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Simple Summary: Patients with localized renal cell carcinoma often have medical comorbidities
limiting their surgical candidacy, thus necessitating less invasive treatment options. Stereotactic
ablative radiotherapy has emerged as a safe and effective management option with a growing body of
evidence supporting its use. This article discusses recent advances in the use of stereotactic ablation
radiotherapy for localized renal cell carcinoma, while guiding providers on practical points for patient
selection and clinical application.

Abstract: Localized renal cell carcinoma is primarily managed surgically, but this disease commonly
presents in highly comorbid patients who are poor operative candidates. Less invasive techniques,
such as cryoablation and radiofrequency ablation, are effective, but require percutaneous or laparo-
scopic access, while generally being limited to cT1a tumors without proximity to the renal pelvis or
ureter. Active surveillance is another management option for small renal masses, but many patients
desire treatment or are poor candidates for active surveillance. For poor surgical candidates, a
growing body of evidence supports stereotactic ablative radiotherapy (SABR) as a safe and effective
non-invasive treatment modality. For example, a recent multi-institution individual patient data
meta-analysis of 190 patients managed with SABR estimated a 5.5% five-year cumulative incidence of
local failure with one patient experiencing grade 4 toxicity, and no other grade ≥3 toxic events. Here,
we discuss the recent developments in SABR for the management of localized renal cell carcinoma,
highlighting key concepts of appropriate patient selection, treatment design, treatment delivery, and
response assessment.

Keywords: kidney cancer; radiation oncology; RCC; renal cancer; renal carcinoma; SABR; SBRT;
stereotactic body radiation therapy
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1. Introduction

The incidence of renal cell carcinoma (RCC) is rising, potentially due to increased inci-
dental detection by medical imaging [1,2]. Globally, renal cancers comprise approximately
2.2% of new cancer cases and 1.8% of cancer deaths [3]. The peak incidence of RCC occurs
between the 7th and 8th decade of life, and over a third of new cases occur at age 75 years
or later [1]. In addition to advanced age, common risk factors for RCC include smoking,
obesity, and hypertension [1]. Thus, many patients diagnosed with RCC are at an increased
risk of complications from anesthesia and surgical resection, highlighting the critical need
for effective, less-invasive definitive treatment options.

Historically, RCC has been considered a radioresistant tumor due to poor response
to conventional fractionation in preclinical studies [4]. However, in vitro cell cultures
demonstrated that RCC cells could be ablated by high fractional radiation doses [5], and
higher radiation doses were found to be effective for palliation of advanced stage RCC [6,7].
These findings were followed by advancements in radiation treatment techniques allowing
for ablative doses of radiation to be delivered in a highly conformal and accurate manner.
Highly conformal treatment delivery is particularly important in the treatment of primary
RCC given the radiosensitivity of adjacent organs at risk (OARs), most notably the luminal
gastrointestinal organs.

Stereotactic ablative radiotherapy (SABR), synonymous with stereotactic body ra-
diotherapy (SBRT), refers to highly conformal delivery of ablative doses of radiation
(generally >6 Gy per fraction) to extracranial sites of disease. In SABR, the planning target
volume (PTV), which includes tumor and a margin accounting for patient setup uncertainty,
is covered with an ablative dose, while a higher dose is intentionally delivered heteroge-
nously within the PTV. For example, a PTV prescribed 10 Gy to the 80% isodose line will
be covered with a minimal dose of 10 Gy, but may have a dose of 12.5 Gy (10 Gy/80%) or
greater within the target. Dose heterogeneity within the PTV allows for sharp dose fall-off
outside of the PTV in order to spare OARs, while creating a central high-dose region that
may help overcome radioresistance from hypoxic conditions [8]. Delivery of such sharp
dose gradients requires daily image guidance, advanced motion management techniques,
and strict quality-assurance procedures in order to ensure treatment accuracy on the order
of millimeters [9].

Given the widespread adoption of SABR and the perceived sensitivity of RCC to high
fractional doses, multiple centers have begun employing SABR for the primary treatment
of localized RCC with encouraging initial outcomes [10–16]. Herein, we will discuss the
recent developments in SABR for the management of localized renal cell carcinoma, high-
lighting key concepts of appropriate patient selection as well as radiation treatment design
and delivery.

2. SABR Rationale and Patient Selection in Localized RCC
2.1. Overview of Staging and Management Options

Initial staging requires multiphase abdominal imaging and chest radiography [17].
Abdominal computed tomography (CT) with contrast is typically performed for T-staging.
Magnetic resonance imaging (MRI) is useful for patients that cannot tolerate CT contrast
agents or when evaluating local invasion [17]. Contrast-enhanced ultrasound is useful for
clarification of indeterminate findings, most notably complex cystic masses [18]. Tumors
limited to the kidney are classified by size criteria as T1 (T1a ≤ 4 cm, T1b > 4 and ≤7 cm) or
T2 (T2a > 7 and ≤10 cm, T2b > 10 cm). Tumors extending into perinephric tissues or major
veins, but bounded by Gerota’s fascia, are classified as T3 regardless of size, while those
extending beyond Gerota’s fascia or to the ipsilateral adrenal gland are T4. For patients
without lymph node involvement or distant metastatic disease (TxN0M0), American Joint
Committee on Cancer (AJCC) 8th edition prognostic group staging is determined by T-stage
(T1 = Stage 1, T2 = Stage 2, T3 = Stage 3, T4 = Stage 4) [19].

For localized RCC (TxN0M0), primary management options rely upon T-stage, tumor
location, and patient factors such as renal function, comorbidities, and perceived operative
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risk. Per societal guidelines, surgical resection (partial vs. radical nephrectomy) is the
preferred management option [20,21]. For patients declining surgery, deemed to be poor
surgical candidates, or who are medically inoperable, active surveillance and ablative
techniques remain as options, particularly for patients with small T1a tumors [22,23]. If
proceeding with active surveillance or ablative therapy, a biopsy is recommended to confirm
the histologic diagnosis prior to treatment and guide post-treatment surveillance [21].

Under the paradigm of active surveillance, small renal masses may be initially moni-
tored with the option of treatment for progression following a process of shared decision-
making. Active surveillance of small, low-grade RCCs is justified based upon low risk
of metastatic spread and significant competing risks of death in older patients with co-
morbidities [24–26]. Although no randomized clinical data exists for active surveillance,
a systematic review of 28 studies showed a 1–6% risk of metastatic progression among
patients on active surveillance over 24–93 months of follow-up [27]. Patient age, tumor
size, and growth rate may serve as risk factors for metastatic progression [28]. In patients
aged ≥ 75 years, surgical management of cT1 tumors may not increase survival compared
with surveillance but accelerates renal dysfunction, which associates with cardiovascular
mortality [26]. A national cancer database population-based cohort study showed an
increased risk of death for patients with T1N0M0 kidney cancer managed with observation
as opposed to surgery, ablative therapy, or SABR, but interpretation of this work is highly
confounded by selection bias [29]. In addition to tumor size, tumor growth, and patient
comorbidities, histologic subtype may help inform discussions surrounding active surveil-
lance [30]. A recently published risk calculator may help personalize treatment selection
for patients with T1 renal cortical masses [31].

Thermal ablative therapies include modalities such as cryotherapy, radiofrequency
ablation, and microwave ablation. Although less invasive than surgical resection, thermal
ablative therapy requires laparoscopic or percutaneous access, which is associated with
risk of periprocedural morbidity in highly comorbid patient populations. Within properly
selected patients, these treatments may have a 90% or greater clinical efficacy [32–36].
However, treatment with these techniques is generally limited to smaller (<3–4 cm) T1
tumors spatially distant from the hilum and proximal ureter [21] and is recommended
to be cautiously offered due to remaining uncertainties regarding oncologic efficacy [37].
There are no randomized studies to help guide selection of treatment modality when
patients are candidates for both thermal ablation and SABR, although the RADSTER trial
(NCT03811665) has completed accrual and may help clarify such situations. As a general
guideline, thermal ablation may be initially preferred in patients with bilateral tumors or
a genetic predisposition to develop multiple tumors that may require additional future
tumor-directed therapies [21,38].

2.2. Societal Guidelines and Rationale for SABR in Localized RCC

Per version 4.2023 of the National Comprehensive Cancer Network (NCCN) practice
guidelines for kidney cancer, SABR may be considered for medically inoperable patients
with Stage I (category 2B evidence) or Stage II–III (category 3) cancer. European Association
of Urology (EAU) guidelines broadly consider ablative therapies as an alternative to surgery
for treatment of older patients with small renal masses and comorbid patients deemed
unfit for surgery [21]. EAU guidelines state that ablative therapies should not be used for
tumors larger than 3–4 cm, while focusing mainly on thermal ablative techniques. EAU
guidelines cite a single source reviewing the role of nephron-sparing treatment techniques
in T1 tumors [39], citing no other studies of SABR in localized RCC. European Society
of Medical Oncology (ESMO) guidelines do not include SABR as a treatment option for
localized RCC, instead stating that SABR may be used in the advanced/metastatic setting to
treat local disease in poor surgical candidates who are not eligible for other local therapies
such as thermal ablation [38,40].

As prospective trials evaluating the use of SABR for localized RCC have had small
cohort sizes [11–13,41], the most robust data evaluating its efficacy comes from pooled
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analyses. A systematic review and meta-analysis evaluated local control (LC), toxic-
ity, and renal function of 372 patients (383 primary tumors) from 26 studies, including
11 prospective trials, with a median follow-up of 28 months [10]. Mean tumor size was
4.6 cm (range 2.3–9.5) and mean pre-SABR estimated glomerular filtration rate (eGFR) was
59.0 mL/min (range 28.7–89.8). Weighted random-effect models estimated LC at 97.2%
(95% confidence interval [CI] 93.9–99.5), grade 3–4 toxicities at 1.5% (95% CI 0–4.3%), and
eGFR change as −7.7 mL/min (−12.5 to −2.8). Notably, this meta-analysis included pa-
tients with metastatic disease who underwent SABR to the primary tumor, but at least 80%
of patients had localized RCC.

Recently, a multi-institutional individual patient data meta-analysis of 190 patients
with localized RCC treated with SABR published results with a median follow-up of
5 years [16]. This study included adult patients regardless of performance status, while
excluding patients with metastatic disease, prior abdominal radiotherapy, prior upper
tract urothelial carcinoma, or with contraindications to renal SABR. Of the cohort, 96 of
128 patients with available data regarding the treating physician’s assessment of their
operative candidacy were deemed inoperable, including 17 due to existing or anticipated
renal dysfunction. Fifty-six patients had a solitary kidney and no patients received adjuvant
or concurrent systemic therapy. Pre-SABR median tumor size was 4 cm (interquartile range
[IQR] 2.8–4.9) and pre-SABR eGFR was 60.0 (IQR 42.0–76.0). The primary endpoint of local
failure (LF) was evaluated radiographically. The 5-year cumulative incidence of LF and
distant failure with death as a competing risk were 5.5% (2.8–9.5) and 10.8% (6.6–16.2),
respectively. During the follow-up period, 66 patients died, including ten cancer-related
deaths (five from other malignancies). Grade 1–2 treatment-related toxicities were recorded
in 37% of patients, but only one patient experienced grade ≥3 events. In the five years
following treatment, eGFR decreased by a median 14.2 mL/min (IQR 5.4–22.5), including
seven patients who progressed to requiring dialysis.

2.3. Patient Evaluation Prior to SABR

Following diagnosis, staging, and surgical evaluation, multiple factors must be con-
sidered to optimize patient selection for primary treatment of localized RCC with SABR.
Patient history must be evaluated for factors that would potentially increase the toxic-
ity risk of abdominal SABR, such as prior abdominal radiotherapy, inflammatory bowel
disease [42], connective tissue disorders [43], or concurrent administration of certain sys-
temic therapies [44]. Due to the unique management implications of disorders such as
Von Hippel-Landau (VHL) disease, patients should be considered for genetic testing if
presenting with multiple renal masses, age ≤ 46 years at diagnosis, or with a family his-
tory of RCC [20,45]. A prospective study of SABR in seven patients with VHL who had
multiple bilateral cysts, refused surgery, or could not undergo nephron-sparing resection
demonstrated 2-yr LC of 100% with no grade ≥2 toxicities and minimal effect of eGFR
after a 43-month median follow-up period [46]. As patients with VHL often have disease
that is multicentric, bilateral, and prone to recurrence, multidisciplinary evaluation should
precede treatment to ensure an optimal management strategy that may include a serial
combination of local therapies.

For patients with bilateral kidneys, a nuclear medicine split-function perfusion scan
(i.e., renogram) should be obtained to assess relative function of the involved and unin-
volved kidney. All patients require evaluation of baseline renal function. Creatinine-based
GFR estimating equations are recommended for routine clinical use [47]. The Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI) equation for GFR estimation may
most accurately classify patients across a broad range of populations [48]. Studies have
reported variable estimates of eGFR decline following SABR, likely due to heterogeneity
in tumor size, tumor location, and treatment techniques. Broadly, eGFR may be expected
to decrease in the order of 5–15 mL/min in the years following SABR [10,11,14,16,46].
Larger tumor size may correlate to greater functional loss, potentially due to a larger area
of high-dose overlapping functional parenchyma and less sparing of normal renal cor-
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tex [14,49,50]. However, some of this decline may be due to a patient’s natural trajectory of
eGFR unrelated to SABR [11], and some patients may have an increase in eGFR following
treatment [51]. Although a clear eGFR cutoff for SABR candidacy is not defined, exclusion
of patients with eGFR < 30 mL/min can be considered to reduce the risk of iatrogenic
dialysis [52], although some institutions selectively treat below this cutoff after assessment
of bilateral renal function. For patients with a solitary kidney, SABR can often be safely
employed after evaluation of baseline eGFR [49].

Tumor characteristics also affect patient selection for SABR. As there is little data
on radiation for non-clear cell histologies, it is not clear if tumor histology is an impor-
tant consideration for SABR treatment decisions. Although there is no clearly defined
upper size limit for lesions that can be managed with SABR, safe and efficacious treatment
has been clearly demonstrated for T1b tumors [51,53]. For patients with tumors > 7 cm,
a retrospective study of 11 patients (9 of whom had nodal or distant metastatic dis-
ease) demonstrated that SABR to the tumor alone vs. whole kidney was well toler-
ated [54]. Until additional data becomes available regarding size criteria, T2—particularly
T2b—tumors may serve as a reasonable size-based exclusion criterion for patient selec-
tion [52]. Tumor extension into neighboring veins, such as the inferior vena cava (IVC),
increases the risk of morbidity and mortality from resection and upgrades tumor stage to
T3 [55]. Although surgery remains the only curative option in the presence of IVC tumor
thrombus, a retrospective multi-institutional study of SABR for IVC tumor thrombus found
thrombus regression in 7 of 12 patients with post-SABR imaging, showing SABR is at least
a palliative option for T3 disease [56]. Ongoing work is evaluating the use of neoadjuvant-
SABR of IVC tumor thrombus [57,58]. Finally, tumor location relative to radiosensitive
OARs must be assessed, as direct contact of tumor with bowel complicates safe delivery
of SABR.

3. Treatment of Primary RCC with SABR
3.1. Selection of Treatment Prescription and Normal Tissue Constraints

There is no consensus regarding the optimal dose and fractionation for primary
management of RCC with SABR. The α/β ratio of RCC is unclear, as in vitro studies
have suggested a ratio between 2.6 and 6.92 Gy [5]. If assuming an α/β ratio of 3, a
biologically effective dose (BED) of BED3 > 225 Gy may provide optimal rates of control [59].
Higher doses have been delivered without dose-limiting toxicities. However, in a study of
11 patients treated over three fractions to either 48, 54, or 60 Gy (BED3 = 460 Gy), progressive
disease was only documented at the highest dose level [12], potentially indicating a lack of
benefit for continued dose-escalation. Given prior data on safety and efficacy, as well as the
relative iso-effectiveness of these doses over the range of plausible α/β ratios, an ongoing
clinical trial selected 42 Gy in three fractions (BED3 = 238 Gy) for tumors > 4 cm and 26 Gy
in 1 fraction (BED3 = 251 Gy) for smaller tumors [52]. A similar dose of 48 Gy in four
fractions (BED3 = 240 Gy) has also been used safely [60]. For current clinical practice, 42 Gy
in three fractions can be recommended as a well-tolerated regimen with high rates of local
control. For tumors ≤ 4 cm, 26 Gy in one fraction can be considered since single-fraction
treatment may provide superior oncologic outcomes and patient convenience as compared
to multi-fraction regimens [16]. For large T2 tumors, or those in close proximity to bowel,
35–40 Gy in five fractions (BED3 = 117–147 Gy) may be used to limit toxicity risk, although
doses up to 50 Gy in five fractions (BED3 = 217 Gy) should be attempted when feasible due
to the lower control rates seen with lower doses [11,54]. Ideally, doses should be prescribed
to the 70–80% isodose line, but this practice is not standardized and published work has
not consistently reported treatment isodose [52,61].

Normal tissue dose constraints can influence selection of prescription dose and frac-
tionation, particularly for tumors in close proximity to small bowel. As exemplified by a
cohort of 190 patients managed with SABR [16], maximum point dose constraints should
be strictly enforced to avoid high-grade toxicity of the small bowel. Among that cohort,
one grade 4 duodenal ulcer was documented, which occurred in a patient receiving a small
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bowel point dose of 54 Gy in four fractions [16]. To further mitigate risk of gastrointestinal
toxicity, an every-other-day schedule should be considered for multi-fraction regimens [62].
Caution should be used when treating with a single fraction regimen in close proximity to
the ureters, particularly in the setting of a solitary kidney, due to the paucity of ureteral
toxicity data for single-fraction treatment [63,64]. Dose to the ipsilateral kidney should
be as low as reasonably achievable (ALARA), minimizing the volume receiving a high
fractional dose (approximately > 50% isodose) [50]. As shown in Table 1, various OAR
constraints have been used in clinical practice, and a standardized set of dose-constraints
for the treatment of localized RCC does not exist.

Table 1. Representative normal tissue dose constraints for one, three, and five fraction SABR.

Organ One Fraction Three Fractions Five Fractions

D0.035cc < 22 Gy a or 26 Gy b D0.035cc < 30 Gy a,b D0.035cc < 35 Gy a or < 29 Gy d

Small bowel/duodenum D5cc < 17.4 Gy a or < 22.5 Gy b D5cc < 22.5 Gy a or D30cc <
12.5 Gy b D5cc < 26.5 Gy a

Maximum dose to full bowel
wall circumference ≤ 12.5 Gy b

Large bowel D0.035cc < 31 Gy a or D1.5cc
ALARA, aim for < 26 Gy b

D0.035cc < 45 Gya or D1.5cc
ALARA, aim for <42 Gy b D0.035cc <52.5 Gy a or <29 Gy d

Stomach D0.035cc < 22 Gy a or D1.5cc <
15.4 Gy b D0.035cc < 30 Gy a,b D0.035cc <35 Gy a or <29 Gy d

Liver D700cc < 11.6 Gy a D700cc < 15 Gy b or <17.7 Gy a D700cc <19.6 Gy a or D50% <
25 Gy d

Ipsilateral kidney–ITV ALARA, minimize volume of
>50% IDL b

ALARA, minimize volume of
>50% IDL b D60% < 15 Gy d

Contralateral kidney V10Gy ≤ 33% b V10Gy ≤ 33% b D100% < 11 Gy d

Ureter D0.035 cm3 < 35 Gy a D0.035 cm3 < 40 Gy a D0.035 cm3 < 45 Gy a

Spinal canal D0.035 cm3 < 12 Gy c D0.035 cm3 < 18 Gy c D0.035 cm3 < 27.5 Gy c

a Timmerman 2022 [65]. b Siva et al. 2018 [52]. c Siva et al. 2016 [61]. d Lapierre et al. 2023 [60]. The authors do
not assume responsibility for use of these dose limits, and not all constraints have been thoroughly tested.

3.2. Informed Consent

Patient consent for treatment should include fatigue and nausea, the most common
side effects, as well as the possibility of dermal changes, chest wall or flank pain, mildly
decreased renal function, and gastrointestinal effects such as diarrhea or gastritis. Radia-
tion may cause tissue scarring that can complicate future surgical intervention, although
most patients treated with SABR are already poor operative candidates. Very rare risks
depend upon a patient’s specific situation and include gastrointestinal damage that may
require surgery, spinal cord injury, and renal failure. One case of acute intratumoral
hemorrhage, presenting with flank pain, fever, and vomiting, has been reported [66].
Radiation-associated secondary malignancy is a theoretical risk, but no cases have been
reported in the literature following treatment for localized RCC. Overall, SABR for RCC
is generally well tolerated with a minority of patients experiencing treatment-related
toxic events [16].

3.3. Treatment Setup, Design, and Delivery

Various treatment delivery systems have been employed for renal SABR, such as
tomotherapy, gantry-mounted, robotic, and MRI LINAC [61,67]. Patient simulation tech-
niques vary by treatment platform and institutional preference, but patients will generally
be in a supine position with arms up [61]. Patients should not be positioned directly on the
treatment couch. Instead, a patient positioning device, such as a negative pressure vacuum
bag, should be used for reproducibility of setup and patient immobilization. Generally,
CT simulation should be performed with intravenous (IV) contrast for patients without
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absolute contraindications. If IV contrast cannot be given at time of simulation, a diagnostic
contrast-enhanced scan should be co-registered for tumor delineation. CT simulation slice
acquisition thickness should be 1–3 mm.

A variety of appropriate imaging techniques can be used to define the gross tumor vol-
ume (GTV). Typically, the GTV will be contoured on the simulation CT and further verified
via use of a co-registered diagnostic MRI. Positron emission tomography (PET) scans can
also be co-registered for GTV delineation, but the utility of PET is limited by physiologic ra-
diotracer excretion leading to PET-avidity of normal renal parenchyma, thereby decreasing
contrast between normal tissue and PET-avid renal lesions [68]. However, PET may have
increased utility when delineating tumor thrombus for the treatment of T3 disease [68],
and novel techniques such as PSMA-1007 PET may better delineate tumor from renal back-
ground due to more prominent hepatic excretion [69]. The use of single-photon emission
CT (SPECT) has also been described for GTV delineation, and SPECT may be particularly
useful for patients that cannot tolerate CT or MRI contrast [70]. Expansions for creation of
a clinical target volume (CTV) are not routinely recommended [14,16,52,57,67,71].

Motion management is essential given the effects of respiratory motion on renal posi-
tion, and multiple appropriate motion management methods exist [72]. Four-dimensional
CT (4DCT) is commonly used to accumulate GTV positions throughout all respiratory
phases to create an internal target volume (ITV). The ITV should not be defined as the full
extent of motion between deep inspiration and deep expiration. Instead, an additional
motion management technique, such as abdominal compression or respiratory gating,
should be coupled with 4DCT. A reasonable goal of advanced motion management is to
limit ITV expansion to no greater than 0.5 cm axially and 1.0 cm craniocaudally [57]. The
need for an ITV may be obviated via the use of real-time, intra-fractional imaging, such
as with MRI LINAC or robotic tracking of internal fiducials [16,67,71]. On-board image
guidance is required prior to each treatment fraction to ensure proper patient and tumor
positioning. Cone beam CT (CBCT), with or without fiducial markers, is commonly used
for image guidance. If not using fiducial markers, CBCT should be used to align to the
ipsilateral kidney. CBCT should be repeated during the treatment fraction if there are
concerns about patient movement during treatment, which may be monitored via optical
surface imaging. Margins for PTV are dependent upon treatment platform, form of image
guidance, and institutional practice, generally ranging from 0–5 mm [16]. Generally, the
PTV will be trimmed off luminal gastrointestinal structures and the PTV prescription goal
will be ≥95–99% coverage with 95–100% of prescribed dose [16,52,61].

Options for treatment beam arrangement depend foremost upon the delivery system.
For example, ring-gantry systems may be limited to isocentric coplanar beams, while
robotic systems use non-isocentric, non-coplanar beams. When using a gantry-mounted
LINAC, patients may be treated with static intensity modulated radiotherapy (IMRT) or
dynamic volumetric modulated arc therapy (VMAT). Non-opposing, non-coplanar beams
are preferable for high dose sparing of OARs and may consist of ≥6 static IMRT beams
or 2–5 VMAT arcs. For example, beam arrangement may include 6 static co-planar IMRT
beams and 1–2 non-coplanar IMRT beams. However, if needing to prioritize functional
renal parenchyma sparing due to presence of solitary kidney or due to results of split-
function perfusion scan, coplanar beams are preferable, such as the use of two VMAT arcs
(Figure 1).

3.4. Treatment Response Assessment

Imaging follow-up for local response is typically conducted with CT or MRI, and ra-
diographic assessment of localized RCC response to SABR remains a clinical challenge [61].
RCC tumors grow slowly and exhibit slow radiographic response to radiotherapy. In a
retrospective study of 41 tumors managed with SABR, mean pretreatment linear tumor
growth rate was 0.68 cm per year compared to −0.37 cm per year after treatment with
no statistically significant change in tumor enhancement [15]. In addition to persistent
enhancement after treatment, some tumors may show an initial period of radiographic
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growth prior to regression [15,56,73]. Therefore, response criteria for thermal ablation,
where persistent enhancement or failure of size regression are considered as signs of local
recurrence, cannot be applied to SABR [74]. Instead, Response Evaluation Criteria in Solid
Tumors (RECIST) criteria can be useful, but caution should be practiced when interval
growth is detected on short-interval post-treatment scans. Determination of response
assessment may be postponed to 1-year follow-up [52]. As SABR is not expected to induce
a complete radiographic response of primary RCC, local success should be judged by rates
of stable disease and partial response [17]. Ongoing work on novel PET tracer ligands,
such as PSMA-1007, may lead to additional options for evaluation of therapeutic response
assessment [69,75].
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Figure 1. Treatment of a right-sided WHO grade 2 clear cell RCC (cT1aN0M0) with two 184-degree
VMAT arcs of 6 MV energy. A negative pressure vacuum bag, abdominal compression, and 4DCT
were used for motion management. The patient was prescribed SABR as 42 Gy in three fractions
to the 75.6% isodose line, obtaining 100% PTV coverage. OAR metrics included: D0.035cc to bowel
(19.0 Gy), stomach (17.1 Gy), spinal canal (6.4 Gy), and contralateral kidney (2.0 Gy); V10Gy to
contralateral kidney (0%); D700cc to liver (0.7 Gy); and 37% of the ipsilateral kidney covered by
the 50% isodose line. (A–C) Axial, coronal, and sagittal CT views with color-coded radiation dose
distribution in centigray (cGy).

Post-SABR biopsy has been employed but is not recommended as a routine measure
of response assessment because of its inherent ambiguity and potential risk for leading to
unnecessary salvage procedures [76]. Residual histologic disease is routinely identified
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on biopsies conducted 6–12 months after treatment, but finding residual tumor cells does
not appear to relate to local failure in longer term follow-up, likely due to post-treatment
tumor senescence [11–13]. If post-treatment biopsy is conducted, advanced pathologic
techniques may be considered to evaluate for cellular senescence among surviving tumor
cells [11]. Due to the unique biologic treatment mechanisms of SABR, residual tumors
cells are likely to have lost their proliferative potential and would thus not be considered
viable. Additional techniques, such as cell-free DNA, have yet to be validated for response
assessment [77,78].

4. Conclusions and Future Directions

For patients with localized RCC who desire treatment but are not eligible for surgical
management or thermal ablative therapies, non-invasive SABR provides high rates of local
control coupled with a low toxicity profile [10,16]. In patients eligible for active surveil-
lance, SABR, and/or thermal ablative therapy, we lack clear evidence guiding optimal
management strategy, although evidence supporting SABR may be more rigorous than
for thermal ablation [16,37]. Until better evidence is available, (e.g., reporting of results
from the RADSTER trial NCT03811665), shared decision-making after multi-disciplinary
consultation should be employed in these situations [31]. Although T1 and T2a tumors
can be safely managed with SABR, further work is needed to refine upper size criteria. T3
tumors may be treated in the palliative setting with SABR, and ongoing work is investi-
gating SABR of T3 tumors in the neoadjuvant setting [56–58]. Societal guidelines should
be updated to include SABR as a management option for select T1, T2a, and T3 tumors,
depending on patient-specific factors and treatment intent. An optimal eGFR threshold for
SABR candidacy does not exist, but exclusion of patients with eGFR < 30 mL/min should
be considered to reduce the risk of iatrogenic dialysis.

Future work is needed to refine optimal selection of dose-fractionation, the effect
of isodose prescription, and to understand if single fraction treatment yields superior
outcomes compared with multifraction regimens. Various published OAR dose constraints
exist, but these have not been standardized or refined in the setting of localized RCC.
However, even with a diverse set of dose-constraints used in clinical practice, treatment-
related toxicity has been minimal. An optimal strategy for treatment response assessment
remains to be defined and is a limitation confounding post-SABR surveillance. Ongoing
work with advanced imaging techniques, such as multiparametric MRI with diffusion
weighted imaging and dynamic contrast enhancement, may advance the treatment response
assessment paradigm [52].
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