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Appendix A (supplementary Figures and supplementary Table S1) 

 

 
Supplementary Figure S1. Browsing the livermets-dataset using the oposSOM-browser: (i) Select 
the ”livermetastases” data set (loading takes about a minute); (ii) Choose “gene browser” to select 
a gene and view its expression profile and position in the map; (ii) choose “function browser” to 
select a gene set and view its GSZ-profile and gene map; (iii) Choose “map browser” to select a map-
type (e.g. mean group maps, prognostic map etc.), hoover to select a metagene/spot and check-out 
genes, gene sets of group assignment; (iv) choose “phenotype browser” and select an item (LMS, 
sex, KRAS mutation etc.) and check-out mean maps, OS-curves and similarity net; (v) choose “Path-
way browser” and select the Kyoto encyclopedia of genes and genomes (KEGG)-pathway to check-
out the pathway signal flow (PSF) activity status of the node-genes in a LMS-specific fashion 
(see  [1] for methods description). 
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Supplementary Figure S2. Gallery of SOM portraits in standard and coastline scales. a) Individual 
SOM-portraits of the transcriptomes of 283 CRLM taken from  [2]. Two color scales were used, 
standard scale color codes log(expression) from minimum (blue) and maximum (red) values in each 
portrait. The coastline scale uses the mean expression of each metagene averaged over all samples 
as “sea-level”. It is red for metagene expression exceeding this mean (“land-areas”) and blue for 
smaller values (“sea areas”. b) The red overexpression regions and spots rotate in clockwise 
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direction in the LMS-stratified mean portraits thus indicating mutual similarities and possibly de-
velopmental relatedness. The standard portraits (left part) resolve the spot-regions of strong over- 
and under-expression in red and blue, respectively. The coastline portraits resolve the areas of weak 
over- (red) and under- (blue) expression. The different LMS-portraits mutually overlap thus indi-
cating possible transitions between them via the shift of the associated molecular functions. 

 

 
Supplementary Figure S3. Sorting the portraits. a) Difference portraits between the subtypes reveal 
subtype specific spots and expression patterns (see arrows below). One sees, e.g., that LMS3 shows 
specific activation of spot D (CIN) and B, while LMS4 overexpresses spot C (proliferation) and, to 
different degrees, the triple-spots at the left edge of the difference map LMS4- LMS3 relates to met-
abolic functions (e.g. oxphos). The mixed type LMS2 combines features of LMS1 and LMS5 as well 
as of LMS3 and 4 b) The sample-SOM (or 2nd level SOM) provides a two-dimensional similarity map 
of the individual portraits  [3]. Different areas enrich different LMS (grey-borders) and also reflect 
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roughly the monocle-tree structure (segments) discussed in the paper (red branches). Note that ar-
chetypes of the LMS distribute along the edges of the map while mixed and/or transition types ac-
cumulate in its central part. 

 

 

Supplementary Figure S4. Heatmaps of the gene set categories gene ontology biological process 
(GO BP) and immunome (taken from  [4]).  
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Supplementary Figure S5. Detailed functional analysis using gene set maps and profiles: The pro-
files show the activation status across all samples in units of the gene set Z-score (GSZ). The GSZ 
value is calculated as the mean centralized expression averaged over the set-genes divided by its 
variance over all samples. CRLM were sorted and color coded as in the main paper. The gene set 
map shows the distribution of the genes of the set in the SOM which reflects their topological impact 
in the expression (co-variance) landscape. Often genes accumulate in and around the spot regions 
(red dashed circles) what assigns the functional context of the respective areas in the SOM and sup-
ports interpretation. 

a) Signature sets of CRC subtypes were sorted according to their resemblance with LMS. CRC 
subtypes and signatures were taken from  [5, 6, 7] (see Figure 3b-d). IM4 and IM5 resemble 
low-expression TF characteristics (see below). 

b) Hallmarks of cancer signatures  [8] roughly split into immunity-related and proliferation and 
metabolism-related hallmarks. Genes of the former category accumulate in/around spots E 
and/or A while the latter ones are found along the left edge of the map. See also Figure 3i. 

c) Colon and CRC related signatures refer to upper and lower crypt expression in the healthy 
colon  [9] revealing more metabolic and proliferative activity, respectively; genes overex-
pressed in CIMP-high (CpG island methylator phenotype) CRC referring to hypomethylated 
DNA-promoters  [10] resembling the patterns of PRC2-targets (see below) and of inflamed co-
lon signature (inflamed (ulcerative colitis)-versus-not inflamed)  [11]. The right part shows the 
profiles and maps of genes located at chromosomes showing gains or losses in CRC and CRLM. 
Gained genes accumulate in/near spot D upregulated in LMS3. 

d) Gene signatures of low and high expression categories accumulate in the right and left parts, 
respectively. The former ones include the “plasticity” plateau in the right lower corner. Prolif-
eration-related signatures include that of embryonal stem cells  [12] and of CIN (chromosomal 
instability)  [13] which can associate with bad and good prognosis in the oligometastatic con-
text  [14, 15]. 

e) Genes referring to active and repressive/poised chromatin states in the healthy colon  [16] ac-
cumulate in the left and right part of the map, respectively, and thus associate with functions 
shown in part d. 
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Supplementary Figure S6. Single cell analysis of CRLM data for cell marker gene extraction and 
mapping to CRLM data: a) UMAP (Uniform Manifold Approximation and Projection for Dimension 
Reduction) plot of single cell transcriptomics (scRNA) analysis of CRLM data taken from  [17] re-
solves different cell-types populating the TME. b) Marker genes of the different cell types extracted 
form scRNA data analysis. b) Single-cell markers taken from the scRNAseq analysis of CRLM. 

scRNAseq analysis: Preprocessed data was used as an input to construct a Seurat object using the 
Seurat scRNA-seq analysis R package  [18]. After quality control, 25,121 protein coding genes and 
11,292 single cells were considered for downstream analysis. Raw unique molecular identifier (UMI) 
counts were log-normalized using the scale of 10,000. Top 2,000 highly variable genes were identi-
fied to be used as distinctive genes in downstream analysis. “Var.to.regress” option UMI’s and per-
cent mitochondrial content were used to regress out unwanted sources of variation. Linear dimen-
sionality reduction i.e. principal component analysis (PCA) was run and the dimensionality of the 
datasets was identified as 10 principal components. Then, “FindClusters” was run on 10 principle 
components with 0.5 resolution to perform clustering and annotation. As described in Che et 
al.  [17] the annotation of each cell cluster was confirmed by the expression of canonical marker 
genes. We used the following genes advised for cluster annotation  [17]: EPCs were identified using 
the higher expression of EPCAM, and other cell types, which were annotated using T cells (CD3D, 
CD3G, TRAC), B cells (CD19, CD79A, and MS4A1), plasma cells, monocytes and macrophages 
(CD68, CD163, CD14, and LYZ), NK Cells (KLRF1, KLRD1, FGFBP2, and PRF1). CAFs (FAP, COL1A1, 
COL3A1, DCN, and ACTA2), endothelial cells (CLDN5, CDH5, and VMF), pDC (LILRA4 and IL3RA), 
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and mast cells (TPSAB1, TPSB2, and MS4A2). Also, FindAllMarkers was run to extract distinctive 
markers for each major cellular cluster to be used as CRLM-characterizing gene signatures. 

 

 

 
Supplementary Figure S7. Pathway activity analysis of WNT-signaling. a) Pathway topology, max-
imum pathway signal flow (PSF) in the different LMS and map of the pathway genes. Genes of 
interest (see b) locate in/near spot A (MMP7), C (RNF43) and E(WNT5A) b) Subtype-specific activa-
tion patterns show high PSF-value of MMP7, one of the sink nodes of canonical WNT in LMS1. 
MMP7 locates in spot A which associates with epithelial function and canonical WNT activation. In 
LMS2 one finds activation of both, the canonical pathway including also RNF43 and the non-canon-
ical WNT/CA2+ signaling associated with activation of WNT5A and of the sink NFATC1, both lo-
cated around spot E associated with endothelial function. MMP7 is reported to be involved in CRC 
metastasis  [19] while WNT5A is reported to promote EMT and aggressive and proliferative 



 11 of 17 
 

 

phenotypes in CRC  [20] and other cancer types  [21]. The ubiquitin ligase coding gene RNF43 is 
frequently mutated in CRC  [22]. 
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Supplementary Figure S8. Pseudo-dynamics analysis of CRLM development. a) Expression pro-
files of spots A-F along three trajectories along the monocle-tree in pseudotime-similarity scale. The 
specifics of the trajectories is determined mainly by different slopes of spots C- E. b) Portrayal of 
CRLM along trajectory seg1.1 3 (blue arrow) reveals details of the pseudo-dynamics of changes 
in the expression landscape. CRLM from LMS1 split into high HR (inferior prognosis, blue dashed 
line) and low HR (better prognosis), both decaying along the trajectory, and associating with high 
and lower expression of spot A. High HR portraits show a shift of expression from spot A via the 
plasticity plateak towards spot E while low HR portraits of LMS1 mix with spot pattern seen in 
LMS2-4 and the plasticity plateau as well also towards spot E. CRLM of LMS2-4 found along the 
trajectory show specific high expression of the respective marker spot but similar patterns including 
the plasticity plateau. Overall we see an interplay between expression patterns of the high-expres-
sion spots and the low-expression regions of epigenetic context where in direction towards the split 
point towards Seg3 the red overexpression patterns shift towards spot E.  
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Supplementary Figure S9. Heterogeneity of CAF and immune cell expression across the LMS. Spot 
E associates with the TME which contains endothelial/CAF and inflammatory cells. The biplot of 
both compounds (where we selected plasma cells (PC) as a proxy of the immune compound) shows 
an overall linear relation between them with maximal values in LMS5 (left part). The individual 
CRLM-values considerably scatter with large deviations into positive (CAF dominance, red dashed 
frame and arrow) and negative (PC dominance, blue dashed frame and arrow) directions, especially 
for LMS5 (yellow dots) and LMS4 (light green), respectively. These variations reflect relative PC-
dominance in LMS1 and CAF dominance in LMS5, and, in general, varying CAF-contributions 
across the LMS (right part). In the map, CAF marker genes locate more in the left part of spot E 
while PC markers are slightly shifted towards its right part closer to the upper corner. Marker genes 
of the other immune cells show that B-cells distribute similarly to PC while mast cells more resemble 
the distribution of CAFs which overall reflects a CRLM-specific change of cell communities of the 
TME. Comparison of the portraits of the LMS5 tumors in Seg1.3 and Seg.3 show that they refer to a 
more endothel/CAF enriched and depleted TME, respectively (see main paper, Figure 4 and Sup-
plementary Figure 6b). 
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Supplementary Figure S10. Comparison of different segmentation methods for visualizing the ex-
pression landscape, extracting expression spot-modules and characterizing them in terms of spot 
implications and mutual correlations between them. The weighted topological overlap correlation 
and spot implication (joint appearance of spots) has been described previously in  [23] and  [24], 
respectively. See comments in the figure for details. 
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Supplementary Table S1. Spot module characteristics. 

Spot Brief charac-
teristics 

Up/DN Top genes a) enriched gene sets b) 

A epithelium, 
CMS1-re-
semblance 

Up in 
LMS1 
DN in 
LMS5 

GCNT3, GJB3, 

TSPAN1, LIPH, 

EPHA2 

 

Lembcke_CIMP-CRC-UP (-39), Sabates_Colorectal_Ade-
noma_UP (-29), Jaeger_Metastasis_DN (-26), Wirth_Mu-
cosa (-21), Wu_Cell-migration (-18), Kosinsky_top-crypt 
(-16), Bild_HRAS-oncogenic-signature (-16), 
Moosavi_CMS1 (-16), Marisa_CRC-clusterf (-15) 

B metabolism, 
PRC2-targets 

Up in 
LMS3  

TRPM3, PLPPR1, 

GALNT13, OSBPL6, 

ADAMTS18 

 

Lembcke_TCGA-expr_kmeans_M_CIMP.H_DN(-41), 

CHIANG_LIVER_CANCER_SUBCLASS_CTNNB1_UP(-23), 

HOPP_Repressed(-20), HOPP_Poised_Promoter(-15), SA-

BATES_COLORECTAL_ADENOMA_UP(-15), Lem-

bcke_TCGA-expr_kmeans_L_CIMP.H_UP_Cluster4_DN(-14), 

integral component of membrane(-14), MEISS-

NER_BRAIN_HCP_WITH_ H3K4ME3_AND_H3K27ME3(-

11), Xie_Senescence (-9), Benporath:Suz21-targets (-9) 

C Proliferation, 
cell cycling  

Up in 
LMS1-
LMS4; 
DN in 
LMS5 

TPX2, MYB, 

GALNT3, ECT2, 

ESRP1 

 

 

OTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP(-
99), Liu_LM_cluster_GM16(-99), Wirth_lymphoma map 
module D(-99), WILLSCHER_GBM_Verhaak-CL_up(-
99), Gerber_wt/wt_melanoma-cells-SpotA(-99), 
Hopp_blood module K(-99), FISCHER_DREAM_TAR-
GETS(-99), FLORIO_NEOCORTEX_BASALRA-
DIAL_GLIA_DN(-99), MEBARKI_HCC_PROGENI-
TORFZD8CRD_UP(-99), REACTOME_CELL_CYCLE(-
99) 

D CIN, CMS2-
resembling 

Up in 
LMS3 

ZFP64, TIA1, 

RBM39, BCL11A, 

SMG1 

Chr13(-52), Liu_LM_cluster_GM26(-35), 
HOPP_Txn_elongation(-27), Chaussabel_3,8_Enzymes(-
26), Marisa_CRC_cluster-d(-20), HOPP_Active_pro-
moter(-20), MOOSAVI_CRC_LM_CMS2(-20), bitter 
taste receptor activity(-19), sensory perception of taste(-
19), HOPP_Txn_transiton(-18) 

E Immune re-
sponse, stroma 

Up in 
LMS5 

PIK3CG, PTPRC, 

ARHGEF6, CD53, 

NCKAP1L 

adaptive immune response (-99), antigen binding(-99), B 
cell recpetor signaling pathway(-99), complement activa-
tion classical pathway(-99), defense response to  
bacterium(-99), external side of plasma membrane(-99), 
extracellular region(-99), immune response(-99) , immune 
system process(-99), immunoglobulin complex(-99) 

F Liver  PLG, AMBP, 

SLC2A2, C8A, 

ITIH1 

Wirth_Liver(-99), Liu_LM_cluster_GM17(-99), 
HSIAO_LIVER_SPECIFIC_GENES(-99), blood micro-
particle(-83), CHIANG_LIVER_CANCER 
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a) Top 5 genes with largest Pearsons-correlation coefficient regarding the mean spot profile, full 
lists for each spot are provided in Supplementary Table 2 

b) Top enriched gene sets (Fishers exact test, exponent of p-value is given in the brackets) taken 
from the repository implemented in oposSOM 

Supplementary Table S2: is provided as excel sheet. It contains lists of spot genes A-F. 

Supplementary Table S3: Collection of gene sets specifically implemented in oposSOM in this pub-
lication. 

Supplementary Table S4: is provided as supplementary excel sheet. List of genes with maximum 
and minimum HR, list of delta-HR ranked CRLM. See also Figure 7c. 
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