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Simple Summary: Early recurrence is common after curative resection for pancreatic ductal adeno-
carcinoma (PDAC). Patients with a high-risk of early recurrence may benefit from a neoadjuvant-first
approach instead of an upfront surgery. In our study, a deep-learning model for predicting early
recurrence was developed and validated. The results showed that the deep learning model outputs
were an independent risk factors associated with early recurrence. Additionally, higher values of deep
learning model outputs were significantly associated with worse recurrence-free survival in various
subgroups and demonstrated more advanced tumor behaviors. The comprehensive nomogram that
integrated the deep learning model outputs and independent radiological factors further improved
the predictive performance. Our findings show that the deep learning-based nomogram could non-
invasively predict early recurrence in PDAC patients, which may support clinical decision-making
about upfront resection or neoadjuvant treatment strategies.

Abstract: Around 80% of pancreatic ductal adenocarcinoma (PDAC) patients experience recurrence
after curative resection. We aimed to develop a deep-learning model based on preoperative CT images
to predict early recurrence (recurrence within 12 months) in PDAC patients. The retrospective study
included 435 patients with PDAC from two independent centers. A modified 3D-ResNet18 network
was used for a deep learning model construction. A nomogram was constructed by incorporating
deep learning model outputs and independent preoperative radiological predictors. The deep
learning model provided the area under the receiver operating curve (AUC) values of 0.836, 0.736, and
0.720 in the development, internal, and external validation datasets for early recurrence prediction,
respectively. Multivariate logistic analysis revealed that higher deep learning model outputs (odds
ratio [OR]: 1.675; 95% CI: 1.467, 1.950; p < 0.001), cN1/2 stage (OR: 1.964; 95% CI: 1.036, 3.774;
p = 0.040), and arterial involvement (OR: 2.207; 95% CI: 1.043, 4.873; p = 0.043) were independent
risk factors associated with early recurrence and were used to build an integrated nomogram. The
nomogram yielded AUC values of 0.855, 0.752, and 0.741 in the development, internal, and external
validation datasets. In conclusion, the proposed nomogram may help predict early recurrence in
PDAC patients.

Keywords: pancreatic ductal adenocarcinoma; early recurrence; deep learning; computed tomography;
nomogram
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignan-
cies with a five year survival rate of less than 10% [1,2]. Radical resection with adjuvant
chemo(radio)therapy is considered the major therapy for treating PDAC. Even in patients
with resectable PDAC, recurrence occurs in approximately 80%, with 50% occurring within
one year [3,4]. Neoadjuvant chemo(radio)therapy has been reported may decrease re-
currence and improve survival, especially for borderline resectable (BRPC) and locally
advanced PDAC (LAPC) [5–7]. Therefore, identifying patients with a high recurrence risk
is essential, as these patients may benefit from a neoadjuvant-first approach instead of an
upfront surgery.

Currently, predicting the recurrence of PDAC is mainly based on multiple clini-
copathological factors. Postoperative pathological factors, such as lymph node metas-
tases and tumor differentiation, are the most reported independent predictors of recur-
rence [8–10]. However, pathological indicators that may not allow preoperative clinical
decision-making can only be acquired after surgery. Several preoperative score indicators
or clinical factors, such as Glasgow prognostic score, carbohydrate antigen 19-9 (CA19-9),
and platelet-to-lymphocyte ratio, have been reported to be associated with postoperative
recurrence [11–13]. Nevertheless, these factors have not yet been the subject of widespread
recognition or validation.

Imaging methods, including computed tomography (CT) and magnetic resonance
imaging (MRI), are widely used for PDAC diagnosis, staging, and resectability evaluation.
Furthermore, some studies [14–16] reported that some imaging characteristics, such as
suspicious metastatic lymph nodes, hypodense tumor in the portal venous phase, peri-
pancreatic tumor infiltration, tumor necrosis, and presence of pancreatitis or pseudocyst,
were associated with postoperative tumor recurrence. Recently, there has been growing
interest in applying deep learning for prognosis prediction from cancer imaging. Deep
learning is a powerful approach to the extraction of information from medical images and
has shown promise for survival prediction in PDAC patients [17–19]. However, to the best
of our knowledge, deep learning methods have not been well-evaluated for predicting
recurrence in PDAC patients.

Therefore, we aimed to develop a deep learning model based on preoperative contrast-
enhanced CT (CECT) images for the prediction of early recurrence (ER) after upfront
surgery in patients with PDAC. Moreover, a comprehensive preoperative nomogram was
established by integrating the deep learning model outputs and radiological variables.

2. Materials and Methods
2.1. Patients

Our study recruited patients from Zhejiang University School of Medicine Affiliated
Second Hospital (Center 1, for developing models and internal validation) and South-
ern Medical University Affiliated Zhujiang Hospital (center 2, for independent external
validation). The criteria for inclusion were as follows: histologically confirmed PDAC
and contrast-enhanced CT performed within 1 month before surgery. Exclusion criteria
included the following: use of neoadjuvant therapy, including radiotherapy, chemotherapy,
or other treatments, unavailability of preoperative computed tomography (CT) or subopti-
mal image quality, 90-day postoperative mortality, coexisting other malignancy, no visible
mass at CT, and multiple synchronous PDAC. Patients were also excluded if their records
were incomplete or had less than 12 months of follow-up without recurrence or death. The
detailed process is shown in Figure S1.

2.2. Outcomes and Data Collection

Baseline characteristics, including age, sex, liver function test, and serum CA19-9
level, were collected. Preoperative CT imaging was used to assess vascular involvement
and tumor size. Venous involvement comprised the portal vein, superior mesenteric vein,
and spleen vein. The arterial involvement included the coeliac trunk, superior mesenteric
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artery, common hepatic artery, and spleen artery. The T and N stages were determined
based on preoperative CT images according to the 8th AJCC TNM staging system. R0
resection was defined as the absence of identifiable tumor cells within 1 mm of the resection
margin. All patients were followed every month for the first six months after surgery for
adjuvant chemo(radio)therapy, every three months for the following 1.5 years, and once
a year after that. At each follow-up, serum CA19-9 levels were measured, and imaging
(contrast-enhanced CT or MRI) was performed. ER was defined as recurrence within
12 months after surgery.

2.3. CT Acquisition and Image Processing

Figure 1 shows the workflow of this study. All patients received a contrast-enhanced
CT scan prior to surgery. This study used images of the portal venous phase for deep
learning model construction. CT acquisition protocols of the two centers can be found in
the Supplementary Materials.
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Figure 1. The workflow of this study. (A) The primary tumor was cropped and resized to a uniform
size (50 × 50 × 50) as the input to a 3D deep learning network. The deep learning model was
constructed using a modified 3D-ResNet18 framework, and the outputs were used for integrated
nomogram construction. (B) Preoperative factors such as tumor size, lymph node metastasis, venous
invasion, artery invasion, CA19-9 level, and baseline clinical characteristics were inputted into
univariable and multivariate logistics regression to select independent factors for nomogram and
clinical modeling. (C) High-risk group patients showed significantly worse recurrence-free survival
in the Kaplan–Meier analysis. A nomogram was created by incorporating independent radiological
factors and deep learning model outputs. The ROC curve was used to compare the predictive
performance of developed models. The nomogram can support shared decision-making regarding
upfront resection or neoadjuvant treatment strategies.

The image intensity values were truncated from −125 to 225 HU (window width:
250 HU, window level: 50 HU) and then resampled to a resolution of 1 × 1 × 3 mm3 using
spline interpolation to decrease the variability between scans. Finally, each pixel value
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was standardized to the range of [0, 1]. The 3D primary tumor was manually segmented
using the ITK-SNAP software (version 3.6.0) on the portal venous-phase CT images by two
radiologists (X.M.L, X.C.Z, with 10 and 20 years of work experience) in consensus. The
primary tumor was then cropped and resized to a uniform size (50 × 50 × 50) as the input
to a 3D deep-learning network.

2.4. Deep Learning Model Development

We used a modified 3D-ResNet-18 to develop the CT-based deep learning model. The
channel of the first convolutional layer of the network was modified from a three-channel
into a single-channel, ensuring that the network can accept gray images as input. In
addition, the 3D convolutional kernel with size (3 × 3 × 3) instead of (7 × 7 × 7) was used
for a relatively small size of the input. Then two ResNet layers with 2 and 3 basic blocks
were appended to increase network depth. Finally, the output layer was modified to classify
patients into two classes (with or without ER). The outputted conditional probabilities
indicated the individual recurrence risk used for integrated nomogram construction (The
code can be found at https://github.com/fatfeifei/PDAC_recurrence_prediction (accessed
on 15 May 2023)).

During the model’s training, all inputted 3D images were augmented using the torchIO
(version 0.18.86), such as translation, rotation, or shearing, and the magnitude of the
operations. Patients in Center 1 were randomly split into development and internal
validation datasets (7:3 ratio). To minimize the loss, the Adam optimizer was used with a
learning rate of 1 × 10−4. The loss function was binary cross-entropy. The training was
aborted when the loss in the validation dataset did not decrease for 10 epochs.

2.5. Performance Evaluation in Different Subgroups

Patients were classified into high-risk and low-risk groups with the median value of
the output probabilities of the deep learning model in the development dataset as the cutoff.
Clinicopathological characteristics and surgery details were compared between high- and
low-risk groups.

Furthermore, we classified all patients into clinicopathological subgroups based on
tumor location, age (<70 vs. ≥70 y), sex (male vs. female), TBIL level (≤21 vs. >21 U/mL),
CA19-9 level (<120 vs. ≥120 U/mL), pT stage (T1/2 vs. T3/4), pN stage (N0 vs. N1/2),
and tumor differentiation (well vs. moderate/poor). The performance of deep learning
model outputs in different subgroups was assessed using Kaplan–Meier method.

2.6. Nomogram and Clinical Model Construction

The selection of significant risk factors for ER was performed using logistic regression
analysis. First, the deep learning model outputs and preoperative clinical factors were
analyzed using univariable logistic regression analysis. The multivariate logistics regression
analysis included the factors with a p-value of less than 0.1. Next, risk factors were selected
using stepwise backward elimination based on the Akaike information criterion (AIC).
Better model fit was indicated by a lower Akaike information criterion. The selected
variables were then used to generate the nomogram. Then multivariate logistic regression
was applied repeatedly without deep learning model outputs to develop the clinical model.
Model discrimination was assessed and compared via area under the receiver operating
curve (AUC). Calibration curves and Hosmer–Lemeshow tests were used to assess the
agreement between the nomogram prediction and the actual observed rate.

2.7. Statistical Analysis

Data analyses were performed using Python (version 3.8.0) and R software (version
4.0.3). The deep learning model was implemented based on PyTorch (version 1.10.2).
Categorical variables were compared using Chi-square or Fisher’s exact test. The “rms”
package (https://github.com/harrelfe/rms (version 6.7-0 accessed on 8 May 2023)) was
used for logistic regression analysis and nomogram and calibration curve plotting. The

https://github.com/fatfeifei/PDAC_recurrence_prediction
https://github.com/harrelfe/rms
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AUC values were compared using DeLong’s test with “pROC” package [20]. The Hosmer–
Lemeshow test was implemented using “generalhoslem” package (https://github.com/
matthewjay15/generaLhosLem (accessed on 3 June 2019)).

3. Results
3.1. Patient Characteristics

A total of 368 PDAC patients in Center 1 were selected and randomized to the de-
velopment (n = 257) and internal validation (n = 111) datasets. The external validation
dataset consisted of 67 patients from Center 2. Table 1 summarizes the baseline clinical
characteristics, showing no significant differences between the datasets except sex, dia-
betes, organ involvement, and perineural invasion. The median follow-up was 9.0 months
(interquartile range [IQR]: 4.0–16.0) in Center 1 and 10.0 months (IQR: 3.0–20.0) in Center
2. At the last follow-up, 275/368 (74.7%) and 44/67 (65.7%) patients in each center had
experienced recurrence.

Table 1. Characteristics of patients in the development, internal validation, and external valida-
tion datasets.

Characteristic
Development

Dataset
(n = 257)

Internal
Validation Dataset

(n = 111)

External
Validation Dataset

(n = 67)
p Value

Age, years 0.946
≥70 62 (24) 25 (22) 16 (24)
<70 195 (76) 86 (78) 51 (76)

Sex 0.044
Female 87 (34) 36 (32) 33 (49)
Male 170 (66) 75 (68) 34 (51)

Diabetes 0.004
No 197 (77) 84 (76) 38 (57)
Yes 60 (23) 27 (24) 29 (43)

Alb 0.173
≥35 U/mL 221 (86) 99 (89) 53 (79)
<35 U/mL 36 (14) 12 (11) 14 (21)

TBIL 0.088
>21 µmol/L 109 (42) 38 (34) 34 (51)
≤21 µmol/L 148 (58) 73 (66) 33 (49)

CA19-9 0.222
≥150 U/mL 139 (54) 70 (63) 35 (44)
<150 U/mL 118 (46) 41 (37) 32 (56)

CT tumor size 0.134
≥3.0 cm 142 (55) 50 (45) 31 (46)
<3.0 cm 115 (45) 61 (55) 36 (54)

Location 0.088
Head 164 (64) 63 (57) 49 (73)

Body/Tail 93 (36) 48 (43) 18 (27)

cT stage (AJCC 8th
edition) 0.184

cT1-T2 195 (76) 74 (67) 48 (72)
cT3-T4 62 (24) 37 (33) 19 (28)

cN stage (AJCC 8th
edition) 0.677

cN0 143 (56) 61 (55) 41 (61)
cN1-N2 114 (44) 50 (45) 26 (39)

https://github.com/matthewjay15/generaLhosLem
https://github.com/matthewjay15/generaLhosLem


Cancers 2023, 15, 3543 6 of 13

Table 1. Cont.

Characteristic
Development

Dataset
(n = 257)

Internal
Validation Dataset

(n = 111)

External
Validation Dataset

(n = 67)
p Value

Vascular involvement
on CT imaging 0.740

No 143 (56) 57 (52) 37 (55)
Arterial 17 (6) 7 (6) 3 (5)
Venous 46 (18) 16 (14) 12 (18)

Both 51 (20) 31 (28) 15 (22)

Organ involvement on
CT imaging <0.001

No 223 (87) 93 (84) 35 (52)
Yes 34 (13) 18 (16) 32 (48)

Resection Margin 0.553
R0 238 (93) 99 (89) 61 (91)
R1 19 (7) 12 (11) 6 (9)

pT stage (AJCC 8th
edition) 0.154

pT1-T2 179 (70) 66 (60) 43 (64)
pT3-T4 78 (30) 45 (40) 24 (36)

pN stage (AJCC 8th
edition) 0.077

pN0 139 (54) 74 (67) 40 (60)
pN1-N2 118 (46) 37 (33) 27 (40)

Perineural invasion 0.021
No 49 (19) 12 (11) 5 (7)
Yes 208 (81) 99 (89) 62 (93)

Tumor differentiation 0.666
Well 31 (12) 10 (9) 6 (9)

Moderate 161 (63) 66 (60) 44 (66)
Poor 65 (25) 35 (31) 17 (25)

Abbreviations: Alb albumin, TBIL total bilirubin, CA-199 carbohydrate antigen 19-9, AJCC, American Joint
Committee on Cancer. Note: Data are numbers of patients, with percentages in parentheses. Chi-squared or
Fisher’s exact tests, were used to compare the differences in categorical variables.

3.2. Development and Validation of Deep Learning Model

The range of deep learning model outputs was (−1.68–1.01) with a median value of
0.18 in the development dataset. According to the median value of deep learning model
outputs, all patients were assigned to high-risk (≥median value) and low-risk (<median
value) groups. Kaplan–Meier analyses depicted that patients in the high-risk group had
lower recurrence-free survival (RFS) than in the low-risk group among development, inter-
nal, and external validation datasets (Figure 2A–C). Meanwhile, across the development,
internal, and external validation datasets, patients who experienced ER had higher values
of deep learning model outputs than those without (Figure 2D–F). The ROC curve analysis
demonstrated that the deep learning model provided AUC values of 0.836, 0.736, and
0.720 in the development, internal, and external validation datasets for predicting ER,
respectively (Figure 2G).

Clinicopathological characteristics were also compared between the high-risk and
low-risk groups.

The high-risk group showed more aggressive tumor behavior, including higher
CA19-9 level, advanced T stage, lymph node metastasis, larger tumor size, and poorer
tumor differentiation (all p < 0.005). Additionally, in patients with vascular involvement,
adjacent organ invasions occurred more frequently in high-risk groups (all p < 0.005). The
detailed comparison results are provided in Table S1.
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Moreover, we tested the prognostic value of the binary deep learning model outputs
within each subgroup of patients. The results demonstrated significant differences in RFS
between high versus low-risk patients in all subgroups (Figure 3).

3.3. Nomogram and Clinical Modeling

The multivariable logistic analysis of ER with deep learning model outputs and
preoperative clinical factors is shown in Table 2. The results revealed three independent
preoperative factors for ER: arterial involvement (OR: 2.207; 95% CI: 1.043, 4.873; p = 0.043),
cN1/2 stage (OR: 1.964; 95% CI: 1.036, 3.774; p = 0.040), and deep learning model outputs
(odds ratio [OR]: 1.675; 95% CI: 1.467, 1.950; p < 0.001). The nomogram was constructed to
predict ER by incorporating these independent risk factors (Figure 4A). On the other hand,
by eliminating deep learning model outputs, four clinical variables with the smallest AIC
were selected to develop the clinical model (Tables S2 and S3): CA19-9 level ≥ 150 U/mL
(OR: 1.766; 95% CI: 1.047, 2.966; p = 0.034), CT reported tumor size ≥ 3.0 cm (OR: 1.734;
95% CI: 1.108, 2.974; p = 0.044), cN1/2 stage (OR: 1.982; 95% CI: 1.164, 3.409; p = 0.012), and
arterial involvement (HR: 2.145; 95% CI: 1.145, 4.157; p = 0.020).

Table 2. Univariate and multivariate logistic analyses of risk factors for early recurrence.

Variables
Univariate Analysis Multivariate Analysis

OR 95% CI p-Value OR 95% CI p-Value

Age (≥70 vs. <70) 1.417 0.779–2.576 0.253
Sex (Male vs. Female) 1.166 0.690–1.972 0.566
Diabetes (yes vs. no) 1.004 0.557–1.811 0.989
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Table 2. Cont.

Variables
Univariate Analysis Multivariate Analysis

OR 95% CI p-Value OR 95% CI p-Value

Alb (<35 vs. ≥35) 1.400 0.666–2.943 0.375
TBIL (>21 vs. ≤21) 1.196 0.720–1.985 0.489

CA19-9 (≥150 vs. <150) 1.768 1.068–2.927 0.027
CT tumor size (≥3.0 vs. <3 cm) 1.960 1.173–3.277 0.010
Location (head vs. body/tail) 1.297 0.774–2.175 0.324

cT stage (cT3/4 vs. cT1/2) 2.316 1.227–4.371 0.010
cN stage (cN1/2 vs. cN0) 2.194 1.307–3.684 0.003 1.964 1.036–3.774 0.040

Arterial involvement (yes vs. no) 2.505 1.349–4.652 0.004 2.207 1.043–4.870 0.043
Venous involvement (yes vs. no) 1.742 1.027–2.955 0.040
Organ involvement (yes vs. no) 2.024 0.903–4.536 0.087
Deep learning model outputs

(per 0.1 increase) 1.699 1.477–1.954 <0.001 1.675 1.467–1.950 <0.001

Abbreviations: OR, odds ratio; CI, confidence interval.
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into different risk subgroups according to tumor location ((A). head, (B). body/tail), age ((C). ≥70,
(D). <70), sex ((E). female, (F). male), TBIL level ((G). >21 µmol/L, (H). ≤21 µmol/L), CA19-9 level
((I). ≥150 U/mL, (J). <150 U/mL), tumor differentiation ((K). poor, (L). well/moderate), pT stage
((M). T1/2, (N). T3/4), pN stage ((O). N0, (P). N1/2). The X-axis of all curves is the year and ranges
from 0 to 6.
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3.4. Model Performance Comparison

Table 3 summarized the predictive performance of all developed models. The nomo-
gram yielded AUC values of 0.855, 0.752, and 0.741 in the development, internal, and
external validation datasets, respectively (Figure 4B–D). DeLong’s test showed that the
nomogram model outperformed the clinical model in the development dataset (p < 0.001)
but was comparable in the internal (p = 0.293) and external (p = 0.364) datasets. The cali-
bration curves of the nomogram showed good agreements in the development, internal,
and external validation datasets, respectively (Figure 4E–G). The Hosmer–Lemeshow test
further indicated the good calibration of the nomogram for all datasets (p = 0.915, 0.797,
and 0.367 for the development, internal, and external validation datasets).

Table 3. Performance of developed models in predicting early recurrence.

Models Dataset AIC AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Nomogram Development 243.674 0.855 (0.787–0.886) 79.0 (73.5–83.8) 87.0 (80.7–91.9) 67.0 (57.0–76.0)
Internal validation 133.613 0.752 (0.657–0.848) 73.9 (64.7–81.8) 83.3 (72.1–91.4) 60.0 (44.3–74.3)
External validation 86.133 0.741 (0.615–0.867) 73.1 (60.9–83.2) 78.4 (61.8–90.2) 66.7 (47.2–82.7)

Deep learning Development 249.189 0.836 (0.787–0.886) 78.2 (72.7–83.1) 82.5 (75.5–88.1) 71.8 (62.1–80.3)
Internal validation 137.467 0.730 (0.633–0.826) 72.1 (62.8–80.2) 75.8 (63.6–85.5) 66.7 (51.0–80.0)
External validation 89.323 0.720 (0.589–0.851) 70.1 (57.7–80.7) 73.0 (55.9–86.2) 66.7 (47.2–82.7)

Clinical Development 330.916 0.685 (0.618–0.752) 66.5 (60.4–72.3) 77.3 (69.8–83.6) 50.5 (40.5–60.5)
Internal validation 139.637 0.700 (0.601–0.799) 67.6 (58.0–76.1) 78.8 (67.0–87.9) 51.1 (35.8–66.3)
External validation 86.603 0.707 (0.583–0.831) 67.2 (54.6–78.2) 70.3 (53.0–84.1) 63.3 (43.9–80.1)

Abbreviations: AIC akaike information criterion, AUC area under the receiver operating curve, CI confidence interval.
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4. Discussion

This study developed a CT-based deep-learning model for predicting ER after upfront
surgery in patients with PDAC. A subgroup analysis demonstrated that the median value
of deep learning model outputs could stratify PDAC patients into high and low-risk
groups with significantly different prognoses. In addition, the combined nomogram
integrating the deep learning model outputs and radiological variables further enhanced
predictive abilities.

Biomedical images contain information that reflects underlying tumor pathophysiol-
ogy. Machine learning model construction based on image features has been increasingly
explored for identifying high-risk PDAC patients. Radiological characteristics, such as
suspicious lymph node metastasis and peripancreatic tumor infiltration, are well-known
high-risk imaging features associated with early recurrence in PDAC patients [14,21].
Quantitative image analyses, such as radiomics and deep learning, represent a novelty
approach contributing to decision support in oncology [22,23]. Radiomics features, such
as kurtosis and grey-level non-uniformity, have the potential to indicate the presence of
tumor heterogeneity. Studies [16,24] indicated that high values of these two features were
linked to ER in PDAC. In addition, Sandrasegaran et al. [25] reported that high kurtosis,
and the mean value of positive pixels were predictors of worse overall survival in PDAC
patients. Unlike radiomics, which relied on domain expertise to define features and needed
to undergo feature extraction processes, feature selection, and machine learning modeling,
deep learning is the end-to-end one-step process that automatically learns effective features
and simultaneously outputs predicted probability values. Lee et al. [19] developed an
ensemble model that integrated a series of deep learning and machine learning models that
showed better performance in predicting one-year RFS in PDAC patients than the AJCC
staging system. Yao et al. [18] proposed a 3D Convolutional LSTM network using multiple
CECT phase data for predicting overall survival in PDAC patients. The multivariable
analysis revealed that the deep learning score strongly predicted PDAC survival.

In our study, the modified 3D-ResNet-18 was used as the backbone network for deep
learning model construction. The ResNet architecture enables the depth of the network to
increase without degradation and can therefore improve the representation of its learning
ability [26]. The multivariable logistic regression and the nomogram plot showed that
the deep learning model outputs were the strongest predictor among all preoperative
clinical variables. In addition, we further dichotomized all patients into high- and low-risk
groups based on the median deep learning model outputs. The discrimination ability of
the binary deep learning model outputs was validated in various clinical subgroups. In
addition, when clinicopathological variables were compared between high- and low-risk
groups, the high-risk group patients demonstrated more aggressive tumor behavior. These
results suggested that the deep learning model outputs may have the potential as a useful
preoperative prognostic biomarker.

The multivariable logistic regression also found that artery involvement and cN stage
were independent factors that synergistically predicted the ER. PDAC with artery involve-
ment has been reported in association with advanced tumor characteristics, lower R0
resection rate, and higher recurrence rate [27–29]. With respect to the cN stage, a number
of studies [14,21,30] reported that the detection of lymph node metastasis preoperative CT
scans (cN1/2) was a useful predicter of ER. The nomogram integrating the deep learning
model outputs and these two radiological variables showed an improved predictive perfor-
mance over the clinical model. Notably, nomogram construction variables were all derived
from preoperative CT imaging. The results indicated that combining deep learning and
conventional radiological variables can integrate both advantages.

Our study has some limitations. First, the deep learning model was trained and
validated on a relatively small dataset. Second, the retrospective design may have selection
bias and unknown confounding factors. Third, the primary tumor was manually segmented.
Although manual segmentation is more accurate than automatic, the process is laborious
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and time-consuming. Therefore, an automatic segmentation and prediction deep learning
model trained in a large dataset may improve efficiency and prediction performance.

5. Conclusions

We proposed a preoperative deep learning model and an integrated nomogram based
on preoperative CT images that can noninvasively predict ER in PDAC patients. This
may aid clinical decision-making regarding upfront resection or neoadjuvant treatment
strategies in PDAC patients.
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logistic analyses of risk factors for recurrence without deep learning model outputs; Table S3. Selection
process for the clinical model.
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