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Simple Summary: The discovery of prognostic biomarkers constitutes an important issue because it
allows the tailoring of therapeutic treatments, thus avoiding over-treatment and side effects. In this
context, reliable prognostic biomarkers advance the field of precision oncology. Such biomarkers are
usually discovered in the tumor tissue, which is not an easy task given the inaccessibility of malignant
tissue in many types of cancer. In this work, we could identify a prognostic signature consisting of
eight genes for prostate cancer patients. This biosignature was identified in peripheral blood samples,
which are easy to access and, importantly, have a significant prognostic value for various types
of cancer.

Abstract: Prostate cancer (PCa) is one of the most common male cancers worldwide and one of the
deadliest if unsuccessfully treated. The need for reliable, easily accessible immune-related molecular
biomarkers that could be combined with clinically defined criteria, including PSA and Gleason score,
to accurately predict PCa patients’ clinical outcomes is emerging. Herein, we describe for the first time
a blood-identified immune-related gene signature comprising eight upregulated multi-functional
genes associated with poor prognosis. Next-generation sequencing (NGS) analysis of PCa patients’
peripheral blood samples revealed a more than three-fold upregulation of each of the eight genes
as compared to samples originating from healthy donors. The construction of gene and protein
interaction networks revealed different extents of the functional implications of these genes in the
regulation of cell proliferation and immune responses. Analysis of the available data from The
Cancer Genome Atlas (TCGA) regarding gene expression and survival of prostate adenocarcinoma
(PRAD) and pan-cancer (PANCAN) patients revealed that intra-tumoral upregulation of this eight-
gene signature (8-GS) was associated with poor 5-year progression-free intervals in PCa patients,
even in those with high Gleason scores, and also with an unfavorable prognosis for cancer patients
irrespective of the cancer type and even in the early stages. These observations suggest that further
investigation of the 8-GS prospectively in randomized clinical trials, in which clinical benefit in terms
of evaluating time to disease progression can be assessed, is warranted.

Keywords: prostate cancer; prognostic biomarker; gene expression; eight-gene signature; the cancer
genome atlas; pan-cancer

1. Introduction

Prostate cancer (PCa) is the most commonly occurring and one of the deadliest male
malignancy worldwide and pertains mainly to advanced-aged individuals [1]. The clinical
presentation of the disease varies from localized to advanced PCa, which may culminate in a
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rapidly progressing metastatic disease [2]. The overall prognosis for patients with localized
or regional PCa under standard treatments is among the best of all cancer types, with
the 5-year relative survival rate reaching more than 99% in these cases [3]. Nevertheless,
the annual PCa mortality rate is still considerably elevated due to the high incidence of
the disease.

The diagnosis of PCa is based on established clinical practices, including primarily
tumor tissue biopsy, prostate-specific antigen (PSA) testing, digital rectal examination, and
magnetic resonance imaging. Gene expression signatures, or expression levels of isolated
genes, have come to the forefront as a sensitive and specific biomarker for the detection
and/or prognosis of PCa patients [4]. However, the expression levels of most of these
biomarkers are measured in the patients’ biopsied material, which alone is a limiting factor
due to the difficulty of sample collection [5,6]. On the other hand, commercially available
urine-based biomarkers, including PCA3, TMPRSS2, HOXC6, etc., lack either sensitivity
or specificity [7]. Although cancer development is characterized by multiple genetic and
epigenetic alterations as well as aberrant gene expression, the exact molecular events that
contribute to cancer progression, including PCa, are still not fully explored. The combined
assessment of certain clinically established criteria, such as PSA and the Gleason score,
alongside molecular markers, including driver mutations and gene expression signatures,
has been highlighted as putative biomarkers for PCa risk stratification and prognosis [8].

Regarding localized PCa, contemporary models for appraising the risk stratification
post-local therapy depend on PSA levels, the International Society of Urological Pathology
(ISUP) grade on biopsies, and the T stage [9]. However, these biomarkers lack sufficient
specificity and sensitivity for the diagnosis of PCa at early stages [10–12]. Hence, there is an
urgent need for the identification of reliable biomarkers that could function as predictors of
clinical outcomes in patients with early-stage PCa. Currently, a few alternative prognostic
biomarkers for early-stage PCa patients have been described [9,13,14]. We have previously
described a gene signature composed of six immune-related genes with possible predictive
potential in radiotherapy-treated PCa patients [15]. In the present study, by implementing a
high-throughput quantitative analysis, we sought to identify differences in immune-related
gene expression in the peripheral blood of PCa patients with localized disease compared to
age-matched healthy donors. In doing so, we could identify eight genes in the periphery
that were upregulated in PCa patients as compared to healthy donors. Given the slow
progression of early-stage PCa, we verified the prognostic value of these expressed genes,
which were also extracted from the prostatic tissue of PCa patients at all stages of the
disease, whose data are available from The Cancer Genome Atlas (TCGA) database. In this
way, novel immune-based biomarkers with expression levels that coincide between the
TME and the peripheral blood may be proposed as prognosticators in PCa patients.

2. Materials and Methods
2.1. Selection of Study Individuals and Sample Collection

A total of 23 patients who were diagnosed with adenocarcinoma of the prostate
between January 2019 and June 2020 were retrospectively recruited for the present study.
All patients were under androgen deprivation therapy (ADT) at the time of enrollment. Six
patients additionally underwent radical prostatectomy (RP) before sample collection. Due
to the different clinical characteristics and treatment options, we sought to have a group of
patients as homogeneous as possible. Patients who had already received ADT but had not
started radiotherapy were eligible for our study. The clinicopathological features of the PCa
patients are presented in Table 1. Seventeen age-matched, healthy male volunteers were
also included in the study. Peripheral blood was collected from PCa patients and healthy
donors directly into K2-EDTA tubes (BD, Mississauga, ON, Canada) and was immediately
transferred to the laboratory for subsequent isolations.
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Table 1. Clinicopathological and treatment characteristics of the enrolled prostate cancer (PCa) patients.

Characteristics of Patients with Localized PCa (n = 23)

Age at diagnosis (years)

Median 73
Range 53–81

PSA (ng/mL)

Mean 18.74
Standard Deviation 20.85

Range 5.51–100.00

Gleason Score

6 4 (17.4%)
7 11 (47.8%)
8 4 (17.4%)
9 4 (17.4%)

Mean (range) 7 (1)

T stage

T1c 3 (13.0%)

T2a, T2b, T2c 12 (52.2%)

T3a, T3b 8 (34.8%)

Type of therapy received up to the time of blood sampling

ADT 17 (73.9%)

RP + ADT 6 (26.1%)
ADT: androgen deprivation therapy; RP: radical prostatectomy.

2.2. Ethics Approval

This study complied with the ethical principles of the Declaration of Helsinki and
was approved by the ethics committees of the Saint Savas Cancer Hospital (approval no.
IRB-ID6777/14-06-2017). In accordance with the institutional guidelines, men signed an
institutional review board-approved, protocol-specific informed consent form permitting
the prospective collection of peripheral blood.

2.3. RNA Isolation

Following peripheral blood collection, total RNA was extracted from each sample with
the PureLinkTM Total RNA Blood Kit (Invitrogen, Thermofisher, Waltham, MA, USA), ac-
cording to the manufacturer’s instructions. Accordingly, the extracted RNA was incubated
with the ezDNaseTM Enzyme (Invitrogen, Thermofisher, Waltham, MA, USA) for 2 min
at 37 ◦C to ensure digestion of any remaining gDNA. The extracted RNA was quantified
using the QubitTM RNA HS Assay Kit (Thermofisher, Waltham, MA, USA) on a Qubit
Fluorometer 3.0 (Thermofisher, Waltham, MA, USA) and stored at −80 ◦C.

2.4. Library Preparation and Next-Generation Sequencing

The oncomine immune response research assay (OIRRA) (Thermofisher, Waltham,
MA, USA) was used for the quantification of the expression levels of immune response
genes. The panel enables the simultaneous assessment of 398 genes related to variable
immune-system functions, including immune-cell adhesion and migration, T-cell recep-
tor co-expression, immune checkpoints, cytokine signaling, lymphocyte infiltration, and
immune-cell markers. A total RNA input of 10 ng was used for library preparation, fol-
lowing the manufacturer’s recommendations. Briefly, reverse transcription was performed
using the SuperScriptTM VILOTM cDNA Synthesis Kit (Thermofisher, Waltham, MA, USA).
For target amplification and subsequent library preparation, the Ion AmpliSeqTM Library
Kit 2.0 (Ion TorrentTM, Thermofisher, Waltham, MA, USA) and the IonXpressTM Barcode
Adapters (Ion TorrentTM, Thermofisher, Waltham, MA, USA) were used, respectively. The
amplified libraries were purified using the AgencourtTM AMPureTM XP Reagent (Beckman-
Coulter Life Sciences, Brea, CA, USA) and were separately quantified by qPCR using the
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Ion Library TaqManTM Quantitation Kit (Ion TorrentTM, Thermofisher, Waltham, MA, USA)
on the Quantstudio 5.0 (Thermofisher, Waltham, MA, USA). Accordingly, the libraries were
diluted to 50 pM of individual concentration and pooled. After template preparation and
library loading on an Ion 530TM Chip using the Ion ChefTM System (single-end sequencing,
400 bp nucleotide length), sequencing took place on the Ion GeneStudioTM S5 System (all
from Ion TorrentTM, Thermofisher, Waltham, MA, USA).

2.5. Gene Expression Analysis from Blood Samples

The immune response-related gene expression analysis was performed using the Ion
ReporterTM Software 5.16 equipped with the ion torrent immune response RNA plugin for
the generation of gene transcript data. Specifically, the reads per million (RPM) values were
log-transformed and normalized, and the gene expression values were further analyzed
on the Affymetrix transcriptome analysis console (TAC) 4.0 software. The minimal read
cutoff was set to 1.5 million reads per sample. Gene expression levels were expressed as
normalized average log2 values and were subsequently transferred to GraphPad Prism 9.3.1
for Windows (GraphPad Software, Inc., San Diego, CA, USA), along with the resulting fold
change (FC) values as compared to their expression in healthy donors. In total, 77 genes
were found differentially regulated in the peripheral blood of healthy donors vs. PCa
patients; 40 genes were found upregulated and 37 genes were found downregulated.
Only genes that were at least 3-fold upregulated (n = 22) in PCa patients compared to
healthy donors were included in the subsequent analyses. In turn, we used the TCGA-
PRAD database in order to investigate how many of these genes were upregulated in
PCa tissue compared to adjacent normal tissue (designated as solid tissue normal) and
whose concomitant upregulation was significantly associated with 5-year PFI in PCa
patients. In this way, we ended up with the proposed eight genes. Multiple Mann–Whitney
(unpaired) tests were implemented for the identification of differential gene expression
between healthy subjects and PCa patients. The data are graphed as the mean with a
95% confidence interval. A correlation matrix analysis using the Pearson coefficient was
adopted for the joint assessment of the correlation between the eight genes that comprise the
proposed signature in PCa patients compared to healthy donors. p values lower than 0.05
were considered statistically significant. The interaction network of the genes comprising
the 8-GS was constructed using the GeneMANIA database [16]. In turn, the respective
interprotein network was built via the STRING database [17]. Further functional analysis
was performed using the gene set enrichment analysis (GSEA) 4.3.2 software and the
human molecular signatures database (MSigDB) 2023.1 [18,19].

2.6. TCGA Data Analysis

The gene expression and matched survival data of prostate adenocarcinoma (PRAD)
and pan-cancer (PANCAN) patient cohorts that are available from The Cancer Genome
Atlas (TCGA) database were collected using the Xena browser (http://xena.ucsc.edu; ac-
cessed on 16 May 2023). Correlation analyses were performed using the mRNA expression
levels of genes of interest, progression-free interval (PFI), overall survival (OS), PFI-time,
OS-time, and phenotypic data (sample type and gleason score for PRAD; Sample type
and clinical stage for PANCAN). Only primary tumor samples (PRAD, n = 497; PANCAN,
n = 9636) were used after the removal of samples that were missing the required data (sam-
ples with nulls). The median value was used for patient classification into low and high
gene expression groups (below and above the equal median, respectively). For survival
analysis based on the expression of the 8-GS, high or low expressors were considered those
patients whose tumors expressed all 8 genes above (equal) or below the median, respec-
tively. Survival data were transferred to GraphPad Prism 8.0.2 for Windows (GraphPad
Software, Inc., San Diego, CA, USA), and Kaplan-Mayer curves were plotted. Statistical
significance was assessed using both the log rank and the Gehan-Breslow method, with
p values lower than 0.05 being considered statistically significant.

http://xena.ucsc.edu
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3. Results
3.1. Demographics of the Study Cohorts

The enrolled patients’ characteristics are presented in Table 1. The mean age of the
patients was 73 years (range: 53–81). 15 patients (65.2%) had strictly contained disease (T1/T2
stage), while 8 patients (34.8%) were diagnosed with T3-staged tumors. Gleason score (GS)
ranged between 6 and 9, and baseline prostate-specific antigen (PSA) levels ranged between
5.51 and 100.00 ng/mL (mean 18.74 ng/mL). All patients have been receiving ADT for the
last three months before blood sampling. Six patients had RP prior to ADT.

3.2. Differential Gene Expression in the Peripheral Blood of PCa Patients Compared to Healthy
Donors

Analysis of the immune response gene expression profiles revealed eight upregu-
lated genes with an FC > 3 as compared to healthy donors (FCGR2B, p = 0.0056; CDK1,
p = 0.0046; MELK, p = 0.0056; FOXM1, p = 0.0022; CCR1, p = 0.0054; CDKN3, p = 0.0127; CD53,
p = 0.0259; SLAMF8, p = 0.0157) (Figure 1).
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Figure 1. Expression levels of the genes comprising the eight-gene signature (8-GS) in the peripheral
blood of 23 prostate cancer (PCa) patients compared to 17 healthy individuals. Each graph corre-
sponds to the expression levels of each single gene in healthy controls and PCa patients. Each column
shows the log2-transformed average mRNA levels of each gene normalized by Reads Per Million
(RPM). Statistically significant differences between gene expression in the blood of PCa patients
and healthy controls were identified by performing individual non-parametric Mann-Whitney (un-
paired) tests. The error bars designate the average (Avg) values with a 95% confidence interval range.
p-values below 0.05 signify statistical significance. *, p < 0.05; **, p < 0.01.
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The variability of the gene expression data between healthy donors and PCa patients
is depicted in the principal component analysis (PCA) plot in Figure 2A. Half of the upreg-
ulated genes (MELK, CDKN3, CDK1, and FOXM1) are associated with cell proliferation
functions; these four genes showed more than 5-fold upregulation (Figure 2B). Alongside,
CD53, which is related to cell adhesion/migration properties, was upregulated by 5.7
folds, whereas the three remaining genes, namely FCGR2B, SLAMF8, and CCR1, had a
4.6-, 3.9-, and 3.4-fold increase in gene expression, respectively (Figure 2B); these genes are
implicated in B-cell functions, lymphocyte infiltration, and cytokine signaling, respectively
(Figure 2B). The differential gene expression levels in the blood of healthy donors and PCa
patients are also presented in the form of a heatmap (Figure 2C). Correlation analysis of
the joint assessment of the 8 genes as a signature signified a statistically significant higher
expression in PCa patients vs. healthy controls (p < 0.01, r = 0.9524; Figure 2D).

Figure 2. Variations in gene expression of the eight-gene signature (8-GS) in the peripheral blood of
23 prostate cancer (PCa) patients and 17 healthy individuals. (A) Principal component analysis (PCA)
plot of the RNA-seq results of the PCa patients and healthy donors based on the expression levels
of the 398 genes of the Oncomine Immune Response Research Assay (OIRRA). (B) Classification of
the genes comprising the 8-GS into functional annotation groups. Four genes are involved in cell
proliferation pathways, while the remaining genes mediate pathways related to adhesion/migration,
B-cells, lymphocyte infiltration, and cytokine signaling. (C) Heatmap of the range of expression levels
of the eight genes in healthy donors vs. PCa patients. For the analysis, the median expression levels of
each gene were used for data visualization. Different colors correspond to different gene expression
levels, ranging from red (high expression, max. value 11.24) to blue (low expression, min. value
0.53). (D) The joint assessment of the 8-GS shows a statistically significant upregulation (p = 0.0011)
in the peripheral blood of PCa patients compared to healthy controls. The depicted lines represent
the conversion of the corresponding gene from lower (healthy controls) to higher expression levels
(PCa patients). **, p < 0.01.
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3.3. High Expression of the 8 Genes in Primary Tumor Tissue Associates with a Lower PFI in PCa
Patients

Using the PRAD dataset, we also examined the association between gene expression
and PFI for each of the eight genes separately. The results depicted in Figure 3 show that
PCa patients whose tumors expressed each one of these genes separately at high levels
(i.e., above/equal median) had a significantly shorter PFI as compared to patients with low
gene expression (i.e., below median).
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Figure 3. All of the upregulated genes that constitute the eight-gene signature (8-GS) are associated
with a statistically significant worse progression-free interval (PFI) in prostate cancer (PCa) patients.
Kaplan-Meier curves for the 5-year PFI were graphed based on the dichotomized median expression
of each gene of the 8-GS in the tumor tissue of PCa patients, based on data extracted from the PRAD
database. PCa patients with high expression of each gene (red lines; above or equal to median) had a
significantly worse PFI as compared to patients with low expression of each gene (green lines; below
median). Pts, patients.
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Importantly, we observed a similar pattern for PFI when the 8 genes were analyzed
jointly as a signature (8-GS). Thus, as shown in Figure 4A, patients with primary tumors
expressing all of the eight genes above or equal to their respective median values (n = 70)
had a significantly worse 5-year PFI compared to those expressing the above 8-GS below the
median (n = 56). The same pattern was legible when subcategorization of the patient cohort by
Gleason Score was performed; patients with a high Gleason score (≥8) and low expression of
the 8-GS (n = 27) had a significantly better 5-year PFI compared with patients with a Gleason
score ≥8 but high gene expression (n = 25; Figure 4B). Interestingly, the investigation into
the possible correlation between the expression of the eight identified genes in the peripheral
blood of PCa patients and the Gleason score showed no statistically significant difference
between patients with high (≥8) and low (<8) Gleason scores (Figure S1).
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icantly lower 5-year PFI (n = 1486; Figure 5A) and a further diminished 5-year OS (n = 1487; 
Figure 5B) compared to those expressing the 8-GS below the median (n = 1253). Notably, 
when the investigation cohort was limited only to confirmed stage I to III cancer patients 
(n = 322), similar PFI and OS patterns were detected (Figure 5C and 5D, respectively). In 
regard to patients with stage IV tumors, there was not enough data to build the corre-
sponding survival curves. 

Figure 4. High expression of the eight-gene signature (8-GS) in the tumor tissue is associated with
a lower progression-free interval (PFI) in prostate cancer (PCa) patients. Kaplan–Meier curves
for the 5-year PFI in PCa patients were designed based on the dichotomized median expression
of the 8-GS in prostate tumor tissue. (A) Association between the expression levels of the 8-GS
and 5-year PFI of PCa patients. Only patients with all genes above (or equal to) their respective
median expression value and patients with all genes below their respective median expression value
(n = 126) are included in the graph. (B) Association between the expression levels of the 8-GS and
5-year PFI of PCa patients with a Gleason Score above 8. Only patients with all genes above (or
equal to) their respective median expression value and patients with all genes below their respective
median expression value (n = 52) are included in the graph. The data were extracted from the
PRAD dataset. The red lines indicate patients with high expression (expression value ≥ median),
while the green lines indicate patients with low expression (expression value < median) of the
8-GS. Pts, patients.

Since the identified 8-GS demonstrated a meaningful correlation with the PFI of
PCa patients, we then sought to investigate its potential prognostic value across all
of the available TCGA patients’ samples, regardless of the cancer type. As shown in
Figure 5, cancer patients expressing the 8-GS above or equal to their respective median
value had a significantly lower 5-year PFI (n = 1486; Figure 5A) and a further diminished
5-year OS (n = 1487; Figure 5B) compared to those expressing the 8-GS below the median
(n = 1253). Notably, when the investigation cohort was limited only to confirmed stage I
to III cancer patients (n = 322), similar PFI and OS patterns were detected (Figure 5C,D,
respectively). In regard to patients with stage IV tumors, there was not enough data to
build the corresponding survival curves.
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Figure 5. High expression levels of the eight-gene signature (8-GS) are correlated with worse
progression-free and overall survival rates in cancer patients, regardless of the cancer type. Kaplan–
Meier curves for the 5-year progression-free interval (PFI) in pan-cancer patients were designed based
on the dichotomized median expression of the 8-GS in pan-cancer tissue. (A) Association between
the expression levels of the 8-GS and 5-year PFI of pan-cancer patients. Only patients with all genes
above (or equal to) their respective median expression value and patients with all genes below their
respective median expression value (n = 2739) are included in the graph. (B) Association between
the expression levels of the 8-GS and 5-year OS of pan-cancer patients. Only patients with all genes
above (or equal to) their respective median expression value and patients with all genes below their
respective median expression value (n = 2740) are included in the graph. (C) Association between
the expression levels of the 8-GS and 5-year PFI of pan-cancer patients with stage I–III disease. Only
patients with all genes above (or equal to) their respective median expression value and patients
with all genes below their respective median expression value (n = 322) are included in the graph.
(D) Association between the expression levels of the 8-GS and 5-year OS of pan-cancer patients
with stage I–III disease. Only patients with all genes above (or equal to) their respective median
expression value and patients with all genes below their respective median expression value (n = 322)
are included in the graph. Pts, patients.

3.4. Functional Genetic and Protein Networks Structured by the Genes Comprising the 8-GS

To further analyze the molecular and biological profile of the genes structuring the
8-GS, we conducted functional and interaction-based analyses using the GeneMANIA and
the STRING databases. In the GeneMANIA environment, we based our network analysis
on weighting by molecular function-based gene ontology (GO).

The most common pathways are related to cell-cycle promotion and regulation: cell-
cycle G2 to M phase transition (CDK1, MELK, and FOXM1), G1 to S phase transition (CDK1
and CDKN3), p53-based DNA damage response (FOXM1 and CDK1), and cell cycle arrest
(FOXM1 and CDK1). SLAMF8 and CCR1 are implicated in leukocyte migration and in
mature B cell differentiation (SLAMF8 and FCGR2B) (Figure 6A). The interplay among the
resulting network is composed of physical interactions (87.39%), co-expression (6.25%),
co-localization (2.68%), genetic interactions (2.59%), and common pathways (1.08%). Re-
garding exclusively the genes of the 8-GS, physical interactions occur between the proteinic
products of CDK1 and CDKN3, and CDK1 and FOXM1 (Figure 6A; Pink lines). Most of
the genes are co-expressed (Figure 6A; Purple lines); FOXM1 and MELK are co-localized
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(Figure 6A; Blue lines); and genetic interactions have been reported for CDK1 and FOXM1,
as well as between CD53 and MELK (Figure 6A; Green lines). Finally, CDK1 and FOXM1
are involved in the same signaling pathway(s) (Figure 6A; Light blue lines).
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CDKN3, and CDK1, which would be anticipated since all of these proteins are involved 
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Figure 6. Functional network of the 8-GS. (A) The interaction network constructed by the 8-GS via
the GeneMANIA database. The colored lines that connect the interrelated genes depict different
types of interactions, including physical interactions (pink lines), co-expression (purple lines), co-
localization (blue lines), and genetic interactions. The colors inside each node represent a distinct
function attributed to the respective gene. The most commonly shared functions include (1) cell cycle
G2/M phase transition; (2) cell cycle G1/S phase transition; (3) leukocyte migration; (4) DNA damage
response, signal transduction by p53 class mediator; mature B-cell differentiation; (5) cell cycle arrest;
and (6) mature B-cell differentiation. (B) Core interactions between the 8-GS gene products. The
respective proteins were mapped in the protein-protein interaction (PPI) network using the STRING
database. Nodes and edges represent proteins and their interactions, respectively. Filled, colored
nodes signify the query proteins and first shell of interactors with known or predicted 3D structures.
Known interactions, either extracted from curated databases or experimentally determined, are
designated by turquoise and pink edges, respectively. Yellow edges show text-mining interactions;
black edges indicate that the respective proteins are co-expressed. Purple edges interconnect proteins
with sequence homology.

We also investigated the core interactions of the eight gene products by mapping
them to the protein-protein interaction (PPI) network provided by the STRING database
(Figure 6B). The analysis provided a proteinic network that could actually be subdivided
into two: (i) MELK, FOXM1, CDKN3, and CDK1, and (ii) FCGR2B, CD53, and CCR1.
SLAMF8 was not integrated into any sub-network. The entire network comprising the
eight genes provides an average node degree—indicating the average number of edges
per node—of 2.25, an average local clustering coefficient—representing the strength of
the adjacent node interconnection and ranging between 0 and 1—of 0.875, and a p-value
of PPI enrichment that indicates the significance of interactions equal to 2.42 × 106. This
means that there are a significant number of interactions among the respective proteins,
which in turn implies that these proteins are at least partially biologically associated. As
shown in Figure 6B, this is evident for the subgroup consisting of MELK, FOXM1, CDKN3,
and CDK1, which would be anticipated since all of these proteins are involved in the
regulation and promotion of the cell cycle. According to STRING-based local clustering,
the above four gene products are part of a larger 45-protein network implicated both in
mitotic cytokinesis and gastric cancer progression. GO analysis returned the following
results: 6 out of the 8 proteins are regulators of phosphorylation (SLAMF8, CCR1, CDKN3,
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FOXM1, FCGR2B, and CDK1), 4 out of the 8 proteins (MELK, FOXM1, CDKN3, and CDK1)
are involved in the mitotic cell cycle phase transition, and 3 out of the 8 (MELK, FOXM1,
and CDK1) are involved in the mitotic G2/M transition. Text-mining interactions along
with co-expression were revealed between all pairs of proteins in the two separate sub-
groups (MELK/FOXM1, MELK/CDKN3, MELK/CDK1, FOXM1/CDKN3, FOXM1/CDK1,
CDKN3/CDK1, and FCGR2B/CCR1, FCGR2B/CD53, CCR1/CD53). Evidence of direct
protein-protein interactions has been demonstrated for CDKN3 and CDK1 and for FOXM1
and CDK1. Finally, GSEA revealed that there is no universal hallmark under which all eight
genes fall. However, 3 out of the 8 genes fall under the E2F targets hallmark, 2 genes fall
under the allograft rejection hallmark, and finally, 2 genes fall under the G2M checkpoint
hallmark and the spermatogenesis hallmark. These results are in accordance with the
GeneMania and STRING results showing that cell proliferation and immune regulation are
among the main functions of the identified genes.

4. Discussion

Although current progress on novel diagnostics and molecular prognosticators has
significantly increased timely detection and allowed the prediction of post-treatment clinical
outcomes in PCa patients, respectively, there is still a scarcity of established immune
biomarkers for the prognosis of early-stage PCa patients’ survival rates. Therefore, the
need for reliable, easily accessible immune-related molecular biomarkers that could be
combined with clinically defined criteria, including PSA and Gleason score, to accurately
predict PCa patients’ clinical outcomes is emerging. In the current study, we compared
immune response-related gene expression in the peripheral blood of PCa patients with
localized disease relative to healthy donors. We identified a gene signature comprising
eight upregulated genes, variously related to the immune response and other critical
cellular functions.

Four out of the eight genes comprising the 8-GS, namely MELK, FOXM1, CDK1, and
CDKN3, are mainly implicated in cell cycle promotion and proliferation; consequently,
aberrant expression of the respective gene products may lead to diverse degrees of ma-
lignant development and progression. Interestingly, although not among their principal
functions, a growing body of evidence associates these genes primarily with tumor im-
mune infiltrating lymphocytes and other immune cell populations and secondary with
other immune responses. In vitro and in vivo studies have spotlighted MELK as a cen-
tral driver of both cancer progression and relapse, thus highlighting its prominence as
a therapeutic target [20]. MELK overexpression has been associated with intra-tumoral
immune responses and immune cell infiltration, including pro-tumoral T helper type 2
cells and regulatory T cells [21]. Increased expression of FOXM1 has been found to be
capable of derailing proper anti-tumor immune responses through its direct binding to
and subsequent upregulation of PD-L1 [22]. CDK1 upregulation has been associated with
intra-tumoral immune alterations in a variety of human cancers, including high levels
of expression of lymphocytes negatively regulating antitumor immunity [23], as well as
Wnt/β-catenin activation [24–26], known to diminish STING activation followed by re-
duced priming of antitumor T cell immune responses. CDKN3 overexpression is linked to
high MYC expression and is associated with a poor prognosis. Upregulation of this gene
has been recently reported to significantly correlate with hypomethylated promoter status,
advanced T stage, metastasis, and aberrant antitumor immunity in cancer patients [27].

A second sub-network of gene products could be identified, composed of FCGR2B,
CD53, and CCR1. FC gamma receptor IIB (FCGR2B) overexpression in hematopoietic
progenitor cells triggers the generation and expansion of myeloid-derived suppressor
cells (MDSC) that target cytotoxic CD8+ T cells, thus hampering the intrinsic anti-tumor
immune response [28]. Equally, tumor- or therapeutically-triggered hypoxia in the tumor
microenvironment (TME) may increase FCGR2B expression on mononuclear cells and
macrophages, thus hindering their ability to phagocytose tumor cells [29]. CD53 is actively
associated with NK and T-cell responses, mainly through regulating the activation and
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proliferation of these cell populations [30,31]. Notably, CD53 depletion led to diminished
CD4+ and CD8+ cell proliferation both in vitro and in vivo [32]. C-C chemokine receptor
type 1 (CCR1) is a mediator of neutrophil, monocyte, and lymphocyte recruitment in sites
of inflammation, and, along with its ligands, it has been linked to cancer cell survival,
migration, and invasion [33,34]. Targeted CCR1 downregulation was able to halt the
metastatic expansion of colon cancer cells to the liver in vivo through the blockade of
immature myeloid cell recruitment [35].

Finally, signaling lymphocytic activation molecule 8 (SLAMF8) is a transmembrane
protein expressed by macrophages and suppresses their functions [36]. In patients with
gastrointestinal (GI) tumors, increased serum levels of SLAMF8 bear high diagnostic
significance [37], while its value for predicting response to immunotherapies has also been
shown since immunohistochemistry analysis revealed enhanced CD8+ T cell infiltration in
GI tumors with increased expression levels of SLAMF8 taken from patients under anti-PD1
treatment [38].

Importantly, all of the above genes have proven prognostic and/or predictive value in
various cancer types. MELK is widely considered an oncogenic kinase since it has been found
overexpressed and associated with tumor growth, metastasis, recurrence, and ultimately a
considerably poor prognosis in cancer patients, including those bearing tumors of the breast,
lung, esophagus, and liver, among others [39], while its overexpression has been incriminated
for the observed resistance to chemotherapy and radiotherapy [40,41]. FOXM1 upregulation
is a poor prognostic factor in many solid tumors [42], and its therapeutic targeting is
being exploited for the reinforcement of anti-cancer strategies. Likewise, in certain cancer
types, including tumors of the breast, lung, and colon, high levels of CDK1 have also been
associated with poor prognosis [43], while upregulation of CDKN3 has been underscored as
an independent poor prognostic factor in ovarian cancer [44]. A profound biomarker utility
of FCGR2B has been quite recently shown in patients with recurrent glioblastoma, in whom
increased expression was correlated with decreased OS [45]. Accordingly, high levels of
CCR1 in patients with multiple myeloma have been linked to decreased overall survival [46],
and increased levels of SLAMF8 mRNA have been identified as a prognosticator of worse
survival in patients with high-grade gliomas [47] and colorectal cancer [48]. Contrastingly,
there is limited information on the prognostic role of CD53 in cancer patients, with one
study supporting that its upregulation may be associated with a disease-free survival
benefit for patients with triple-negative breast cancer [49].

Based on the TCGA data of the PRAD cohort, increased intra-tumoral mRNA levels
of the above 8 genes were individually associated with poor 5-year PFI in PCa patients.
Importantly, the concomitant downregulation of all of these genes is being highlighted as
a strong prognosticator of favorable PFI in PCa patients, even with Gleason scores above
8. The prognostic/predictive significance of the combination of the four genes implicated
in cell proliferation, namely MELK, FOXM1, CDKN3, and CDK1, along with others, has
already been described in several studies. A cluster of 10 overexpressed genes, including
these four, was identified as a marker of resistance to immune checkpoint inhibition in
patients with non-small cell lung cancer (NSCLC) [50] and renal cancer [51]. Similarly, an
upregulated 22-GS, including mainly proliferation-related genes, was identified in biopsies
of NSCLC patients lacking complete pathologic response to chemo-immunotherapy; among
these, post-treatment upregulation of MELK, FOXM1, CDKN3, and CDK1 was coupled
with low pre-treatment PD-L1 levels and high densities of follicular T helper cells and
M2 macrophages post-treatment [52]. Accordingly, the other four genes, namely FCGR2B,
CD53, CCR1, and SLAMF8, were previously identified as integral components of a larger
tumor associated macrophage-related signature with prognostic potential in patients with
ovarian cancer [53]. In fact, there is a considerable amount of research on gene signatures,
ranging from a few genes to large gene sets in size, with prominent prognostic value in
distinct cancer types [54,55]. A remarkable finding of our analysis was the pan-cancer
prognostic potential of the 8-GS; in this context, upregulation of the 8-GS was correlated
with poor 5-year PFI and OS in cancer patients, even in those with early-stage tumors.
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These findings could be attributed to the vital role of these genes in critical cell and immune
functions that are indiscriminately dysregulated in all tumors, contributing either to cancer
development or progression and metastases.

In summary, our data presents an 8-GS with upregulated immune-related gene expres-
sion detected in the peripheral blood of PCa patients with localized disease. Our analyses
from the TCGA database revealed that the expression of this 8-GS in the malignant tissue
has been linked to poor prognosis in PCa patients at various stages of the disease and
under different treatments. In addition, we could show that this unfavorable prognostic
role for the 8-GS holds true for patients with a variety of cancer types. Combined with the
increasing availability of public “omics” datasets, it is likely that this signature will be a
valuable tool for researchers and oncologists to explore more precisely the molecular and
cellular mechanisms that underlie tumor progression.

Intriguingly, a growing body of evidence associates these eight genes with a spectrum
of immune responses, including regulation of tumor-infiltrating immune cell populations,
and many studies have highlighted them as predictors of immunotherapy outcomes in
distinct tumors, as described above [38,50–52,56]. Importantly, immune evasion predomi-
nates among the responsible mechanisms for PCa unresponsiveness to immunomodulatory
therapeutic regimes [57,58], which is orchestrated by the presence of low numbers of
infiltrating lymphocytes, high densities of intra-tumoral suppressive cells, and indolent
antigen-presenting cells in the tumor microenvironment that deregulate the balance be-
tween the immune mechanisms structuring a robust anti-tumor immune response [59,60].
Given their observed immunosuppressive functions, concomitant inhibitory targeting of
the upregulated genes composing the 8-GS could potentially enhance immunotherapy
success rates and should be further exploited in therapeutic schemes for PCa patients.

The limitations of our study are mainly summarized in two distinct points: Firstly, our
findings need to be confirmed in larger patient and healthy donor cohorts so that more
sound conclusions can be drawn. Secondly, the absence of sufficient patients’ follow-up
data did not allow us to correlate the observed upregulation of the 8-GS in the blood
with the clinical outcome; for this reason, we investigated the effect of the overexpressed
signature in tumor tissue specimens available from the TCGA database on the 5-year PFI
of PCa patients. By validating our data in larger patient cohorts with localized disease and
with longer clinical follow-up, we will be able to confirm this novel blood-based 8-GS as a
valuable prognostic biomarker for early-stage PCa and, in this way, contribute to the design
of more effective treatments by avoiding over-treatment and minimizing side effects.

5. Conclusions

Overall, our study showcased a blood-based gene signature composed of eight genes
with differential implications in the immune system and cell cycle regulation, which holds
strong prognostic potential not only for PCa but also for all cancer patients, independent of
the tumor type.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15143697/s1. Figure S1: Expression levels of the genes
comprising the eight-gene signature (8-GS) in the peripheral blood of 23 prostate cancer (PCa) patients
grouped based on the Gleason score. Each graph corresponds to the expression levels of each single
gene in PCa patients with a Gleason score below 8 (n = 15) vs. PCa patients with a Gleason score
equal to or above 8. Each column shows the log2-transformed average mRNA levels of each gene
normalized by Reads Per Million (RPM). Statistical analysis was performed using individual non-
parametric Mann-Whitney (unpaired) tests. The error bars designate the average (Avg) values with a
95% confidence interval range. p-values are indicated for each graph.
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