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Simple Summary: Oropharyngeal cancer is the most common type of head-and-neck squamous cell
carcinoma. Although patients with HPV-associated cancers have a better prognosis than patients
with HPV-negative cancers, there is a lack of robust biomarkers that describe the relative risk for
disease progression. To investigate this problem, we extracted quantitative descriptors from medical
images (known as radiomics features) that could not otherwise be assessed by the naked eye. We built
a machine learning model based on clinical and radiomics features to predict whether a patient will
exhibit disease progression at 2 years post-treatment. These findings are important for identifying
patients treated with definitive radiotherapy with low and high risk of disease progression and
formulating patient-specific treatment strategies.

Abstract: In this study, we investigated whether radiomics features from pre-treatment positron
emission tomography (PET) images could be used to predict disease progression in patients with
HPV-positive oropharyngeal cancer treated with definitive proton or x-ray radiotherapy. Machine
learning models were built using a dataset from Mayo Clinic, Rochester, Minnesota (n = 72) and
tested on a dataset from Mayo Clinic, Phoenix, Arizona (n = 22). A total of 71 clinical and radiomics
features were considered. The Mann–Whitney U test was used to identify the top 2 clinical and top
20 radiomics features that were significantly different between progression and progression-free
patients. Two dimensionality reduction methods were used to define two feature sets (manually
filtered or machine-driven). A forward feature selection scheme was conducted on each feature set
to build models of increased complexity (number of input features from 1 to 6) and evaluate model
robustness and overfitting. The machine-driven features had superior performance and were less
prone to overfitting compared to the manually filtered features. The four-variable Gaussian Naïve
Bayes model using the ‘Radiation Type’ clinical feature and three machine-driven features achieved
a training accuracy of 79% and testing accuracy of 77%. These results demonstrate that radiomics
features can provide risk stratification beyond HPV-status to formulate individualized treatment and
follow-up strategies.

Keywords: PET; radiomics; oropharyngeal cancer; definitive radiotherapy; progression

1. Introduction

Oropharyngeal cancer (OPC) is the most prevalent type of head-and-neck squamous
cell carcinoma. Despite a decline in the incidence of head-and-neck-squamous cell cancers
in recent decades [1], human papillomavirus (HPV) has driven an increase in the incidence
of OPC across various demographic groups [2,3].

HPV-positive OPC is staged as a disease entity that is distinct from HPV-negative
OPC, with favorable prognosis associated with HPV-positive cases [4,5]. Patients with
HPV-positive OPC are younger at diagnosis, have fewer medical comorbidities, and have
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a higher survival rate compared to their HPV-negative counterparts [4]. The standard
treatment for OPC involves a course of single daily fractionated radiation with or without
concurrent chemotherapy, with cisplatin being the standard of care for advanced OPC [6,7].
Both approaches incur high rates of acute and late toxicities in a young population that
could experience treatment sequalae for several decades [7]. With the objective of reducing
such treatment-related toxicities, recent clinical trials have aimed to de-escalate treatment
for HPV-positive patients while preserving high tumor control rates [8]. Clinical trials
that evaluated a substitute for cisplatin in low-risk HPV-positive patients reported inferior
overall survival and progression-free survival with no reduced toxicities [9,10]. Therefore,
markers beyond HPV status are essential for distinguishing between low- and high-risk
subgroups and predicting favorable or unfavorable responses.

In OPC patients, the majority of progressions occur during the first 2 years after
treatment [11]. Current clinical practice for treatment follow-up is based on a patient’s
risk of relapse. Generally, follow-up occurs every 6–12 weeks for the first year, every 3
months for the second year, and less frequently thereafter. Pre- and post-treatment 18-
F-fluorodeoxyglucose positron emission tomography (PET)-computed tomography (CT)
is routinely performed for OPC patients, and it plays a central role in the detection of
locoregional and distant progression before patients present with symptoms. Anzi et al.
reported lower mortality among patients with surveillance PET-CT imaging than patients
without surveillance imaging [12]. Nevertheless, several challenges remain regarding
surveillance PET-CT imaging: (i) follow-up PET-CTs can be difficult to interpret given
persistent inflammatory changes that are often visualized post-treatment, (ii) post-treatment
imaging remains understudied, with suboptimal schedules resulting in unnecessary scans
too soon (or late) relative to when progression occurs, and (iii) the number of robust
biomarkers for the early assessment of the risk of cancer progression is limited. The lack
of optimal surveillance imaging paradigms and robust predictive markers of early and
late local, regional, and distant progression present an unmet clinical need that must be
addressed to provide guidance for personalized follow-up and treatment strategies.

Radiomics presents a new paradigm in medical imaging with a shift from visual
interpretation to the extraction of quantitative descriptors, known as “features”, that cannot
be reliably assessed through visual inspection [13]. Radiomics features consist of high-
dimensional sets of mathematically defined quantities that can be analyzed computationally
to provide diagnostic and prognostic information [14,15]. Previous studies have shown
that features from pre-treatment PET images, such as standard uptake value, metabolic
tumor volume, total lesion glycolysis, and textural features, provide significant prognostic
information in OPC patients [16–20]. Folkert et al. investigated whether multivariable
models that combine clinical and PET imaging features had better predictive power than the
individual features alone [21]. In terms of local progression, the best model they reported
consisted of metabolic tumor volume and a texture feature. The model retained predictive
power (AUC = 0.68, sensitivity = 0.67, specificity = 0.70) when tested on an independent
cohort. Vallieres et al. evaluated multivariable models using clinical, CT, and PET-CT
radiomics features to predict locoregional and distant disease progression in various head-
and-neck cancers [22]. For both outcomes, they demonstrated that radiomics features have
increased predictive performance when combined with clinical variables. They reported
a model that combined three PET-CT radiomics variables and four clinical variables as
providing the best performance (accuracy = 0.67, sensitivity = 0.63, specificity = 0.68) for
locoregional progression on an independent testing cohort. While several studies have
built encouraging radiomics-based predictive models, the use of single-scanner and/or
single-institution data, as well as the lack of stratification for HPV status, has been a key
limitation for the generalizability of these predictive models.

We present a study on a cohort of HPV-positive patients who underwent pre-treatment
PET-CT on various scanners and received definitive radiation with or without chemother-
apy at our institution. In this context, we hypothesize that radiomics features could be
used as risk-stratifying factors to guide individualized treatment and follow-up. We built
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multivariable machine learning models using clinical and radiomics features to predict
disease progression at two years post-treatment and performed testing on an external
dataset from a different institution. In the modern era, this provides crucial prognostic
information to aid in defining low- and high-risk subgroups for cancer progression after
definitive radiotherapy.

2. Materials and Methods
2.1. Patient Cohorts

A retrospective chart review was performed of patients diagnosed with OPC who re-
ceived definitive external beam radiotherapy (protons or x-rays) with or without chemother-
apy. These patients were treated at Mayo Clinic in Rochester, Minnesota (MCR), between
May 2013 and April 2020 and Mayo Clinic in Phoenix, Arizona (MCA), between August
2013 and December 2020. Inclusion criteria were laboratory-confirmed HPV-positive car-
cinoma and availability of pre-treatment PET-CTs and radiotherapy treatment planning
CTs. Additionally, patients were included if the period between the end of treatment and
the chart review was at least 2 years or if they had developed local, regional, or distant
disease progression. Patients were excluded if they had previously received radiotherapy
or surgery. The Institutional Review Board at Mayo Clinic approved this study.

The clinical characteristics of the patient cohorts are summarized in Table 1. The
MCR and MCA cohorts were composed of 72 patients and 22 patients, respectively. The
pre-treatment PET-CT scans were performed using standard clinical procedures; given
the retrospective nature of this work, there were no specific technical requirements for
inclusion of image acquisition protocols.

Table 1. Patient clinical and pathological data.

MCR MCA

Radiation Type X-rays Protons X-rays Protons

Total Patients 47 25 15 7

Any Progression
Yes 15 2 7 1
No 32 23 8 6

Age at Diagnosis (y)
Mean 62.5 64.9 63.2 65.8
Range 48.1–77.7 42.3–81.0 46.4–86.9 55.1–76.3

T Category
T0 0 0 0 0
T1 5 0 0 0
T2 15 3 4 5
T3 8 9 4 1
T4 19 13 7 1

N Category
N0 6 1 0 1
N1 1 7 4 1
N2 35 17 9 5
N3 5 0 2 0

Concurrent Chemotherapy
Yes 45 24 15 7
No 2 1 0 0

MCR: Mayo Clinic, Rochester, Minnesota. MCA: Mayo Clinic, Phoenix, Arizona.

The MCR dataset was used for feature engineering, model building, and model
validation. The MCA group was not exposed to any feature engineering, model building,
or model validation; rather, it was kept as an independent external cohort to test the
performance and generalizability of the final models.
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2.2. Feature Extraction

Patient demographics and clinical characteristics were collected, including age at diag-
nosis, primary disease site, type of radiotherapy, and type of chemotherapy. Pathological
characteristics that classify tumor, node, and metastases were scored according to the 8th
Edition of the American Joint Committee on Cancer (AJCC) staging system and treated as
three distinct features represented only by their respective numerical descriptor. This was
done since several of the data processing techniques employed are more appropriate for
numerical data than categorical data. Follow-up data, including local, regional, and distant
progression, as well as time to progression, were recorded. We defined the binary outcome
for any type of progression (progression/progression-free) as the label for machine learning
modeling. Other clinical features, such as smoking status, number of pack years, and
number of chemotherapy cycles, were not included because they were not consistently
reported in the patient electronic medical record. These features were removed, rather than
excluding individual patients, to maintain statistical power.

MIM software (version 7.2.7, MIM software Inc., Cleveland, OH, USA) was used
to develop a semi-automatic segmentation workflow based on standard uptake value
(SUV) thresholding. The thresholding was employed to reduce any deviations caused
by SUV variability between patients. Two volumes of interest were generated for each
patient: regions of interest (ROIs) and largest ROI. For each patient, we defined the normal
tissue SUV using a volumetric SUV mean of a 5 cm sphere centered in the liver. The
ROI volume was delineated quantitatively using a tumor-to-normal tissue SUV ratio of
1.5. The largest ROI volume consists of the largest connected component of the ROI
volume. To visually confirm that the SUV-based segmentation was consistent with the
anatomical tumor location, we used rigid registration to transfer the physician-generated
tumor contours from the planning CT to the pre-treatment PET image and ensured that they
overlapped with the location of the ROIs and largest ROI. The volumes were resampled to
2 × 2 × 2 mm3 to create isotropic voxels.

We extracted radiomics features using PyRadiomics, the open-source Python package,
which is also involved in the efforts by the Image Biomarker Standardization Initiative
team [23]. As in previous work [24,25], our in-house software incorporated Python’s scikit-
learn packages [26] to build a pipeline for the processing and extraction of features. For each
volume of interest, we calculated 14 shape-based features and 18 intensity-based features. A
total of 64 radiomics features were calculated. Because our dataset consists of imaging data
from different scanners and institutions, we did not include texture-based features in our
analysis. Texture-based features are highly influenced by imaging acquisition parameters
and the noise profile of the scanner; therefore, heterogeneity in the source of the imaging
data may introduce uncertainty on the generalizability of these second-order features. The
schematic in Figure 1 illustrates the techniques sequentially employed for feature selection,
dimensionality reduction, data balancing, and machine learning modeling.
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Figure 1. Schematic workflow for feature extraction, dimensionality reduction, data balancing, model
training, and testing.

2.3. Dimensionality Reduction

All clinical and radiomics features were investigated for their predictive value relative
to disease progression post-treatment in the MCR group. We used the Mann–Whitney
U test to evaluate whether each feature was significantly different between patients with
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and without progression. The features were ranked from low to high based on their p-
values. The top 2 clinical features and the top 20 radiomics features were selected for
further analysis. In order to further reduce the number of variables, we investigated two
dimensionality reduction methods and defined a set of features for each: i) a manually
filtered set and ii) a machine-driven set.

The manual filtering process consisted of computing the bivariate Pearson correlation
coefficient for each possible pair of the 22 features selected in the previous section. For
every group of features with a correlation coefficient larger than 0.8, one feature in each
group was selected based on explainability and all other features were excluded. In other
words, we selected the radiomics features with the simplest mathematical definitions that
enabled understanding of the tumor’s phenotype. The remaining set of 2 clinical and 6
radiomics features were normalized with a standard scaler by subtracting their mean and
scaling to unit variance. The fitted scaler was saved, and the same scaler was recalled when
the MCA data were tested. These 8 features were defined as the manually filtered set and
used for further processing.

The machine-driven process involved the normalization and transformation of fea-
tures. Each of the 22 features selected via the Mann–Whitney U test was normalized with
a standard scaler by subtracting its mean and scaling to unit variance. Because a high
correlation is expected for a given radiomics feature extracted from our two volumes of
interest, principal component analysis (PCA) was performed on the 20 radiomics features to
transform the correlated features into a smaller set of uncorrelated features (principal com-
ponents) while preserving the majority of information in the dataset [26]. The generated
principal components were ranked from high to low based on their explained variance, i.e.,
the amount of variability in the dataset explained by each component. The top 6 principal
components with the largest explained variance were selected because they corresponded
to the fewest number of components with an explained variance sum greater than 95%.
The fitted scaler and PCA models were saved, and the same scaler and PCA models were
recalled when the MCA data were tested. The machine-driven set, composed of the top 2
clinical features and the selected 6 principal components, was used for further processing.

2.4. Data Balancing

In this application, the utility of the eventual predictive model is based on its perfor-
mance on the minority class, i.e., progression events. The incidence of any progression at
two years post-treatment was 19.4% and 31.8% for the MCR and MCA cohorts, respectively.
The imbalance between progression and progression-free events presents a challenge, in
that machine learning models trained on imbalanced data may favor the class with the
larger number of samples (progression-free events) and perform poorly in the prediction of
progression events. To alleviate such a data imbalance problem in the MCR dataset, we
adopted a combination of data over- and undersampling via SMOTETomek (The Synthetic
Minority Over-Sampling Technique and Tomek), the full details of which are explained
elsewhere [27]. Briefly, SMOTE creates new synthetic events by interpolating between
existing progression events using k nearest neighbors [28]. Then, undersampling is per-
formed by identifying Tomek links or pairs of events that lie closely in feature space but
belong to opposite classes, and removing the event that belongs to the progression-free
class [27]. The resulting dataset has the same number of progression and progression-free
patients. For both the manual filtering and machine-driven methods, the implementation
of SMOTETomek used the same random state seed as input. Data balancing was only
performed on the MCR (training) dataset and not on the MCA (testing) dataset.

2.5. Feature Selection, Model Construction, and Testing

Several machine learning classifiers were considered due to their popularity and
previous success, namely random forest, logistic regression, AdaBoost, and Gaussian Naïve
Bayes (NB) [21–23,29]. Gaussian NB with default hyperparameters showed the most robust
performance in terms of stability between training and cross-validation accuracy. Therefore,
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in this work we present results only from the Gaussian NB classifier. A NB classifier uses
the training data to learn the conditional probability of each feature given the class label. It
assumes that features are mutually independent and uses Bayes’ theorem to compute the
probability of the classes given an instance of the features [30]. Gaussian NB assumes that
the features within each class are drawn from a Gaussian distribution. For multivariable
models, NB computes the product of all the probabilities from every feature and selects the
class with the highest posterior probability.

Gaussian NB models were trained on the MCR dataset using each of the two sets
of features, the manually filtered set and the machine-driven set. Because of the limited
number of patients in the training MCR dataset and to reduce the chance of overfitting,
we performed training using 4-fold cross-validation. We used a forward feature selection
scheme to construct sets of models of increased complexity, i.e., number of input features
from 1 to 6 features. The first step in our forward feature selection was to train all possible
single-variable models and select the model with the best performance. Then, we trained in-
crementally more complex models by adding one feature at a time and retaining the feature
that led to the best model performance. The performance metric that we used for model
selection was the cross-validation f1 score, which represents the average f1 score across
all 4 cross-validation trials. This approach facilitates the analysis of accumulated model
learning, reveals when overfitting becomes a problem, and illustrates the complementary
information provided by different features.

The 12 selected models (6 models from the manually filtered set and 6 models from the
machine-driven set) were independently tested on the external MCA dataset. We evaluated
prediction performance using accuracy of classification of binary endpoint (any progression
at two years post-treatment).

3. Results
3.1. Dimensionality Reduction

The 2 clinical features and 20 radiomics features identified as being different be-
tween progression and progression-free patients via the Mann–Whitney U test are listed in
Figure 2a in the form of a correlation matrix. The manually filtered set that resulted from
correlation filtering consists of the 2 clinical features and 6 radiomics features marked with
an * in Figure 2a. The 20 radiomics features listed in Figure 2a were used to generate the
principal components for building the machine-driven set. As shown in Figure 2b, the
fewest number of principal components with an explained variance sum greater than 95%
are the first 6 principal components, which make up the machine-driven set along with the
2 clinical features. Both of these dimensionality reduction methods reduced the number of
features from 71 features to 8 features in each of the two sets defined.
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Figure 2. (a) Correlation matrix of 2 clinical and 20 radiomics features selected to be significantly
different between progression and progression-free cohorts via the Mann–Whitney U test. The
horizontal axis (columns) represents the same set of 22 features in the same order as presented in
the vertical axis (rows). The manually filtered set is composed of 2 clinical features (red stars) and
6 radiomics features (black stars). (b) Explained variance as a function of the number of principal
components obtained from PCA transformation of 20 radiomics features.
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3.2. Feature Selection, Model Construction, and Testing

All possible single-variable models were trained for the manually filtered features
set and machine-driven features set. The ‘Radiation Type’ clinical feature, which codes
radiation modality (x-rays or protons), was identified as the best single-variable model
(based on the cross-validation f1 score) in both feature sets. For each feature set, models
with 1 to 6 input features were sequentially built by adding one feature at a time and
retaining the feature that resulted in the best cross-validation f1 score. Table 2 summarizes
the features selected by each step of our forward feature selection scheme.

Table 2. Features selected via forward feature selection scheme. Models of incremental number of
features were selected by adding one feature at a time and retaining the variable that resulted in the
largest cross-validation f1 score.

Dimensionality Reduction Method

No. of Input Features Manually Filtered Set Machine-Driven Set

1 Radiation Type Radiation Type

2 Radiation Type,
ROIs_MajorAxisLength

Radiation Type,
PCA 3

3
Radiation Type,

ROIs_MajorAxisLength,
LargestROI_Flatness

Radiation Type,
PCA 3,
PCA 6

4

Radiation Type,
ROIs_MajorAxisLength,

LargestROI_Flatness,
ROIs_Flatness

Radiation Type,
PCA 3,
PCA 6,
PCA 4

5

Radiation Type,
ROIs_MajorAxisLength,

LargestROI_Flatness,
ROIs_Flatness,

LargestROI_Skewness

Radiation Type,
PCA 3,
PCA 6,
PCA 4,

Primary Stage N

6

Radiation Type,
ROIs_MajorAxisLength,

LargestROI_Flatness,
ROIs_Flatness,

LargestROI_Skewness,
LargestROI_SurfaceArea

Radiation Type,
PCA 3,
PCA 6,
PCA 4,

Primary Stage N,
PCA 5

PCA: Principal component analysis. Nomenclature for radiomics features: VolumeOfInterest_FeatureName.

Figure 3 shows the MCR training, MCR cross-validation, and MCA testing accuracy
for each selected model. Features from the manually filtered set maintained similar cross-
validation accuracy with increasing number of input features (Figure 3a); likewise, features
from the machine-driven set maintained similar cross-validation accuracy for models with
2 or more features (Figure 3b), which is an indication of the robustness of using the selected
features in these two sets.

The models from the manually filtered set showed improved training accuracy as the
number of features increased (Figure 3a), demonstrating that the models were incrementally
learning each time a new feature was added. However, the increasing difference between
training accuracy and cross-validation accuracy for models with three or more features is a
possible indication of overfitting. The 3-feature model for the manually filtered set had the
highest cross-validation accuracy (71%); however, with a training accuracy of 73% and a
testing accuracy of 54% (sensitivity = 0.86, specificity = 0.40), overfitting was confirmed,
hampering the generalizability of the model.
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Similarly, the models from the machine-driven set showed incremental training accu-
racy up to the 5-feature model, with a slight decrease for the 6-feature model (Figure 3b).
The difference between training accuracy and cross-validation accuracy decreased with
the number of features with a minimum at the 4-feature model, then increasing for the 5-
and 6-feature models. These trends suggest reasonable generalizability up to the 4-feature
model and overfitting for the more complex models, which is supported by the rise and
plateau in testing performance in Figure 3b. The 4-feature model for the machine-driven set
had the highest cross-validation accuracy (70%), with training accuracy of 79% and testing
accuracy of 77% (sensitivity = 0.86, specificity = 0.73).

4. Discussion

In this work, we demonstrated that a machine learning classifier based on pre-radiation
clinical and PET radiomics features can be used to predict any progression of HPV-positive
OPC patients at two years post-treatment. These findings are valuable for classifying
patients as low- or high-risk and formulating individualized treatment and follow-up
strategies after definitive radiotherapy.

This multi-institutional study consisted of a training set of MCR patients and a testing
set of MCA patients. PET images were acquired following general clinical guidelines with-
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out requiring specific acquisition settings for inclusion. Therefore, this work represents a
multi-scanner and multi-institutional dataset, rather than a homogeneous single-institution
and/or single-scanner dataset that would limit the generalizability of radiomics-based
models [14].

The SUV-based normalization and thresholding method used to define the volumes
of interest appears to be an effective method to reduce interpatient SUV variability and
promote generalizability between scanners and institutions. While we excluded texture
features from our analysis due to their instability, this behavior is consistent with previous
literature. Cheng et al. indicated that textural radiomics features may be influenced by
imaging processing parameters and the noise profile of the scanners [31], and Folkert
et al. found that texture features obtained from two different scanners showed significant
predictive power only after a smoothing method was applied [21]. Future work could
consider alleviating this challenge via data harmonization to reduce the scanner effect [32].

We compared two dimensionality reduction strategies to reduce the number of clin-
ical and radiomics features used for modeling. Our forward feature selection approach
facilitated the understanding of how the incremental number of input features improved
learning, and it revealed when overfitting became a problem. On the one hand, the manu-
ally selected features are simple morphological and statistical definitions describing the
tumor, but they exhibited overfitting for a lower number of input features compared to the
machine-driven set. Their inferior performance in multivariable models indicates a lack
of complementary information between the features. On the other hand, machine-driven
features generated via PCA are more difficult to interpret, but our results demonstrate
that they successfully combine the complementary value of different features to inform
predictions. An interesting next step would be to study these principal components and
how they map to the set of manually selected features.

The use of SMOTETomek as an over- and undersampling approach proved effective
in balancing the number of patients with or without progression. By creating a dataset
with the same number of patients in each class, the predictions of Gaussian NB were not
influenced by the prevalence of either class; rather, each prediction relied solely on the
input clinical and radiomics features.

In both MCR and MCA cohorts, we noticed a lower numerical progression rate for the
patients treated with proton therapy compared to x-ray therapy (MCR: 8% vs. 32%; MCA:
14% vs. 47%; Table 1). The ‘Radiation Type’ clinical feature was identified as the top feature
from the Mann–Whitney U test. Additionally, it was detected as the best single-variable
model, which suggests a strong predictive value compared to other clinical, radiomics, and
principal component features. This difference cannot be explained simply by the small
difference observed between patient epidemiology (see Table 1). At both institutions, the
radiation dose was calculated using a relative biological effective (RBE) value of 1.1. The
difference in progression (Figure 4) raises the question of the role that RBE plays in tumor
control probability and whether 1.1 is an adequate value, but that inquiry is beyond the
scope of this paper. Because conclusions regarding radiation type are limited by our small
sample size, future studies should examine its prognostic significance in larger cohorts.

While pre- and post-treatment 18-F-fluorodeoxyglucose PET-CT is the standard for
diagnosis and surveillance of head-and-neck-squamous cell cancers, others have ap-
plied different imaging modalities for radiomics-based progression prediction, including
contrast-enhanced and non-contrast CT, as well as diffusion-weighted, T1, and T2 MRI se-
quences [14]. Future work could explore whether other imaging modalities or different PET
tracers, such as fibroblast activation protein inhibitor (FAPI)-PET [33,34], offer information
complementary to published 18-F-fluorodeoxyglucose PET-based models.

The presented study may be limited by selection bias and other inherent biases asso-
ciated with any retrospective analysis. Additionally, the small sample size in the cohorts
constitutes a limitation for the training and validation of the models. We should note that
the two institutions, MCR and MCA, may conduct similar practices that could result in
homogeneous treatment outcomes across the institutions. Future work should focus on
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larger cohorts and additional independent cross-validation to enhance the generalizability
of the presented model to multi-institutional and multi-scanner datasets.
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