA-27k study. Asterisks have the following correspondence p-value
’****’ = 0, ’**’ = 0.001, ’*’ = 0.01, ‘ ’ = 0.05.

3.3. Epigenetic Mutation Analysis and Definition of “Epimutation Score”

In this study, we investigated the association of the epimutation score in two main
groups of breast cancer identified immunohistochemically by oestrogen receptor expression
according to the latest clinical guidelines. We began by analysing methylation data from
one dataset at a time. We determined an “epimutation score” for each gene region as
explained in the Materials and Methods Section 2. We then applied a quantile regression
model to the median for each gene region for each type of epimutation that occurred (by
hypermethylation and hypomethylation). In this way, we obtained the beta regression
coefficients explaining how much the epimutation burden differed between the two groups.
We plotted the beta regression coefficients for the expression of ER and their corresponding
p-values in the volcano plots in Figures 6 and 7.

We interpreted the positive beta coefficients (on the right of the vertical axis) as a
measure of the higher total epimutation burden in the gene region for ER-positive BC
compared with ER-negative BC and the negative beta coefficients (on the left of the vertical
axis) as a measure of the higher burden of epimutated probes in the gene region present in
ER-negative BC compared with ER-positive BC; this was applied both to hypermethylated
and to hypomethylated analyses.

3.4. Identification of the Most-Epimutated Genes

Consequently, we filtered out the genes with statistically significant regression beta
coefficients in the gene regions studied. The ridge plots in Figures 8 and 9 give an idea
of a large number of genes with a statistically significant presence of epimutations, both
hypomethylated and hypermethylated.
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Figure 6. The figure represents the volcano plot for each genomics area: each dot represents, for each
gene, the quantile regression beta coefficient and the corresponding −log10(pValue). All four plots
represent the genes affected by an epimutation score due to hypermethylation. The dot’s colors are
associated to a studied data-set as in the legend.
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Figure 7. The figure represents the volcano plot for each genomics area: each dot represents, for each
gene, the quantile regression beta coefficient and the corresponding −log10(pValue). All four plots
represent the genes affected by an epimutation score due to hypomethylation. The dot’s colors are
associated to a studied data-set as in the legend.
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Figure 8. Ridge plots. Each plot represents for each dataset the density (y-axis) of the p-value (x-axis)
associated with the gene area with an epimutation burden due to hypermethylation.

In this way, we obtained for each dataset a list of genes with different epimutation
loads in the two BC groups (one list due to hypomethylation and one due to hypermethyla-
tion). Using these lists, we performed pathway enrichment analysis in the REACTOME
database, the results of which are shown in Tables 4–6 for pathways impacted by genes with
Hypormethylation and Tables 7–9 for pathways impacted by genes with Hypermethylation.
All the pathways found after enrichment for all the dataset are available in supplementary
data as defined in the Supplementary Materials.

Table 4. Pathways impacted by SEM caused by hypomethilation for dataset GSE69914 27k on the
TSS1500 gene area.

Description Regression Beta Genes with
Increased Burden

Genes with
Decreased Burden

Integrin signalling 5.06 BCAR1
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Table 5. Pathways impacted by SEM caused by hypomethilation for dataset TCGA-BRCA 27k on the
TSS1500 gene area.

Description Regression Beta Genes with
Increased Burden

Genes with
Decreased Burden

Integrin signalling 7.12 FGB SRC

Table 6. Pathways impacted by SEM caused by hypomethilation for dataset TCGA-BRCA on the
TSS1500 gene area.

Description Regression Beta Genes with
Increased Burden

Genes with
Decreased Burden

Integrin signalling 3.47 AKT1 RAP1A, SRC

Figure 9. Ridge plots. Each plot represents for each dataset the density (y-axis) of the p-value (x-axis)
associated with the gene area with an epimutation burden due to hypomethylation.
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Table 7. Pathways impacted by SEM caused by hypermethilation for dataset GSE69914 on the
TSS1500 gene area.

Description Regression
Beta

Genes with
Increased Burden

Genes with
Decreased Burden

SUMOylation of Transcription Factors 6.33 PIAS1

RHOJ GTPase Cycle 4.60 CAV1, DEPDC1B

Constitutive Signalling by Notch1 HD + PEST Domain Mutants 4.36 HEY2, PSEN1

Constitutive Signalling by Notch1 PEST Domain Mutants 4.36 HEY2, PSEN1

Signalling by Notch1 HD + PEST Domain Mutants in Cancer 4.36 HEY2, PSEN1

Signalling by Notch1 PEST Domain Mutants in Cancer 4.36 HEY2, PSEN1

Signalling by Notch1 in Cancer 4.36 HEY2, PSEN1

RHOQ GTPase Cycle 4.29 CAV1, DEPDC1B

RHOG GTPase Cycle 3.52 CAV1, DEPDC1B

Signalling by Notch1 3.42 HEY2, PSEN1

RAC2 GTPase Cycle 2.94 CAV1, DEPDC1B

RAC3 GTPase Cycle 2.75 CAV1, DEPDC1B

SUMO E3 Ligases SUMOylate Target Proteins 2.32 DDX17, PIAS1 RARA

SUMOylation 2.23 DDX17, PIAS1 RARA

Table 8. Pathways impacted by SEM caused by hypermethilation for dataset TCGA-BRCA 27k on
the TSS1500 gene area.

Description Regression
Beta Genes with Increased Burden Genes with

Decreased Burden

SUMOylation of Transcription Factors 5.93 TFAP2C TFAP2B

RHOQ GTPase Cycle 5.02 CDC42BPA, CDC42EP3, OBSCN, SYDE1 PREX1

Constitutive Signalling by Notch1
HD + PEST Domain Mutants 4.09 HDAC1, HDAC3, HDAC9, JAG2

Constitutive Signalling by Notch1 PEST
Domain Mutants 4.09 HDAC1, HDAC3, HDAC9, JAG2

Signalling by Notch1 HD + PEST Domain
Mutants in Cancer 4.09 HDAC1, HDAC3, HDAC9, JAG2

Signalling by Notch1 PEST Domain
Mutants in Cancer 4.09 HDAC1, HDAC3, HDAC9, JAG2

Signalling by Notch1 in Cancer 4.09 HDAC1, HDAC3, HDAC9, JAG2

RHOG GTPase Cycle 3.29 ARHGDIG, DOCK3, EPHA2 PREX1

RHOJ GTPase Cycle 3.23 CDC42BPA, SYDE1 PREX1

Signalling by Notch1 3.20 HDAC1, HDAC3, HDAC9, JAG2

RAC2 GTPase Cycle 2.76 DOCK3, EPHA2, SYDE1 PREX1

RAC3 GTPase Cycle 2.58 EPHA2, NOX1, SYDE1 PREX1

SUMO E3 Ligases SUMOylate Target
Proteins 2.17 CTBP1, HDAC1, L3MBTL2, TFAP2C DNMT3B, TFAP2B

SUMOylation 2.09 CTBP1, HDAC1, L3MBTL2, TFAP2C DNMT3B, TFAP2B
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Table 9. Pathways impacted by SEM caused by hypermethilation for dataset TCGA-BRCA on the
TSS1500 gene area.

Description Regression
Beta Genes with Increased Burden Genes with

Decreased Burden

SUMOylation of Transcription Factors 3.43 CDKN2A, PIAS1

RHOJ GTPase Cycle 3.11 FMNL3, PAK1, PAK2, RHOJ CDC42BPB

RHOQ GTPase Cycle 2.90 ARHGAP17, ARHGAP33, PAK1, PAK2 CDC42BPB

RAC2 GTPase Cycle 2.79 ARHGAP17, BAIAP2L1, DOCK3, LBR,
PAK1, PAK2, VRK2

Constitutive Signalling by Notch1
HD + PEST Domain Mutants 2.36 DLL1, HDAC1, HDAC4, PSEN1

Constitutive Signalling by Notch1 PEST
Domain Mutants 2.36 DLL1, HDAC1, HDAC4, PSEN1

Signalling by Notch1 HD + PEST Domain
Mutants in Cancer 2.36 DLL1, HDAC1, HDAC4, PSEN1

Signalling by Notch1 PEST Domain
Mutants in Cancer 2.36 DLL1, HDAC1, HDAC4, PSEN1

Signalling by Notch1 in Cancer 2.36 DLL1, HDAC1, HDAC4, PSEN1

RAC3 GTPase Cycle 2.23 ARHGAP17, BAIAP2L1, LBR, PAK1, PAK2,
VRK2

RHOG GTPase Cycle 1.90 DOCK3, LBR, PAK2, VRK2

Signalling by Notch1 1.85 DLL1, HDAC1, HDAC4, PSEN1

SUMO E3 Ligases SUMOylate Target
Proteins 1.67 CBX2, CDKN2A, DDX17, HDAC1, HDAC4,

NR3C1, PIAS1 RARA

SUMOylation 1.61 CBX2, CDKN2A, DDX17, HDAC1, HDAC4,
NR3C1, PIAS1 RARA

All these steps are summarised in Figures 10 and 11, which are Venn diagrams of the
multiple crossing steps.

Figure 10. Pathways overlapping among the three studies due to burden of probes with hypermethylation.
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Figure 11. Pathways overlapping among the three studies due to burden of probes with hypomethylation.

3.5. Identification of Common Pathways

The pathways identified by the enrichment analysis of each dataset were crossed as
summarised in the Venn diagrams in Figures 10 and 11. We found common pathways for
the three datasets characterised by a higher burden of epimutations in the TSS1500 gene
region than for the hypomethylation and hypermethylation probes. The following tables
show the pathways shared by all three datasets analysed.

In the first Table 10 are the pathways corresponding to the pathway retrieved from the
TSS1500 gene region with epimutated probes that showed significantly higher epimutation
levels in ER-positive BC versus ER-negative due to hypermethylation. We can note that
most of them belong to two main pathways, the Notch pathway and the SUMOylation
pathway, which are associated with breast cancer, as explained in the next section. Two
other pathways were the UCH proteinase pathway and the Ub-specific processing Ub-
specific processing protease pathway, both of which are related to the regulation of the
ubiquitination process, which is another post-translational protein process like SUMOy-
lation. The last pathway was the regulation of signal transduction processes, which have
been found to affect BC development in different ways depending on the expression of ER.
We discuss the role of these signalling pathways in the development of Lyme disease in
more detail. We filtered the pathways to obtain only those present in 90% of the iterations
performed by pathfindR.

Table 10. Pathways shared for the TSS1500 gene area due to hypermethylation.

REACTOME-ID Description

R-HSA-2894862 Constitutive Signalling by Notch1 HD + PEST Domain Mutants
R-HSA-2644606 Constitutive Signalling by Notch1 PEST Domain Mutants
R-HSA-2894858 Signalling by Notch1 HD + PEST Domain Mutants in Cancer
R-HSA-2644602 Signalling by Notch1 PEST Domain Mutants in Cancer
R-HSA-2644603 Signalling by Notch1 in Cancer
R-HSA-1980143 Signalling by Notch1
R-HSA-157118 Signalling by Notch

R-HSA-3232118 SUMOylation of Transcription Factors
R-HSA-4551638 SUMOylation of Chromatin Organisation Proteins
R-HSA-3108232 SUMO E3 Ligases SUMOylate Target Proteins
R-HSA-2990846 SUMOylation
R-HSA-877312 Regulation of IFNG Signalling

R-HSA-5689603 UCH Proteinases
R-HSA-5689880 Ub-Specific Processing Proteases
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The second Table 11 lists the pathways corresponding to those retrieved from the
TSS1500 gene region with epimutated probes that showed significantly higher epimutation
levels in ER-positive BC versus ER-negative BC due to hypomethylation. In this case,
the common pathway was ESR-mediated signalling, a known pathway associated with the
effects [35,36].

Table 11. Pathways shared for the TSS1500 gene area due to hypomethylation.

REACTOME-ID Description

R-HSA-8939211 ESR-Mediated Signalling

4. Discussion

Breast cancer (BC) is the most-common tumour in women. It is a multifactorial
disease with a high grade of heterogeneity often contributing to making breast cancer
difficult to treat. Different methods of classification, such as the immunohistochemical
technique, molecular characteristics, and gene expression, have been used to frame this
high heterogeneity in order to foresee the prognosis and to choose the best treatment
options [37,38]. Immunohistochemically, BC can be classified by the expression of oestrogen
receptors (ERs), progesterone receptors (PRs), and receptor tyrosine-protein kinase erbB-
2 (HER2) [2–4]. The clinical guidelines for immunohistochemical (IHC) quantitation of
steroid receptors in BC recommend that ER and PR assays be considered positive if at least
one percent of nuclei are stained [3]. Although the two groups of BC identified in this way
(ER-positive/ER-negative) are not completely homogeneous, the two BC groups can be
differentiated by biological characteristics and clinical behaviour [39]. It is noteworthy that
the tumour ER expression is considered an element of high cellular differentiation and
has a very important role in prognosis and therapy [4]. In fact, breast cancer prognosis
progressively worsens in ER-negative subtypes due to their high aggressiveness, hormonal
therapy insensitivity, and chemoresistance, and a subset of patients will progress to relapse
after CT remission, which subsequently leads to metastasis. Furthermore, in patients with
ER-positive BC, the relapses have molecular characteristics similar to those of ER-negative
BC [39,40]. The underlying mechanisms of BC heterogeneity features and mechanisms that
drive therapy resistance (both hormonal and chemotherapeutic) are conundrums that have
still to be completely solved, and efforts have to be made in order to better understand the
biology of BC and stratify patients to effective treatments [39].

In our study, we tried to characterise these two groups of breast cancers (ER-positive
and -negative) by applying an epigenetic score based on the identification of different
epigenetic outliers (defined as epimutations). An epimutation, at a given CpG site, could
be defined as an extreme outlier of the DNA methylation value distribution across indi-
viduals [15]. Previous studies evaluated the presence of epigenetic outliers in BC, but
they compared BC tumour samples vs. normal breast tissue or blood samples from BC
patients vs. control women without BC [15,16,41]. Teschendorff AE et al. [16] demonstrated
that DNA methylation outliers in pre-neoplastic lesions define epigenetic field defects,
marking cells that become enriched in invasive breast cancer and cervix cancer and that
may, therefore, contribute casually to cancer progression. In another study, the same group
highlighted that the identification of outlier methylation profiles allows more-reliable iden-
tification of risk-associated CpGs than statistics based on differences in mean methylation
levels [41].

4.1. Cancer Cells, Epigenetic Mechanisms, and DNA Methylation

Cancer cells acquire the ability to divide and grow uncontrollably [17]. Though it is
well established that this could be due to both genomic and epigenetic alterations, the pro-
cess through which cells acquire this characteristic is not completely understood [42].
Several studies have demonstrated the importance of epigenetic alterations in multiple
aspects of cancer biology (tumour pathogenesis and immunomodulation), cancer diagno-
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sis and prognosis, and finally, treatment response and therapy resistance [42,43]. DNA
methylation is one the most-commonly occurring epigenetic events, in which there is the
addition of a methyl group to the carbon 5 position of cytosine within a cytosine guanine
(CpG) dinucleotide by enzyme DNA methyltransferase. DNA methylation can be stable
and heritable through cell divisions, but in the meantime, it is reversible and modifiable
by specific enzymes [42]. Many studies report how breast cancer cells show disrupted
methylation patterns in their DNA [39,44]. Moreover, the DNA methylation pattern can
be very specific not only for different types of tumours (inter-tumour heterogeneity), but
also for different tumour subgroups (intra-tumour heterogeneity) and, therefore, has been
used also to identify different cancer types and to trace the primary origin of metastatic
tumours [42,44].

In general, global DNA hypomethylation has been associated with cancer. DNA
hypomethylation can determine chromosomal instabilities and gene activation, thus leading
to the upregulation or overexpression of proto-oncogenes and increased recombination
and mutation rates [44]. Hypomethylation contributes to oncogenesis also by the activation
of latent retrotransposons or mobile DNA, such as long interspersed nuclear elements,
which can determine the disruption of the expression of the adjacent gene, for example
homeobox [42].

DNA hypermethylation in cancer, instead, is associated with a direct gene repression
effect (of tumour-suppressor genes, for example), but also with compaction of chromatin,
which in turn modifies its accessibility and, finally, determines the instability and alteration
of gene expression (silencing of DNA repair genes, for example) [44]. However, the inhibi-
tion or activation of transcription by methylation is dependent on the analysed DNA gene
segment (promoter, TSS, or gene-body).

DNA hypermethylation of promoters’ transcription start sites (TSS) or enhancers con-
tributes to reducing gene expression or silencing by interfering with the binding of specific
transcription factors to their recognition sites or by binding of transcriptional repressors
specific for the methylated sequence [43]. Estecio and Issa [19] underlined that CpG island
promoters are the most-straightforward compartment to evaluate when searching for aber-
rant DNA methylation in cancer, above all considering that these CpG islands usually are
unmethylated in normal cells (except for imprinted and X-chromosome inactivated genes).
Therefore, they speculated that these abnormally methylated gene promoters (along with
other regions with regulatory function) will likely be revealed as important players in
tumour biology. They reported examples of promoter hypermethylation of the CDKN2A
and MLH1 genes.

On the contrary, hypermethylation at gene-bodies is associated with active transcrip-
tion and gene expression, as a result of mRNA expression studies (as the case of home-
obox) [42]. It has been suggested that the sliding of RNA polymerase over the gene-body
attracts DNA methyltransferase enzymes and, therefore, that DNA methylation in a gene-
body is a consequence of transcription, rather than an active agent promoting it. Others
suggested that methylation marks embedded in coding sequences are associated with the
timing of transcription initiation events [45]. Moreover, differences in CpG methylation be-
tween exon and intron regions raise the possibility that gene-body methylation participates
in splicing regulation [19]. Finally, the biological meaning of gene-body methylation still
remains unclear, and more studies are needed to address this issue.

Methylation markers in intergenic regions are thought to have little impact on genome
activity [45]. In this study, according to previous studies, we found the most-important
differences of the epimutation score between the two groups of ER-positive and ER-negative
breast cancer precisely in the promoters of specific genes belonging to a few pathways.

4.2. Main Pathways Identified by Our Analysis

Pathway-centric analysis, as opposed to a gene-centric one, allows identifying re-
current altered signalling or function in cancer, based on alterations found in different
genes belonging to the same pathway, but not altered at equal frequencies [17]. Moreover,
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evaluating the burden of epimutations per gene region (TSS200, TSS1500, promoter, gene-
body, and first-exon) and then using these data for gene enrichment pathway analysis
permit capturing the biological process involved by these variations avoiding treatment
of individual occurrences of epigenetic markers such as nucleotide polymorphisms (i.e.,
as epialleles), since it was observed that the methylation state of any particular nucleotide in
the promoter, for example, is usually irrelevant and could represent statistically significant
alterations, but functionally uninformative differences [45].

ESR-mediated signalling was identified as the pathway whose genes are overcharged
by a higher epimutation score due to hypomethylation of the TSS1500 gene region (cor-
responding at least in part to the promoter region) in ER-positive BC vs. ER-negative
BC. In light of the fact that a hypomethylated promoter could permit gene expression
(even if it is not a unique condition), we interpreted this result as coherent with a higher
activation of this pathway in the BC group that expresses ER. In this sense, previous studies
centred on the role of the epigenetic control of ER function confirmed our results. This
is indirectly suggested by many studies that report a higher hypermethylation status of
the ER promoter in the group of ER-negative BC and that ER gene hypermethylation is
associated with lacking ER gene expression [46–49]. Moreover, other studies confirmed,
for example, that inhibition of DNA methyltransferase (DNMT) in ER-negative BC cells
induces re-expression of oestrogen receptor-alpha [50,51].

The pathways identified by a higher epimutation score due to hypermethylation of the
TSS1500 gene region in ER-positive BC vs. ER-negative BC belong to the following main
groups: the Notch pathway, the SUMOylation pathway, and two ubiquitination protease
signalling pathways. Other studies confirmed that, generally, the hypermethylated loci
in ER-negative tumours were clustered closer to the transcriptional start site compared to
ER-positive tumours [52] and that there was a cumulative effect of a very large number of
epigenetic perturbations to be correlated specifically and in cis with hundreds of additional
transcriptional changes [53].

Interestingly, the SUMOylation pathway and ubiquitination protease signalling path-
way belong to the same kind of protein post-translational modifications.

The data on the role of signalling in BC are few and contrasting. Todorović-Raković
found that raised serum IFN-γ levels are associated independently with favourable disease
outcomes in hormonally dependent breast cancer [54]. On the other side, Yu and colleagues
found that IFN-γ induces tumour resistance to anti-PD-1 immunotherapy in BC [55], and
experiments on BC cells demonstrated that IFN-γ could upregulate the expression of PD-
L1, promote cell migration and transmission, and facilitate the epithelial–mesenchymal
transformation of breast cancer cells [56].

The SUMOylation and the Notch signalling pathways are the other two pathways
whose genes emerged as characterised by a higher epimutation score due to hypermethyla-
tion in the TSS1500 gene region in the ER-positive vs. ER-negative BCs. Since we performed
a direct comparison of the two BC groups, we hypothesised that the presence of a higher
hypermethylation of the gene region that overlaps the gene promoters corresponds to a gen-
eral reduced gene expression (as discussed before) and, consequently, to a reduced activity
of these two pathways in the ER-positive BCs. Moreover, based on the direct comparison
between the two groups of BCs, we speculated that the relative hypomethylation in the
ER-negative BCs could justify the hypothesis of the presence of a state of hyperactivation
of these two pathways in ER-negative BC. The presence of a significant activity of these
two pathways in the ER-negative BC group is not lacking, as discussed thereafter [57].

4.3. On the Role of SUMOylation and Notch Pathways in ER-Negative BC and Their Correlation
with Epithelial–Mesenchymal Transition and Breast Cancer Stem Cells

Many studies suggest the existence of complex and intricate relations among the
biological process of epithelial to mesenchymal transition (EMT) and cancer stem cell
(CSC) phenotype. EMT is characterised by the acquisition of phenotypic plasticity and
the stem-cell-like properties of the tumour cells, including cytoskeleton adjustment, loss
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of cell polarity, and loss of cell adhesion. During EMT, cells lose their epithelial features
and markers—such as the cobblestone shape and E-cadherin expression—to acquire a
mesenchymal phenotype—assuming a spindle shape and mesenchymal markers, such
as vimentin and fibronectin [38,58]. These mesenchymal attributes permit cancer cells
to develop new capabilities, such as migration and invasiveness, pro-survival ability,
stemness, immunosuppression, and chemoresistance [59]. These characteristics can lead
to the formation of CSCs, the maintenance of aggressiveness, the initiation of metastasis,
and tumour relapse [60].

CSCs were identified for the first time in 2003 in human breast tumours (BCSCs),
and since then, a growing amount of evidence has supported their role in breast cancer
initiation, intratumoural heterogeneity, progression, disease recurrence, metastasis, and
resistance to therapy [61]. Actually, the origin of CSCs is not clear. In particular, the two
main hypotheses are that they are cells already present in the tumour from its origin, but
in a state of quiescence, or alternatively, that they originate at a secondary time through
a process of de-differentiation (for example, through a process of partial/total EMT).
Finding a set of markers to identify and target these partial/total EMT cells could lead to
understanding the origin of CSCs and their deregulated pathways and could be a strategy
for the development of therapeutics blocking cancer invasion and dissemination [59].

The EMT and CSCs have been correlated with alterations of the Notch and SUMOyla-
tion pathways in ER-negative BC in many studies [38,61–65].

Numerous studies found that Notch signalling activation and protein SUMOylation
may promote breast cancer tumourigenesis and progression by accelerating cell cycle
transition and proliferation and facilitating tumour cell EMT in breast epithelial cells
in vivo and in vitro [38,61–66].

Notch1 knockdown in breast cancer cells suppressed the EMT process, tumour growth,
migration, and invasion using in vitro and in vivo models. Jagged1-mediated Notch
signalling activation was able to activate the EMT process and increase migration and
invasion in breast cancer, mainly through upregulation of N1ICD. Notch1 signalling is able
to reverse the epithelial cobblestone morphology of the cells to the spindle mesenchymal
one, to induce the switching of epithelial markers such as E-cadherin by the upregulation
of SNAIL, SIP1/ZEB2, and SLUG (which are direct transcriptional repressors of E-cadherin)
and the acquisition of mesenchymal markers such as vimentin, N-cadherin, and fibronectin
to reduce invasion and migration [61,63–65]. On the contrary, activation of Notch signalling
can be suppressed by EMT-inhibiting microRNAs such as miR-34 and miR-200 [64]. The
role of Notch signalling in EMT corresponds to its promotion of invasive and metastatic
phenotypes. Activation of Notch signalling in non-invasive breast cancer cells promotes cell
invasion and migration, while inhibition of Notch in invasive cells reduces their invasive
and migratory capacity [61,63–65], and Notch signalling is correlated with metastasis
in vivo [67].

In the same way, SUMOylation participates directly in the modifications of many
transcription factors (TFs) and in the activation of various signalling involved in the
control of EMT [38,58]. Several transcriptional factors’ activity—including ZEB1, SNAIL,
and TWIST—which regulate mesenchymal cell marker expression, such as CDH1 (the E-
cadherin gene) and promote EMT—is directly or indirectly influenced by the SUMOylation
pathway. ZEB1, one of the main TFs involved in EMT, has been reported to be regulated
by SUMOylation through different mechanisms. SUMOylation of ZEB1, as well as its
homologue ZEB2, inhibits E-cadherin expression and induces EMT. Moreover, silencing of
SENP1 (which has also the function of peptidase, which causes the hydrolysis of SUMO
bonds) decreases the ZEB1 protein level, suggesting that deSUMOylation of ZEB has a role
in activating the TF [58]. By regulating numerous oncoproteins, ZEB1 plays an important
role in metastasis. In the ER-negative basal-like breast cancer (BLBC), a breast cancer
subtype enriched with the expression of mesenchymal genes and reduced expression of
epithelial ones including E-cadherin [68], downregulation of CDH1 is mediated by ZEB1,
which recruits DNMT1 (a DNA methyl-transferase enzyme) to the CDH1 promoter to
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maintain the methylation status in the promoter. These results suggest that ZEB1 could
act as a transcriptional repressor and an epigenetic modulator to induce EMT in breast
cancer [69]. A recent study demonstrated that also ZNF451, a SUMO2/3-specific E3 ligase,
is a positive regulator of EMT through the SUMOylation of TWIST2 at the K129 residue.
SUMOylation stabilises TWIST2 by inhibiting its ubiquitination and degradation and,
consequently, promotes EMT [58]. Two prominent mesenchymal transcription factors,
SLUG and TWIST1, are upregulated in cells that present mesenchymal characteristics. The
expression levels of SLUG AND TWIST1 are highest in ER-negative claudin-low tumours,
and both genes identify letrozole-resistant disease. SLUG accumulation in basal-like
tumours is also associated with BRCA1 mutations [70].

Moreover, a direct correlation between the aberrant Notch and SUMOylation pathways
and the triple-negative phenotype of BC has been found in many studies.

Notch signalling has been seen hyperactivated in TNBC and in ER-positive BC with
poor prognosis or with a higher risk of relapse (which have many features in common with
ER-negative BC). It was suggested that this hyperactivation could have an important role
in EMT induction and BCSCs’ proliferation in TNBC [39], while in ER-positive BC, this
could induce hormone-therapy resistance [71]. Clinical analyses showed that JAG1, as well
as Notch1, Notch3, and Notch4 are overexpressed at high levels in TNBC and correlated
with the aggressive, metastatic, and therapy-resistance phenotype characteristic of TNBC
and are associated with poor clinical prognosis. Moreover, the expression of the Notch
target, HES4, was correlated with poor prognosis outcomes in TNBC patients [63]. Reedijk
and colleague [71] observed that patients with tumours expressing high levels of JAG1
or Notch1 had a significantly poorer overall survival compared with patients expressing
low levels of these genes, and moreover, a synergistic effect of high-level JAG1 and high-
level Notch1 coexpression on overall survival was observed. Therefore, they suggested a
mechanism whereby Notch is activated in aggressive and poor-prognosis breast tumours
(since JAG1 is a ligand of Notch-receptor-1) and that the basal breast cancer subgroup
(belonging to ER-negative BC) shows poor overall survival as a result of JAG1-induced
Notch activation in some of these tumours. Reference [72] performed exome sequencing
analysis to identify Notch mutations in various solid tumours, revealing that constitutive
receptor activation induced by Notch1 and Notch2 mutations is limited to TNBC. A TNBC
cell line with Notch1 rearrangement also exhibited high-level Notch1 intracellular domain
(N1ICD) accumulation with subsequent upregulated target gene expression. In addition,
Notch1 or Notch2 mutations can synergistically act with EZH2 to inhibit the tumour
suppressor PTEN’s transcription at the promoter in TNBC [73].

In a gene expression study, Orzechowska M. and colleagues evaluated [37] the effect
of the differential expression of Notch members on DF in luminal type A (lumA) and
triple-negative (TN) BC. This study highlighted significant differences in the biology of the
two tumours and indicated differences in the signals activating the Notch pathway and in
particular suggested a role of Notch signalling in BRCA progression through triggering
EMT. From their analysis, it emerged that aberrant expression and regulation of Notch
receptors have the most-significant influence on the course of the disease. Notably, their
results indicated that, while there are subgroups of patients who will probably never
experience disease relapse, other subgroups exist within the ER-positive lumA subtype that
have a higher risk of recurrence due to potential transition into the mesenchymal cell type.
Moreover, their findings indicate that the expression profiles of Notch pathway members
can be used to differentiate the DFS in lumA and TNBC subtypes and, so, may serve as
novel prognostic biomarkers. Finally, they highlighted that MMP11, TAGLN, and THB2,
three genes involved in acquiring the mesenchymal phenotype and that are regulated by
the Notch pathway, can be used as potential therapeutic targets.

On the other hand, also the SUMOylation pathway seems to be involved in the mainte-
nance of the characteristics of TNBC and the basal BC subtype (belonging to the ER-negative
BC group). Bogacheck and colleagues demonstrated that inhibition of the SUMOylation
pathway reduced cell invasiveness and induced functional loss of CSCs in basal BC [74].



Cancers 2023, 15, 4109 22 of 26

Moreover, the same group in another study [62] established that SUMOylation inhibitors
induce a basal-to-luminal transition in BC cells and inhibit tumour outgrowth of basal
cancer xenografts. Wang Q and colleagues reached similar conclusions about the relation
of SUMOylation and ER-negative BC, evaluating the role of SUMO1-activating enzyme
subunit1 (SAE1), an E1-ligase-activating enzyme, indispensable for protein SUMOylation
in TNBC. They found that mRNA and protein SAE1 expression is increased in TNBC
tissues compared to adjacent normal tissue and their expression levels are significantly
associated with overall survival (OS) and disease-free survival (DFS) [75]. In the review by
Zhu et al., the multiple ways through which the SUMOylation pathway can influence stem
cell functions in cancer were recapitulated [76].

Finally, we discuss the role of epigenetic control on the Notch and SUMOylation
pathways. Interestingly, DNA methylation has been confirmed to have an important role in
the regulation of the Notch and SUMOylation pathways. Yousefi and colleagues, using the
TCGA HumanMethylation450 Array data, determined that the epigenetic regulation of the
Notch regulators contributes to their expression and suggested that Notch receptors and
ligands’ expression is generally associated with the tumour subtype, grade, and stage [77].
Aithal et al. focused on the methylation status of genes in the Notch signalling pathway
from various cancers and highlighted how this epigenetic alteration can be used as a
biomarker for cancer diagnosis and subsequent treatment [78]. Accordingly, due to the
important role of epigenetic reprogramming and DNA methylation, Hanif and colleagues
highlighted how these processes could be determinant specifically in TNBC, in which
we have seen that the Notch pathway could have fundamental regulatory functions [39].
Finally, Kagara et al. demonstrated that methylation is a significant mechanism regulat-
ing CD44, CD133, and Musashi-1, which are specific BCSC-related genes, and that the
hypomethylation of these genes correlates with a significant inverse correlation of mRNA
expression in the TNBC subtype [79].

We want also to discuss the limits of our study. First and foremost, for one dataset
(GSE69914), the patients’ age and tumour stage were not available; therefore, age was
inferred through methylation data, while tumour stage was omitted in the analysis of
that dataset. Second, we introduced an epimutation score based on quantile ranking
of the difference in the methylation levels; this is a new method of analysis that needs
to be validated with other studies. Finally, in the discussion, we interpreted the results
of the hypomethylation of the genes of ESR-mediated signalling in ER-positive BC as
corresponding to a higher expression of the genes in this group of BC. Yet, we know that
this condition of hypomethylation is not sufficient to draw this conclusion. An analogous
consideration could be drawn when we considered the hypermethylation promoter of
genes belonging to the Notch and SUMOylation pathways in ER-positive BC. In this case,
we concluded that the hypermethylation in ER-positive BC corresponds to a reduced
methylation in ER-negative BC (since we performed a direct comparison of methylation
data between these two groups of BCs); we considered this condition potentially correlated
with a higher expression of these genes in this group of ER-negative BCs. We know that
these are only indirect hypotheses that need to be confirmed.
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