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Simple Summary: Cancer cells are dependent on normal cells for their survival and functionality
because they can use nanoscale tubes to steal the mitochondria from immune cells. It also highlights
the significance of mitochondria in the biology of cancer cells as the key organelles for cellular
metabolism and energy generation. Recent research has shown that mitochondria are critical for
cancer cell survival in the hostile tumor microenvironments, immune system evasion, acquisition of
more aggressive characteristics, and treatment resistance. This article discusses the role of mitochon-
drial metabolism in cancer biology, customized cancer therapy, and how it affects cancer resistance to
chemotherapy, immunotherapy, and radiation. For instance, by scavenging the produced reactive
oxygen species, functioning mitochondria might enhance cancer resistance to radiation. According to
this hypothesis, targeting mitochondria may improve oncological results. The tumors can respond
completely to anticancer therapies or even experience malignant progression while receiving them.
As a result, individualized cancer treatment is essential. Up until now, genetic analysis has been the
foundation for customized cancer treatment. There is evidence that cancers with a high mitochondrial
concentration are more difficult to cure. Evaluation of mitochondrial metabolism before therapy may
supplement genetic data and enhance the personalization of oncological interventions.

Abstract: Energy is needed by cancer cells to stay alive and communicate with their surroundings.
The primary organelles for cellular metabolism and energy synthesis are mitochondria. Researchers
recently proved that cancer cells can steal immune cells’ mitochondria using nanoscale tubes. This
finding demonstrates the dependence of cancer cells on normal cells for their living and function.
It also denotes the importance of mitochondria in cancer cells’ biology. Emerging evidence has
demonstrated how mitochondria are essential for cancer cells to survive in the harsh tumor microen-
vironments, evade the immune system, obtain more aggressive features, and resist treatments. For
instance, functional mitochondria can improve cancer resistance against radiotherapy by scavenging
the released reactive oxygen species. Therefore, targeting mitochondria can potentially enhance
oncological outcomes, according to this notion. The tumors’ responses to anticancer treatments
vary, ranging from a complete response to even cancer progression during treatment. Therefore,
personalized cancer treatment is of crucial importance. So far, personalized cancer treatment has
been based on genomic analysis. Evidence shows that tumors with high mitochondrial content are
more resistant to treatment. This paper illustrates how mitochondrial metabolism can participate in
cancer resistance to chemotherapy, immunotherapy, and radiotherapy. Pretreatment evaluation of
mitochondrial metabolism can provide additional information to genomic analysis and can help to
improve personalized oncological treatments. This article outlines the importance of mitochondrial
metabolism in cancer biology and personalized treatments.
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1. Introduction

Cancer is a heterogeneous illness made up of various biological entities that require
various therapies. Due to this problem, the world is moving away from one-size-fits-all
cancer treatment regimens toward ones that are risk-adapted [1]. Recent researchers aim to
identify the predictive factors influencing outcomes to personalized therapies and enhance
quality of life while preserving efficacy. Predictive indicators for therapy response and
toxicity are as important to illness as prognostic factors.

Cancer cells require normal cells for survival and function. By using nanoscale tube-
like structures, cancer cells steal mitochondria from immune cells (CD8+ T cells and natural
killer [NK] cells) [2]. Aside from providing energy, mitochondria also play a significant
role in cancer cell survival and growth. Moreover, mitochondria are critical to the biology
of cancer stem cells (CSCs), contributing to their resistance to chemo- and radiotherapy [3].

The purpose of this article is to provide a detailed understanding of mitochondrial
function in cancer metabolism and how it is relevant to improving different cancer treat-
ments, particularly radiotherapy (RT). RT is used in over 50% of cancer cases [4], and
aims to deliver the maximum dose to the affected area while minimizing harm to healthy
tissues. Each RT schedule is determined by several factors, including beam type, total
and per fraction doses, treatment length, time between fractions, and dose rate. Person-
alized radiotherapy aims to optimize the RT schedule—per the specific tumor and host
characteristics—to maximize treatment outcomes while minimizing the likelihood of ad-
verse effects [5]. Currently, RT recommendations are mainly based on population averages
obtained from studies. This paradigm has two problems: tumors are generally hetero-
geneous with different genetic and epigenetic signatures, and tumor hosts vary in racial,
ethnic, and genetic features, which might affect the treatment outcomes [5]. Emerging
evidence reflects the importance of patient characteristics, including age, gender, ethnicity,
comorbidities, lifestyle, and intrinsic characteristics of cancer on treatment response [6–8].
This strategy has become a discipline in oncology called Personalized Cancer Treatment.
To date, personalized oncology has been principally based on genomic analysis, using
different testing, for example, next-generation sequencing (NGS) [9]. This paper illustrates
how mitochondrial metabolism can serve as a predictive factor of treatment response. This
additional information can improve the existing personalized treatment based on genomic
analysis. The varied function of mitochondria in cancer metabolism is discussed in the
following section, along with how essential healthy mitochondria are used for the survival
and development of cancer.

2. The Pivotal Role of Mitochondria in Cancer Cells’ Metabolism

Cancer cells rely on functional mitochondria to survive in the harsh tumor microenvi-
ronment (TME), evade the immune system, progress to less differentiated types, and resist
different treatment modalities [10], as follows: (Figure 1)

(A) Surviving in the TME via the following mechanism:

(A1) Metabolic switch to glycolysis: cancer cells are reorganized to tolerate the
hypoxic, acidic, and hypoglycemic conditions of TME. Hypoxia-inducible
factor-1α (HIF-1α) is one of the primary regulators of this metabolic alter-
ation. In the harsh TME, HIF-1α overexpression leads to a metabolic switch
from oxidative phosphorylation (OxPhos) into glycolysis. This alteration can
maintain the cellular adenosine triphosphate (ATP)/adenosine diphosphate
(ADP) level in the hypoxic TME. It has been demonstrated that HIF-1α relies
on functional mitochondria for a secure continuous function [11]. In 2020,
van Gisbergen et al. realized that cancer cells with severe mitochondrial dys-
function showed a decrease in CAIX expression and HIF-1α levels. The authors
concluded that functional mitochondria are essential for the stabilization of
HIF-1α [11].

(A2) Scavenging reactive oxygen species (ROS): hypoxic condition of TME is associ-
ated with increased ROS production in cancer cells. When there is insufficient
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oxygen availability, the electron transport across the mitochondrial complexes
is slowed down. This causes the electrons to leak out of the electron transport
chain (ETC) and interact with oxygen, producing ROS. Functional mitochon-
dria can detoxify the released ROS by preserving the cellular NADPH sources.
This function is mediated by increased NADH production, representing mito-
chondrial function [12,13].

(A3) Arresting cell cycle: cancer cells can tolerate the harsh TME by dormancy,
which is the mitotic arrest at the G0/G1 cycle phase [14]. Cell cycle progression
is regulated by a dedicated system consisting of cyclins and cyclin-dependent
kinases (CDK). It has been demonstrated that mitochondria can mediate dor-
mancy in colon cancer cells by HIF-dependent activation of p21 and p27 (two
CDK-cyclin inhibitors) [11,15], in prostate cancer cells by activating the MAPK-
p38 pathway [16,17], and in leukemic stem cells by activating the mTOR
pathway [18,19].

(A4) Maintaining pH homeostasis: In contrast to normal cells, cancer cells can
tolerate acidic TME using a dedicated transmembrane glycoprotein called
carbonic anhydrase IX (CA IX). This protein preserves intracellular pH by
absorbing extracellular bicarbonate and sending out intracellular lactate [20,21].
It has been demonstrated that mitochondria are the upregulators of CA IX [11].

(A5) Mediating autophagy: mitochondria can facilitate autophagy by raising the
level of intracellular ROS, which leads to the inactivation of mTORC1 (an au-
tophagy inhibitor) and the activation of NRF2 (an autophagy activator) [22–25].

(A6) Angiogenesis: secretion of different angiogenic factors (e.g., VEGF, PGF, an-
giopoietin) in cancer cells is HIF-dependent [26]. Mitochondria conduct angio-
genesis by securing HIF function [11].

(A7) Mitochondrial hijacking: cancer cells can steal mitochondria from T cells (and
NK cells) via nano-scale tubes. Saha et al. demonstrated that this process is
GTP-dependent [2]. Functional mitochondria can secure mitochondria hijack-
ing by providing GTP from their TCA cycle [27].

(B) Immune evasion: completed via facilitating TME acidification, glucose influx, PD-1
upregulation on T cells (by mitochondrial hijacking) [28], recruiting myeloid-derived
suppressor cells (MDSCs), PD-L1 overexpression on cancer cells (via STING-IFN
pathway), MHC-1 downregulation, and the secretion of immunosuppressants [10].
Additionally, T cells’ mitochondrial hijacking leads to PD-1 upregulation on T-cells
and depletes their energy to provide long-term cancer-fighting action [28].

(C) Aggressiveness: mitochondria are crucial for cancer progression via mediating genomic
instability, quiescence evasion, and epithelial-to-mesenchymal transition (EMT) [10].
An increase in cellular ROS is the most common promoter of these three processes.
Genomic instability is mediated by an increase in ROS levels and damage to nu-
clear nucleosides and inducing minority MOMP (mitochondrial outer membrane
permeabilization) [10]; quiescence evasion is conducted by an increase in cellular ROS
and following the activation of the Ras pathway [29,30]; Section 3 summarizes how
mitochondria are involved in EMT. ROS is a double-edged sword, destroying cancer
cells at high levels and promoting cancer progression at moderate levels. Functional
mitochondria help cancer cells to maintain cellular ROS at higher levels (so-called “el-
evated ROS balance”), facilitating cancer progression without damage to the cellular
structures [31].

(D) Treatment resistance: mitochondria can protect cancer cells from chemotherapy and
RT by eliminating the released ROS. Additionally, they increase chemotherapy resis-
tance by encouraging the function of efflux pumps (by providing ATP) and inducing
cell cycle arrest. Additionally, mitochondrial hijacking from T cells impairs the long-
term effects of anti-PD-1 treatment [10].
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cell; MHC-1, major histocompatibility complex class I; PD-1, programmed cell death protein-1; PD-
L1, programmed cell death protein-ligand 1; ROS, reactive oxygen species; and TME, tumor micro-
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Figure 1. Schematic model of how mitochondria contribute to cancer cells’ survival in tumor mi-
croenvironment (A), immune evasion (B), progression (C), and resistance to different treatment
modalities (D). Section D also demonstrates the importance of mitochondrial metabolism in ‘6Rs’ of
radiobiology. EMT indicates epithelial-mesenchymal transition; MDSC, myeloid-derived suppres-
sor cell; MHC-1, major histocompatibility complex class I; PD-1, programmed cell death protein-1;
PD-L1, programmed cell death protein-ligand 1; ROS, reactive oxygen species; and TME, tumor
microenvironment (retrieved from [10,32]).

3. Mitochondria Individualized Role in Cancer Metastasis

Metastasis happens in a very diverse and individualized pattern [33]. The players in
the molecular pathway of metastasis and the therapeutic response to metastasis should
also be considered in a personalized and idealized context. In order for cancer cells to
spread, they must first undergo EMT, during which they lose intercellular adhesions and
obtain high capacity for local migration, vascular invasion, and resistance to apoptotic
stimuli. [34]. It has been found that there is a link between EMT and the stemness of
cancer cells. These two processes are controlled by common mediators such as HIFs,
SNAIL, and SLUG/SOX9 [35,36]. More functional mitochondria can promote EMT through
releasing more mitochondrial ROS (mtROS), which activates different pathways, such
as MAPK PI3K/Akt/mTOR, and VEGFA–SOX2–SNAI2 pathways [36–38]. Moreover, it
is essential to acknowledge that mitochondria are directly involved in the cancer cells’
proliferation, invasion, and metastasis by enabling the linkage between β1 integrin and the



Cancers 2023, 15, 4058 5 of 20

extracellular matrix [39]. This process is mediated by lysyl oxidase (LOX), which requires
HIF-1α for a secured function. Mitochondria can promote this process by promoting HIF-
1α stability [11,40]. It is of utmost importance to employ targeted anti-mitochondrial to
impede the process of EMT and curb the spread of cancer cells throughout the body. This
approach can prove to be instrumental in arresting the progression of cancer and enhancing
the effectiveness of treatment. Precisional targeting of cancer-specific mitochondria can
reduce their ability to de-differentiate, proliferate, and metastasize, and helps to improve
the treatment results and overall prognosis.

4. Targeting Mitochondria: A Practical Strategy for Personalized Cancer Treatment

Thanks to the developments in medical genetics and molecular biology, the function
of mitochondria in several cellular functions, including apoptosis, redox balance, macro-
molecule production, and calcium homeostasis, has been demonstrated [41,42]. In contrast
to the ancient Warburg theory, the mitochondria of cancer cells are functional, supporting
their survival and function [10]. As noted earlier, mitochondria can contribute to the devel-
opment, progression, and metastasis of cancer. In addition, it has a crucial role in treatment
resistance. As noted in Section 2, functional mitochondria can help cancer cells to overcome
chemotherapy effects by scavenging released ROS and activating multidrug resistance
pumps [10]. Also, they can improve the resistance against immunotherapy, by inhibiting
the immune cells’ entry to the TME by depleting the glucose content of TME, acidifying
the TME, and mediating the mitochondria hijacking from immune cells [10,43]. Next, we
outline how mitochondria can improve the cancer cells resistance against radiotherapy. In a
recent study, Taghizadeh-Hesary et al. demonstrated that mitochondria have a contributing
role in tumor response to radiotherapy. They demonstrated that mitochondria are involved
in so-called 6Rs of radiobiology [32] (Figure 1). The details of this link were presented
as follows:

(a) Repair: DNA damage is the primary cause of RT’s cytotoxic effects. Cancer cells
with improved DNA repair mechanisms can counteract this effect. Mitochondria can sup-
port ATP-dependent proteins responsible for DNA integrity-related, including PARP-1 [44],
XRCC1 [45], ATM [46], and DNA ligases [47], by providing enough ATP molecules.

(b) Repopulation: Mitochondria can support cancer cells proliferation by supplying
the building materials, including nucleic acids, amino acids, and lipids through stabilizing
HIF-1 and metabolic switching to glycolysis [48].

(c) Reoxygenation: HIF-1 can mediate tissue reoxygenation by promoting the ex-
pression of different angiogenic factors and shielding endothelial cells from radiation
effects [49]. HIF-1 needs functional mitochondria to function properly [11]. Consequently,
healthy mitochondria can aid in the reoxygenation of tumor tissue.

(d) Redistribution: Cyclin-Cdk complexes carefully control the cancer cells’ cell cy-
cle [50]. The radiosensitive phases of the cell cycle are G2 and M and the radioresistant
phases are G1 and S [51]. Cell cycle progression depends on dynamic responses of mi-
tochondria during the G1 and S phases, when mitochondria fuse to form a hyperactive
network; after that, they undergo fission to ensure proper partitioning between the two
daughter cells [50]. In addition, functional mitochondria can help the cell cycle progression
by supplying enough energy [52].

(e) Reactivation: Cancer cells have the ability to avoid activated immune cells by using
immune inhibitory molecules like programmed death-ligand 1 (PD-L1) [53]. It has been
shown that in the hypoxic TME, HIF-1α mediates PD-L1 expression on cancer cells [54].
This process is supported by functioning mitochondria which help to stabilize HIF-1α [11].
On the other hand, Akbari et al. found a direct correlation between T cell mitochondrial
capacity and the expression of PD-1. If T cells have limited mitochondrial capacity, they
may experience an overexpression of PD-1, ultimately leading to inactivity [28]. The study
conducted by Saha et al. conclusively showed that specific nanotubes enable cancer cells
to hijack the mitochondria of T and NK cells [2]. Applying this strategy, cancer cells
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deliberately raise their PD-L1 levels while boosting PD-1 in immune cells to cunningly
evade the immune system.

(f) Radiosensitivity: Functional mitochondria can reduce the radiosensitivity of cancer
cells by scavenging the released ROS and mediating the removal of damaged mitochondria,
a process called mitophagy [32]. Hitherto, numerous biological factors have been linked
to the intrinsic radiosensitivity of cancer cells, including p53, transforming growth factor
beta (TGF-β), and isocitrate dehydrogenase 1 (IDH1) among others. For instance, p53
can improve radioresistance by enhancing the mitochondrial DNA integrity and PGC-1α
(peroxisome proliferator-activated receptor γ coactivator-1α) overexpression [55,56]. For
the detailed mechanisms of other corresponding factors, the readers are referred to the
study by Taghizadeh-Hesary et al. [32] (Table 1).

Table 1. The biological factors of radioresistance from the mitochondria perspective.

Factors Cancer Refs. Interaction with Mitochondria Refs.

Increasing radioresistance

Mutated P53 Various [57]

− Mutated p53 preserves mtDNA integrity
− Mutated p53 improves mt capacity

(PGC1α-mediated)
− More functional mt scavenge more RT-induced ROS

[55]
[56]
[10]

TGF-β HCC [58]

− TGF-β signaling in CAFs mediates reverse
Warburg effect

− CAFs’ lactate and pyruvate feed cancer cells’
mt OxPhos

− Activated OxPhos helps to restore NADPH
− NADPH supports the antioxidant defense system

[59]
[60]
[61]
[62]

IDH1 Glioblastoma [63]

− Mutated IDH1 enhances mt OxPhos
(ROS generation)

− Mutated IDH1 downregulates cytochrome c
− Cytochrome c can nullify ROS
− Thus, IDH1 mutation disrupts the ROS balance

[64]
[65]
[66]

PARP

Breast
Ovarian
Prostate
Pancreatic
HCC

[67]

[68]

− PARP requires RAD51 for HR
− BRCA2 regulates RAD51 function
− BRCA2 requires mt support
− Thus, functional mt improves radioresistance by

mediating HR

[69]
[69]
[70]

PI3K/Akt/mTOR pathway Prostate [71]

− mTOR upregulates mt proteins responsible for
mt metabolism

− More functional mt scavenge more RT-induced ROS
[72]
[10]

Wnt/β-catenin pathway Esophageal
SCC [73]

− Wnt upregulates HMGB1
− HMGB1 activates mitochondria
− More functional mt scavenge more RT-induced ROS

[73]
[74]
[10]

NF-κB pathway

Breast
Glioma
HCC
Melanoma
NSCLC

[75]

− Enhances mt respiration
− Regulates mt dynamics
− Regulates mt gene expression

[76]

8-oxo-dG Esophageal
Gastric [77]

− Serum 8-oxo-DG level represents cellular ROS
− Cellular ROS is dependent on mt metabolism

[77]
[10]
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Table 1. Cont.

Factors Cancer Refs. Interaction with Mitochondria Refs.

ATM Glioma [78] − Preserves mtDNA [79]

XRCC1 NSCLC
HNC [80] − Preserves mt respiratory chain [81]

NOTCH2 NSCLC [82] − Regulates mitochondrial function [83]

KEAP1 NSCLC [82]
− Regulates mitochondrial function
− Regulates mitophagy

[84]
[85]

FGFR1/3 NSCLC [82] − Regulates mitochondrial energy metabolism [86]

HOTAIR Breast [87] − Regulates mitochondrial function [88]
[89]

AMPK Glioblastoma [90] − Preserves mt biogenesis upon energy stress [91]

RPA1 Glioblastoma [92] − Preserves mtDNA [93]

RSK2 NSCLC [94] − Stimulates mt OxPhos [95]

LAPTM4B NPC [96]

− Activates mTOR
− mTOR upregulates mt proteins responsible for

mt metabolism
− More functional mt scavenge more RT-induced ROS

[97]
[72]
[10]

Decreasing radioresistance

TNFα NSCLC [98]

− Impairs mt complex I and III
− Complex III is essential for NADPH activity
− Thus, reduces mt capacity to scavenge

RT-induced ROS

[99]
[100]

Note: This Table is retrieved from the Taghizadeh-Hesary et al. study [32]. Abbreviations: 8-oxo-dG, 8-hydroxy-
2′-deoxyguanosine; Akt, protein kinase B; AMPK, serine/threonine kinase AMP-activated protein kinase; ATM,
ataxia-telangiectasia mutated; BRCA2, breast cancer gene 2; CAF, cancer-associated fibroblasts; FGFR1/3, fibrob-
last growth factor 1/3; HCC, hepatocellular carcinoma; HMGB1, high mobility group box 1; HOTAIR, HOX
transcript antisense RNA; HR, homologous recombination; IDH1, Isocitrate dehydrogenase 1; KEAP1, Kelch-like
ECH-associated protein; LAPTM4B, lysosome-associated transmembrane protein 4B; mt, mitochondrial; mTOR,
mammalian target of rapamycin; NADPH, nicotinamide adenine dinucleotide phosphate; NF-κB, nuclear factor
κB; NOTCH2, neurogenic locus notch homolog protein 2; NPC, nasopharyngeal carcinoma; NSCLC, non-small
cell lung cancer; OxPhos, oxidative phosphorylation; PARP, poly (ADP-ribose) polymerase; PGC-1α, peroxi-
some proliferator-activated receptor-gamma coactivator 1α; PI3K, phosphoinositide 3-kinases; ROS, reactive
oxygen species; RPA1, replication protein A1; RSK2, ribosomal S6 kinase; RT, radiotherapy; SCC, squamous cell
carcinoma; TGF-β, transforming growth factor β; TNFα, tumor necrosis factor α; XRCC1, X-ray repair cross
complementing 1.

This section illustrated how functional mitochondria can improve the tumor resistance
against the various treatments. Therefore, inhibiting the cancer cells’ mitochondria can
potentially improve the treatment results.

5. Enhancing the Normal Cells’ Mitochondria Reduces the Radiotherapy Toxicity

The way normal tissue responds to radiation is mainly influenced by its DNA repair
capacity, repopulation, and radiosensitivity [101]. As previously stated, having functional
mitochondria is crucial for cells to promote DNA repair and growth and to reduce RT-
induced oxidative stress. Inflammation caused by radiation is an important stage in the
development of normal tissue damage. It occurs when ROS is released from the damaged
cells [102]. Functional mitochondria help to reduce inflammation and prevent tissue
damage by effectively eliminating ROSs [103]. Hence, enhanced mitochondrial content
of normal cells can effectively mitigate the adverse impact of radiation exposure. In this
section, we outline how mitochondrial metabolism is connected to the known factors’
normal tissue radiosensitivity.

• Recruiting genotypic and proteomic data of patients with breast or head and neck
cancer, a series of proteins are recognized as a determinant for normal tissue toxicity
to radiation; including CHIT1, PDGFB, STIM1, and THPO proteins as improving



Cancers 2023, 15, 4058 8 of 20

radiosensitivity, and SERPINC1 and SLC4A as enhancing radioresistance [104]. Mi-
tochondrial metabolism interprets the mechanism of action of STIM1, SERPINC1,
and SLC4A. STIM1 (stromal interaction molecule 1) regulates intracellular calcium
level [105] and downregulates mitochondrial metabolism as its knockout leads to
more metabolically active mitochondria [106]. STIM1 exacerbates radiation toxic-
ity by preventing mitochondrial function from neutralizing the radiation-induced
ROSs. Apoptosis and mitochondrial dysfunction are instead encouraged by SER-
PINC1 knockout because it activates the Bax pathway [107]. In the mitochondrial
anti-oxidative system, SLC4 (solute carrier 4) scavenges ROS to improve radioresis-
tance [108]. Hence, SERPINC1 and SLC4 may enhance radioresistance by enhancing
mitochondrial metabolism and their capacity to scavenge ROS molecules.

• TGF-β overexpression increases the susceptibility of radiation-induced pulmonary
fibrosis [109] and its activation affects mitochondrial respiration via impairing the
mitochondrial complex IV in lung epithelial cells [110].

• The JAK/STAT signaling pathway in human cells is thought to provide protection
against radiation. The activation of STAT3 enhances the ability of normal cells to
withstand radiation by promoting the production of NADPH (which helps maintain a
balanced redox state) and ATP (which helps ensure DNA stability); hence, it enhances
the mitochondrial ETC in normal cells [111].

• Radiation toxicities are more likely to affect older people. Higher ROS production
and decreased antioxidant capability in older people have been blamed for this im-
pact [112]. As people get older, there is mounting evidence that their ability to produce
ATP and NADPH is reduced because of an accumulation of mtDNA mutations and
ROS damage to the mitochondrial substructures [113]. The cellular redox processes
(such as glutathione) and the ATP-dependent enzymes responsible for repairing
DNA damage are each impaired, necessitating NAPDH to function [114]. As a re-
sult, its relationship with radiation damage may be influenced by aging’s impact on
mitochondrial metabolism.

• Several mechanisms have been proposed to explain how smoking during RT may
increase the frequency and severity of radiation-induced acute and delayed toxic-
ities [115]. Through endothelial damage and coagulation, it impairs tissue repair
and triggers an inflammatory cascade, which increases the rate and severity of acute
radiation toxicities and causes late toxicities [116]. Both acute and late radiation tox-
icities from tobacco smoke affect mitochondria negatively. Smoke exposure alters
the mitochondrial membrane potential, which causes the release of ROS from the
mitochondria and ultimately results in cellular death. DAMPs are then released into
the extracellular matrix, where they connect to toll-like receptors (TLRs) on tissue
macrophages and trigger the NF-kB pathway. Inflammatory cytokines are released
as a result, which damages healthy tissue and exacerbates acute radiation-induced
inflammation [116]. The main cause of delayed radiation toxicities, which manifest
at least three months after RT, is the replacement of normal tissues by fibrotic tissues
with inadequate blood flow [117]. In order for tissue regeneration and angiogenesis
to be mediated by wound macrophages—the key players in wound healing—proper
mitochondrial function is a crucial precondition and determining factor in the early
stages of wound repair [118]. Therefore, increased radiation toxicity in smokers is
justified by mitochondrial damage.

Alcohol intake can also enhance the incidence and severity of tissue fibrosis after
radiation exposure, which can aggravate radiation-induced toxicities [119]. In order for
macrophages to effectively repair the damaged tissue, as mentioned above, functional
mitochondria are necessary [118]. Since ethanol can harm normal cells’ mitochondria
by inducing oxidative stress, its detrimental effects on mitochondrial metabolism may
contribute to the radiotherapy’s delayed toxicities [120]. As a result, continued use of
cigarettes or alcohol during RT may each cause certain radiation-induced toxicities.
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6. Immune Cells’ Mitochondria: A Chance to Improve Treatment Results

In addition to immunotherapy, a powerful immune system can improve the treatment
results of radiotherapy and chemotherapy [32,121]. To improve the normal cells’ mitochon-
drial content and activity several strategies can be employed. The mitochondria quality can
increase by two strategies; (1) improving the lifestyle by regular exercise [122], specific diets
(low-specific dynamic action diet [123], branched-chain amino acid-rich diet [124], and
Mediterranean diet [125]); good sleep [126], healthy weight [127], alcohol abstinence [128],
and smoking cessation [129]; and (2) mitochondria boosting agents (e.g., coenzyme Q10, ac-
tivators of adenosine AMPK, acetyl-L-Carnitine; mammalian target of rapamycin [mTOR],
PGC-1α, etc.) [130,131]. In addition, the human gut microbiota is another modulator of
mitochondrial fitness. It has been demonstrated that microbiota-derived metabolites are
necessary for the proper action of mitochondrial metabolisms, including glycolysis, tricar-
boxylic acid (TCA) cycle, oxidative phosphorylation, as well as amino acid and fatty acid
metabolism. The mitochondrial boosting strategies are diverse. Detailed information is
presented in the following sources [131,132].

7. Heteroplasmy Provides Unique Profiles in Cancer

Heteroplasmy is the presence of more than one type of organellar genome (mitochon-
drial DNA or plastid DNA) within a cell. The amount of heteroplasmy is determined
during oogenesis and is inherited from the mother. There are variations in the percentage of
mutant alleles between oocytes and then between children. Heteroplasmy or the presence
of at least two mtDNA variants within the single cell, and its level (the proportion of
mutated mtDNA) are frequently seen with and in accompany tumor heterogeneity. One of
the major challenges to understanding and elucidating the role of the variations in tumor
growth is the heteroplasmy levels of the mtDNA variants. In turn, intratumor genetic
heterogeneity affects personalized medicine strategies in a significant way since it can
reduce the effectiveness of treatments and result in treatment resistance. It is interesting to
note that numerous studies have linked heteroplasmic levels to both cancer risk and sur-
vival [133–137]. It would be essential to advance knowledge of the biological mechanisms
at play, including proliferation, metastasis, and intratumoral heterogeneity, as well as the
clinical implications of heteroplasmy, via recognizing the crucial role of heteroplasmy in
cancer. The high mutation rate found in mtDNA, which is between 10 and 17 times higher
than that of the nuclear genome, is explained by the lack of histones, effective DNA repair
mechanisms, and closeness to reactive oxygen species (ROS) produced by the OxPhos
system (mostly from Complex I and III) (nDNA) [138–141]. In humans, mtDNA is only
inherited via the maternal line as a single unit called a haplotype, which may be shared by
populations with similar ancestries. Factually, a set of haplotypes or a haplogroup can be
used to distinguish across populations or ethnic groupings while certain haplogroups have
advantages for environmental adaptation but are also linked to cancer [142–149].

The degree of heteroplasmy varies greatly between different kinds of cancer and
individuals. It has been demonstrated that when tumors progressed, heteroplasmy varied
amongst tissues. Based on the idea that some heteroplasmic variations are finally able
to become dominant or are lost in cancer cells based on their tumor-promoting impact, a
likely bottleneck process was proposed. The G1576C and G12009A mutations are the most
prevalent in tumor cells compared to normal cells (7.8% versus 0.35% and 68.8% versus
0.35%, respectively) [150].

Although a very limited number of studies have been completed on the mechanisms of
heteroplasmy shifting in cancer, there is proof that cell niche and the nucleus-mitochondrial
environment regulate the OxPhos system’s energy performance, choosing particular mutant
alleles [151]. For instance, it has been demonstrated that fumarate accumulation in renal can-
cer alters the mitochondrial content by inactivating core components necessary for mtDNA
replication [152]. Alterations in DNA polymerase gamma (POLG) and mitochondrial
transcription factor A (TFAM) expression, mutations in nDNA-encoded genes involved in
mitochondrial biogenesis, nuclear and mitochondrial epigenetic modifications, as well as
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intrinsic and extrinsic stimuli, may all result in anomalies in mtCNVs [153–155]. Examples
include the dysregulated expression of nuclear genes such as dynamin 1 (DRP1), mitofusin
1 (MFN1) and 2 (MFN2) mitochondrial fusion and fission proteins, BCL2 inter-acting pro-
tein 3 (BNIP3), PTEN-induced kinase 1 (PINK1), and hypoxia inducible factor 1 (HIF1),
observed in lung, bladder, and breast cancers [156,157]. The role of the tumor microenviron-
ment in altering the allelic frequencies of mtDNA mutations was also hypothesized based
on an investigation of primary tumors and their distant metastasis [158]. Additionally,
NOX2-derived redox signaling has been shown to be used by bone marrow stromal cells
to transfer functioning mitochondria to acute myeloid leukemia blasts [159,160]. Together,
these pathways may be crucial for the emergence of a tumorigenic environment-adaptive,
unique response that is represented in the alteration of the allelic frequencies of mtDNA
mutations. The nuclear insertions of mitochondrial origin (NumtS), which have been
linked to cancer, should be considered in the next investigations on heteroplasmy. NumtS
or mtDNA segments integrated into the nucleus during evolution are thought to occur at a
rate of ~5 × 10e−6 per germ cell every generation [161].

Currently, methods based on mitochondrial gene editing have been proposed as a
treatment choice for reestablishing the OxPhos system in conditions brought on by mtDNA
mutations. A possible therapeutic target for cancer has been suggested to include com-
ponents involved in mitochondrial biogenesis and metabolism [162–164]. Overall, in the
context of personalized oncology, the importance of heteroplasmy lies in its potential impli-
cations for diagnosis, prognosis, and treatment of certain types of cancers. Heteroplasmy
analysis can contribute to tracking heterogeneity within a tumor and monitoring the clonal
evolution of mtDNA mutations; it may also guide treatment decisions and the development
of personalized therapeutic strategies. Heteroplasmy analysis can be performed using
non-invasive methods, such as liquid biopsies, which involve analyzing the circulating
tumor DNA (ctDNA) or cell-free DNA (cfDNA) shed by tumors into the bloodstream.

8. Practical and Potential Methods to Target Cancer Cells’ Mitochondria

This section outlines the examined and proposed methods to target the cancer cells’
mitochondria. The available methods can be categorized based on their target, as follows:
(1) inhibiting mitochondrial metabolism, including isocitrate dehydrogenase inhibitors
(IDH1/2) (ivosidenib [IDH1] and enasidenib [IDH2]), lactate dehydrogenase inhibitors
(galloflavin), OxPhos inhibitors (venetoclax plus azacytidine [165], gamitrinib [166]), mito-
chondrial ETC inhibitors (metformin, deguelin, and rotenone [complex I], and oligomycin
and gboxin [complex V]) [167], (2) inhibiting mitochondrial upregulators, including mTOR
inhibitors (temsirolimus) [168], (3) inhibiting mitochondrial protein translation (tigecy-
cline) [169], and (4) mitochondrial apoptosis inducers, including BH3-mimetics [170]. In
this regard, an emerging study (OPTIMUM, NCT04945148) aims to evaluate the impact
of adding metformin (an OxPhos inhibitor) in improving the efficacy of available stan-
dard treatment in patients with glioblastoma (radiotherapy plus temozolomide). Table 2
outlines the list of clinical trials evaluating the impact of antimitochondrial therapy on
radiotherapy efficacy.

As noted in Section 2, Saha et al. demonstrated that cancer cells can improve their
mitochondrial content by hijacking mitochondria from immune cells [2]. In addition, cancer
cells can enhance their neighboring cells’ malignancy by transferring mitochondria between
themselves. This behavior has been demonstrated by Lu et al. in bladder cancer cells [171].
Saha et al. demonstrated that the Ras/Rho GTPase signaling is actively implicated in the
nanotube formation. They showed that a farnesyltransferase and geranylgeranyltransferase
type 1 inhibitor (L-778123) could effectively inhibit the nanotube formation [2]. Therefore,
L-778123 (and similar agents) can effectively reduce the mitochondrial content of the
cancer cells.
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Table 2. Trials on the combination of radiotherapy and therapeutic targeting of mitochondrial
metabolism (source http://clinicaltrials.gov).

Clinical Trial
ID Phase Cancer Drug Name Target Mechanism Status

NCT04945148 Phase II Malignant
glioma Metformin Complex I Inhibiting

OxPhos Recruiting

NCT04275713 Phase II Cervical cancer Metformin Complex I Inhibiting
OxPhos Recruiting

NCT04732065 Phase I

Diffuse midline
glioma

Glioblastoma
Recurrent

ependymoma

ONC206
TRAIL-induced

activation of
ClpP

Inhibiting
OxPhos Recruiting

NCT05136846 Phase I Non-small cell
lung cancer Papaverine Complex I Inhibiting

OxPhos Recruiting

NCT05325281 Phase I Pancreatic ade-
nocarcinoma Devimistat α-KGDH and

PDH
Inhibiting

Krebs cycle Recruiting

Abbreviation: α-KGDH, α-ketoglutarate dehydrogenase; ClpP, mitochondrial caseinolytic protease P; OxPhos,
oxidative phosphorylation; PDH, pyruvate dehydrogenase; TRAIL, TNF-related apoptosis-inducing ligand.

In addition, nanotechnology-based platforms have been applied to target cancer cells’
mitochondria. In comparison with non-mitochondria-targeting approaches, mitochondria-
targeting nanomaterials have overcome the limitations of photodynamic therapy (PDT)
(e.g., hypoxia) and photothermal therapy (PTT) and have improved the penetration and
intra-mitochondrial accumulation of chemotherapeutics [172]. For instance, in 2020, Xu et al.
introduced a polypyrrole-silica (Py@Si)-based hybrid nanoparticle to improve doxorubicin
accumulation in CD44+ cancer cells [173]. To successfully deliver nanocarriers into the
mitochondria, it is crucial to consider the challenges posed by the hydrophobic and double
membrane of mitochondria, as well as its highly negative potential [174]. To overcome
these barriers, several strategies have been applied in the design of nanocarriers. For
example, adding lipophilic cations, peptides, or aptamers to polymeric nanoparticles can
enable them to penetrate the mitochondrial matrix [175].

A novel approach to target the cancer cells’ mitochondria is put forward here. Taking a
look at the mitochondrial ETC, another mitochondrial-targeting approach can be considered.
Based on the electromagnetic principles, electric flux creates a magnetic field surrounding
it [176] (Figure 2):

B = µoI/2πr (1)

where B is Magnetic field; I is Current; r is Distance from the conductor; and µo is Perme-
ability of free space (=4π × 10−7 N/A2).

Hence, we may envision a magnetic field surrounding a mitochondrion due to its
active ETC. Studies have shown that cancer cells’ mitochondria have a stronger electron flux
in their ETC compared to normal cells, which aids in responding to their metabolism [177].
This characteristic can serve as an opportunity to target cancer cells’ mitochondria by an
extrinsic therapeutic magnetic field, with specific intensity sparing the normal cells’ mito-
chondria. Electrons generated from different metabolic processes are channeled towards
the mitochondrial ETC to support the cellular metabolic pathways. By disrupting the
cancer cells’ mitochondria, their ETC become impaired (reverse direction of Formula 1).
This effect can eventually turn off the power button of cancer cells’ mitochondria and
impede their support on cancer cells’ metabolism and TME. This concept was applied
in a recent in vitro study by Sharpe et al. The investigators demonstrated that applying
oscillating magnetic fields with appropriate field strength, frequency, and on/off profiles
could effectively arrest the cancer cells ETC, even in a nondividing status [178]. Considering
the following information, the impact of external magnetic fields can be more potent in
in vivo studies. Several studies have demonstrated that low-frequency external magnetic
fields can modulate the tumor immune microenvironment and improve the antitumor

http://clinicaltrials.gov
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immune response. Nie et al. demonstrated that the low-frequency magnetic field could
enhance the survival of melanoma and hepatocellular murine models by reducing the
number of regulatory T cells and increasing the number of CD8+ T cells and dendritic cells
in TME [179,180]. It has been demonstrated that alternating magnetic fields can enhance
ROS release from immune cells [181], representing mitochondrial metabolism [182]. These
benefits were not reported for static magnetic fields [181]. As mentioned earlier, cancer
cells’ functional mitochondria can make it more difficult for immune cells to penetrate the
TME due to its harsh conditions, such as acidity, low glucose, and hypoxia. Therefore,
cancer’s mitochondria-targeting magnetic field can remove the cancer cells’ support on
TME modification and can increase the chance of cancer treatment. When cancer cells are
exposed, their metabolism is disrupted and their support on the TME is reduced. Therefore,
alternating magnetic fields can both weaken the tumor cells and activate the immune cells
and facilitate their infiltration into TME to defeat the weakened cancer cells. These benefi-
cial effects can potentially improve the response to different treatment modalities, given the
importance of immune reactivation in radiotherapy [183], chemotherapy [121], targeted
therapies [184], and immunotherapy [28]. This concept is in its preliminary phases and
enfaces several shortcomings. For example, it is still unclear to what degree mitochondria
contribute to the potential therapeutic effect of rotating external magnetic fields in cancer
cells. In order to fully comprehend how magnetic fields, affect cancer cells, it is necessary
to conduct multidisciplinary research that combines experimental studies and theoretical
modeling (Figure 2).
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9. Conclusions

This article illustrated how mitochondria is involved in the tumor response to different
treatments as well as the normal tissue toxicity. Ever since, personalized treatment has
been primarily based on genomic analyses. This paper put forward that considering the
mitochondrial metabolism status of the cancer cells can provide additional information in
selecting the appropriate treatment. With this concept in mind, future works can design
more personalized treatments to improve the treatment results with fewer toxicities. Het-
eroplasmy analysis in personalized oncology provides insights into the genetic landscape
of tumors, helps predict clinical outcomes, guides treatment decisions, and offers oppor-
tunities for the development of personalized therapeutic approaches. However, further
research is needed to fully understand the impact of heteroplasmy and optimize its clinical
utility in oncology.
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