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Simple Summary: Liposarcomas (LPSs) are a rare soft tissue malignancy with a variable clinical
prognosis dependent on tumor differentiation. Well-differentiated (WDLPS) and dedifferentiated
(DDLPS) liposarcomas most commonly occur both in extremities and the retroperitoneal cavity.
Surgical resection and post-operative monitoring are effective forms of treatment; however, many
tumors do recur and require chemotherapeutic intervention. Liposarcomas have high intratumoral
variability, which can influence drug response and microenvironment interactions. Using a broad
bioinformatics approach, we show that Hedgehog signaling, a developmental pathway, is upregulated
in DDLPS and correlates with a tumor gene expression signature that suggests reduced immune cell
infiltration and increased extracellular matrix (ECM) protein expression.

Abstract: Liposarcomas are the most diagnosed soft tissue sarcoma, with most cases consisting of
well-differentiated (WDLPS) or dedifferentiated (DDLPS) histological subtypes. While both tumor
subtypes can have clinical recurrence due to incomplete resections, DDLPS often has worse prognosis
due to a higher likelihood of metastasis compared to its well-differentiated counterpart. Unfortunately,
targeted therapeutic interventions have lagged in sarcoma oncology, making the need for molecular
targeted therapies a promising future area of research for this family of malignancies. In this work,
previously published data were analyzed to identify differential pathways that may contribute to the
dedifferentiation process in liposarcoma. Interestingly, Gli-mediated Hedgehog signaling appeared
to be enriched in dedifferentiated adipose progenitor cells and DDLPS tumors, and coincidentally
Gli1 is often co-amplified with MDM2 and CDK4, given its genomic proximity along chromosome
12q13-12q15. However, we find that Gli2, but not Gli1, is differentially expressed between WDLPS
and DDLPS, with a noticeable co-expression signature between Gli2 and genes involved in ECM
remodeling. Additionally, Gli2 co-expression had a noticeable transcriptional signature that could
suggest Gli-mediated Hedgehog signaling as an associated pathway contributing to poor immune
infiltration in these tumors.

Keywords: liposarcoma; hedgehog signaling; differentiation; immune infiltration; microenviron-
ment; Gli2

1. Introduction

Liposarcomas (LPSs) are soft tissue malignant neoplasms that have the greatest inci-
dence amongst all soft tissue sarcomas [1–3]. The five histological subtypes of LPS consist of
well-differentiated (WDLPS)/atypical lipomatous tumors (ALTs), dedifferentiated (DDLPS),
myxoid, pleomorphic, and round cell, with the cell of origin and genetic abnormalities
varying extensively across the different subtypes. WDLPS (~40%) and DDLPS (~18–20%)
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make up over 60% of LPS cases and share initiating chromosomal abnormalities that give
rise to tumor development [4]. Importantly, WDLPS and DDLPS can originate in the
retroperitoneal cavity, where surgical resection and post-operative follow-up are the first
line of treatment. Clinical follow-up, particularly for WDLPS, is necessary due to the high
incidence of recurrence and further exacerbates the need for a multidisciplinary team of
practitioners, particularly with expertise in soft tissue sarcoma management [5]. One key
complication that clinicians face is variable degrees of differentiation within LPS tumors.
Intratumoral variability can drastically affect prognosis, recurrence, and likelihood of
metastasis, making tumor differentiation a potential mechanism to target in liposarcoma
development. In this study, we examined several previously published datasets through
the Gene Expression Omnibus (GEO) [6] and CBioPortal [7,8] to identify potential targets
that could be contributing to dedifferentiation during LPS tumor formation.

2. Results
2.1. Hedgehog Signaling Is Enriched in Dedifferentiated Adipose Progenitors and DDLPS Tumors

Liposarcoma (LPS) tumors can vary extensively based on their grade of differentia-
tion [1,2,9–12]. While there are five described subtypes of liposarcoma, we sought to better
understand the underlying molecular differences between the well-differentiated (WDLPS)
and dedifferentiated (DDLPS) subtypes that can cause varying degrees of tumor differenti-
ation, which can be a contributing factor to clinical prognosis [3]. Using transcriptomics
data collected from the Gene Expression Omnibus (GEO [6]) (Figure 1A), we evaluated
differentially expressed genes (DEGs) between adipose progenitors and mature adipocytes
(GSE20697 [13]) (Figure 1B), followed by DEGs upregulated in either WDLPS or DDLPS tu-
mors (GSE30929 [14]) (Figure 1C). The inclusion criterion for genes in subsequent analyses
was an adjusted p-value < 0.05, after Benjamini–Hochberg FDR correction. No fold change
threshold was applied to observe subtle differences between groups, as well as accounting
for reduced sensitivity of microarray platforms. Unmapped array probes were filtered
from comparative analysis and functional enrichment classification (Figure 1A). The DEGs
from the progenitor/adipocyte comparative analyses were then evaluated for overlap with
their respective tumor tissue counterparts, based on differentiation status with adipose
progenitors being compared to DDLPS tumors (Figure 1D) and adipocytes compared to
WDLPS tumors (Figure 1E). Using BioVenn, we compared lists of mapped gene identifiers
to identify genes that were commonly upregulated between progenitors and DDLPS or
adipocytes and WDLPS [15]. In total, 1262 genes were found to be commonly upregulated
in both adipose progenitors and DDLPS tumors (Figure 1D, Table S1), while 834 genes were
preferentially expressed in adipocytes and WDLPS tumors (Figure 1E, Table S2).



Cancers 2023, 15, 3360 3 of 18Cancers 2023, 15, x FOR PEER REVIEW 3 of 19 
 

 

Figure 1. Comparative transcriptional analysis reveals enrichment of Hedgehog signaling in dedif-

ferentiated adipose progenitors and dedifferentiated liposarcoma tumors. (A) Data accession and 

analysis pipeline. Tumor transcriptomics collected from GSE30929. Adipocyte differentiation tran-

scriptomics collected from GSE20752. FDR p-value adjustment (0.05), no fold change threshold. (B) 

Differentially expressed genes between adipose progenitors and mature adipocytes. (C) Differen-

tially expressed genes between WDLPS and DDLPS tumors. (D) Upregulated genes in DDLPS and 

Adipose progenitors. (E) Upregulated genes in WDLPS and adipocytes. (F) KEGG pathway analysis 
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The overlapping genes identified in Figure 1D,E were then input into a KEGG path-

way analysis for functional enrichment classification. The top 20 pathways by fold enrich-
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Figure 1. Comparative transcriptional analysis reveals enrichment of Hedgehog signaling in dedif-
ferentiated adipose progenitors and dedifferentiated liposarcoma tumors. (A) Data accession and
analysis pipeline. Tumor transcriptomics collected from GSE30929. Adipocyte differentiation tran-
scriptomics collected from GSE20752. FDR p-value adjustment (0.05), no fold change threshold.
(B) Differentially expressed genes between adipose progenitors and mature adipocytes. (C) Differen-
tially expressed genes between WDLPS and DDLPS tumors. (D) Upregulated genes in DDLPS and
Adipose progenitors. (E) Upregulated genes in WDLPS and adipocytes. (F) KEGG pathway analysis
of overlapping upregulated genes in DDLPS and adipose progenitors. (G) KEGG pathway analysis
of overlapping upregulated genes in WDLPS and adipocytes. Presented pathways were top 20 results
based on fold enrichment, with an FDR cutoff of p < 0.05. (H) Hedgehog signaling canonically
represses adipogenesis, but its overall role in the differentiation of liposarcoma is unknown.

The overlapping genes identified in Figure 1D,E were then input into a KEGG pathway
analysis for functional enrichment classification. The top 20 pathways by fold enrichment
and FDR cutoff (0.05) are presented in Figure 1F,G. Genes enriched in dedifferentiated
adipose progenitor cells and DDLPS were functionally enriched for protein processing,
proteoglycan biosynthesis, Hedgehog and TGF-B signaling, and stem cell pluripotency
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(Figure 1F). As expected, adipocytes and WDLPS tumors were preferentially enriched for
fatty acid metabolism, PPAR signaling, AMPK signaling, and other metabolic pathways
(Figure 1G). Interestingly, other works have previously shown that Hedgehog signaling
actively represses adipogenic differentiation of mesenchymal progenitors [16–21], but
its role in the dedifferentiation of liposarcoma tumors is largely unknown. Thus, we
hypothesized that adipogenic repression by Hedgehog may drive the transition from
mesenchymal progenitor biology to liposarcoma tumor phenotype (Figures 1H and S1).

2.2. Chromosome 12q13-12q15 Amplification Increases Gli1 Expression, but Not Gli2

Liposarcoma tumors have many chromosomal amplifications that result in oncogenic
transformation, with the most notable being the amplification of chromosome 12q13-12q15.
Both WDLPS and DDLPS often contain this chromosomal amplification which can consist
of a dual amplification of MDM2 (Mouse Double Minute 2 Homolog) and CDK4 (Cyclin-
Dependent Kinase 4), in addition to Sarcoma Amplified Sequence (SAS/TSPAN31) and
HMGA2 (High-Mobility Group AT-Hook 2) [9]. Previous papers have mapped the Gli1
genomic locus to the same chromosome arm near 12q13.3 [22–25] (Figure 2A), leading us
to hypothesize that Gli1 amplification may be a driving factor behind the upregulation
of Hedgehog signaling in DDLPS tumors. Using CBioPortal [7,8], we accessed three
independent patient cohorts from previous publications to evaluate Chromosome 12q13-
12q15 amplification status, gene expression, and amplification co-occurrence (Figure 2B).
Gli1 displayed amplification in 25% of the MSKCC-IMPACT 2022 cohort [26] (n = 167)
(Figure 2C) as well as 14% of the TCGA-SARC [12] cohort (n = 59) and ~24% of the
GSE21124 [27] cohort (n = 50) (Figure S2A,B). A mutual exclusivity test was performed
in CBioPortal [7,8] to evaluate co-amplification between Gli1, CDK4, and MDM2. As
expected, CDK4 and MDM2 significantly co-occurred with one another in all three cohorts
(Figures 2D and S2A,B). Gli1 was more frequently co-amplified with CDK4, likely due to
the genomic locus proximity of these two genes (Figure 2A), albeit not significant in either
the MSKCC 2022 [26] cohort or TCGA-SARC [12] cohort (Figures 3D and S2A). We next
sought to evaluate if chromosome 12q13-12q15 amplification resulted in a concomitant
increase in Gli1 mRNA expression. It was determined that Gli1 expression did not increase
with MDM2 or CDK4 amplification in either the TCGA-SARC [12] or GSE21124 [27] cohorts.
mRNA expression values were not profiled in the MSK-IMPACT patient cohort, so only
genomic profiling could be performed on this dataset (Figure S1C,D). Gli1 displays a
genomic association with LPS tumor initiation; however, it is not the only transcriptional
activator of the Hedgehog pathway and can often display both overlapping and distinct
transcriptional targets with that of Gli2 [28,29], the other primary Hedgehog transcriptional
activator.
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Figure 2. Gli1 amplification can occur with MDM2 and CDK4 amplification. (A) Oncogenic transfor-
mation of adipocytes and adipose progenitor cells is often driven by chromosome 12q13-15, which
includes MDM2 and CDK4. Gli1, a Hedgehog transcription factor, shares this chromosome segment.
(B) Genomics data acquisition and analysis pipeline. (C) Amplification distribution of Gli1, MDM2,
and CDK4 in the MSKCC patient cohort (n = 167). (D) Mutual exclusivity test of co-amplifications.
* p < 0.05.

Both Gli1 and Gli2 were profiled to determine mRNA expression levels, as well as if
Gli2 mRNA expression could also be increased by Gli1 amplification. Using the TCGA-
SARC [12] (n = 58) cohort and GSE21124 [27] (n = 46) cohort, it was determined that on
average, Gli2 expression was significantly higher in DDLPS tumors except for statistical
outliers removed by Rout’s outlier test (Figure 3A,B). As expected, Gli1 mRNA expression
was increased by Gli1 chromosomal amplification (Figure 3C,D), whereas Gli1 amplification
had no bearing on Gli2 gene expression, suggesting that Gli1 amplification does not increase
Gli2 expression in DDLPS tumors. Pearson correlation analysis revealed a modest positive
correlation between Gli1 and Gli2 gene expression, although the amplification status of
Gli1 had no bearing on this relationship (Figure 3G,H).
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Figure 3. Gli2 has higher expression than Gli1 in DDLPS tumors but not as a result of Gli1 ampli-
fication. Gli1 and Gli2 mRNA expressions were evaluated in two separate cohorts (TCGA-SARC
n = 58) (A) and GSE21124 (n = 50) of DDLPS tumors (B). Gli1 mRNA expression was compared to
Gli1 genomic status in the respective cohorts (C,D), as was Gli2 mRNA expression (E,F). Pearson
correlation analysis was performed to evaluate the strength of the relationship between Gli1 and Gli2
expression in DDLPS tumors in both cohorts (G,H). Statistical evaluation was performed following
Rout’s outlier test with subsequent Student’s t-test or one-way ANOVA when appropriate. Outliers
were removed as follows: 3B, Gli1 n = 6; 3C, Diploid n = 7, Gain n = 2, Amp. n = 1; 3D, Diploid, n = 1.
Paired values from patient tumors were removed following outlier removal. (ns: not significant,
** p < 0.01, *** p < 0.001, **** p < 0.0001).

2.3. Gli2 Expression and Downstream Hedgehog Signaling Are Elevated in DDLPS Tumors

Based on the high variability of Gli1/2 expression in DDLPS tumors, we sought to
better characterize their expression profiles relative to normal adipose tissue and WDLPS
tumors. Using the tumor cohorts identified in Figure 4A, Gli1 and Gli2 expressions were
evaluated and compared (GSE21122 [27]: n = 9 normal adipose tissue, n = 46 DDLPS)
(GSE30929 [14]: n = 52 WDLPS, n = 40 DDLPS). Interestingly, we found that Gli2 mRNA
z-score distribution was significantly higher than that of Gli1 in DDLPS tumors relative to
normal adipose tissue (Figure 4B). Additionally, while Gli1 expression was slightly elevated
when compared to Gli2 in both WDLPS and DDLPS tumors in the GSE30929 [14] cohort,
no significant difference in Gli1 expression was present when comparing the two separate
tumor types (Figure 4C).
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Figure 4. Gli2 expression and downstream Hedgehog signaling are elevated in DDLPS tumors. Gli1
and Gli2 mRNA expressions were evaluated in two separate cohorts (GSE21122 n = 9 adipose tissue,
n = 46 DDLPS) and GSE30929 (n = 52 WDLPS, n = 40 DDLPS) (A). Gli1 and Gli2 expression levels were
profiled in 46 DDLPS tumors relative to normal fat samples (n = 9). mRNA z-scores were extracted
from CBioportal and outlier corrected using Rout’s outlier test. Seven Gli1 expression outliers were
identified, and the corresponding Gli2 expression values were removed from the analysis (B). Gli1
and Gli2 expression levels were evaluated to determine expression levels between WDLPS (n = 52)
and DDLPS (n = 40) tumors. Six Gli1 outliers were removed as well as their corresponding Gli2
expression values. Significance was determined using two-way ANOVA with Sidak’s test for multiple
comparisons (C). GSEA of expression files collected from GSE30929 cohort (D). (ns: not significant,
** p < 0.01, **** p < 0.0001).

However, we observed a significant increase in Gli2 expression in DDLPS tumors
compared to WDLPS tumors (Figure 4C), leading us to hypothesize that Gli2 may play a
greater functional role in tumor dedifferentiation compared to Gli1. Gene Set Enrichment
Analysis (GSEA) was performed on the tumors from the GSE30929 [14] cohort (WDLPS
and DDLPS) to determine if downstream Hedgehog target genes were also enriched in
DDLPS tumors. Using adipogenesis and adipocytokine signaling (Figure S3) as validation
gene sets, we observed a moderate enrichment of Hedgehog signaling components and
both early and late downstream Hedgehog signaling (Figure 4D).
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2.4. Gli2-Focused Co-Expression Analysis Reveals an Inverse Relationship between Gli2 and
Immune Cell Population Markers While Establishing a Positive Correlation to Fibroblasts and
ECM Gene Markers

The previous results provided rationale that Gli2 may contribute a larger role in the
state of dedifferentiation for liposarcoma tumors than Gli1. Given the low incidence of
liposarcoma tumors, research has lagged, leading to a shortfall in sequencing datasets read-
ily available. Thus, we collected co-expression data on bulk tumor RNA-seq collected for
the TCGA-SARC [12] cohort through CBioPortal [7,8] to better understand transcriptional
associations that Gli2 may display within DDLPS tumors. Additionally, identical analysis
was performed on the GSE21124 [27] cohort. However, this cohort used microarrays to eval-
uate tumoral gene expression, resulting in less sensitivity when performing co-expression
analyses.

Using CBioPortal [7,8], transcriptional co-expression analysis was performed to dis-
cern stronger relationships that Gli2 may functionally be involved in within DDLPS tumors.
The inclusion criteria for enrichment analyses included correlated genes that had both
statistical significance with a q-value of <0.05, following false discovery correction, in
addition to a cutoff for Spearman’s R of at least +/− 0.3 to identify transcriptional relation-
ships with a modest correlation with Gli2 expression. As anticipated, Hedgehog signaling
had the greatest fold enrichment with Gli2-associated co-expression, closely followed by
cell-cycle-associated gene sets, TGF-Beta signaling, and UV damage response (Figure 5A).
In converse, we observed a strong inverse relationship between Gli2 and pathways in-
volved in oxidative phosphorylation, inflammatory responses, adipogenesis, and apoptosis
(Figure 5B). Upon validation in the secondary cohort (GSE21124 [27]), we observed Notch
signaling enrichment instead of Hedgehog signaling and TGF-B signaling, in addition to
cell-cycle-related pathways, myogenesis, and UV response (Figure 5C). Developmental
pathways have frequently been shown to crosstalk, so these results were not unexpected.
However, we found that inflammatory signaling and interferon responses were largely
retained with an inverse association with Gli2 expression (Figure 5D). Using the Human
Protein Atlas [30–32], we evaluated Gli2 expression within normal subcutaneous adipose
tissue [33,34] and found that Gli2 expression was limited to mesenchymal cell popula-
tions, such as fibroblasts and adipose progenitors, while absent in most immune cell
populations (Figure S4), leading us to hypothesize that Hedgehog signaling may facilitate
stromal interactions within the tumor microenvironment. Furthermore, Gli2 displayed
co-expression with genes functionally annotated as ECM remodeling or ECM organization
within fibroblasts and connective tissue cells (Figures S5 and S6). Interestingly, many of
these genes identified in both bulk [33] and single-cell RNA sequencing [34] displayed
functional enrichment for regulatory mechanisms in mesenchymal lineage differentiation,
with a noted negative regulatory mechanism in adipocyte differentiation (Figure S6). Taken
together, these results suggested that Gli2 activity could indeed vary based on the degree
of differentiation with liposarcoma tumors, albeit a limited conclusion due to lack of robust
tumor sequencing data at this time.

To further clarify the functional enrichment of the Gli2 co-expression network within
DDLPS tumors, we identified genes that displayed the strongest correlations with Gli2
expression across the three independent patient cohorts (+/− 0.5–0.99) (TCGA-SARC [12],
GSE21124 [27], GSE30929 [14]).
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Figure 5. Gene ontology and functional enrichment of Gli2 co-expressed genes. Using CBioPortal,
two separate DDLPS cohorts were analyzed using co-expression analysis relative to Gli2. Genes
were filtered to have a Spearman’s R of +/− 0.3 as well as q-value < 0.05. Gene lists were input and
subsequently analyzed for enrichment across both cohorts. Genes with an R > +0.3 were preferentially
enriched for cell cycle and signaling pathways (A,C). Genes with an R < −0.3 were preferentially
enriched for inflammatory signaling (B,D). Top 10 pathways were selected based on fold enrichment
and FDR cutoff (0.05).

Eight genes were determined to have an R of at least +0.5, and fifteen genes had
an R < −0.5 and Spearman’s q-value (GSE21124 [27], TCGA-SARC [12]) or two-tailed
p-value (GSE30929 [14]) of less than 0.05. Interestingly, a strong inverse relationship was
observed between Gli2 mRNA expression and mRNA expression of HLA class I antigens
(HLA-A, HLA-C) (Figure S7). Thus, we hypothesized that elevated Gli2 expression may
indicate an immune-exclusive tumor environment. Using the Human Protein Atlas, we
selected genes enriched in subcutaneous adipose tissue ECM remodeling, mesenchymal
cells, macrophages, and T cells. Representative markers from each gene set were evaluated
for correlation across the 59 TCGA-SARC DDLPS tumors. Bulk tumor RNA-seq revealed
that Gli2 expression was positively correlated to markers of collagen deposition, extra
cellular matrix (ECM) organization, and components of Wnt, Notch, and Transforming
Growth Factor Beta signaling (Figure 6A). Additionally, we also observed a discrete inverse
relationship between Gli2 expression and expression of class I HLA-antigens and markers
of macrophages and T-cells within DDLPS tumors (Figure 6B). Taken together, we anticipate
that Hedgehog signaling may indicate decreased HLA-I antigen presentation, resulting
in lower immune cell infiltration. Additionally, higher levels of collagen expression may
indicate elevated fibroblast activity and ECM deposition, further resulting in more immune
exclusion from the tumor microenvironment (Figure 6C).
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Figure 6. Gli2 co-expression with ECM and immune cell markers. Gene clusters associated with
adipose-derived fibroblasts and immune cell populations were identified using the Human Protein
Atlas. Gli2 mRNA expression was compared across these markers within the TCGA-SARC DDLPS
cohort (n = 58) to evaluate the relationship of Gli2 between stromal cells/fibroblasts (A) and immune
cell populations (B). (C) Proposed Model of Gli-mediated Hedgehog (HH) signaling and potential
influences over the DDLPS tumor microenvironment.

3. Discussion

In this study, Hedgehog signaling was identified as a differentially enriched pathway
between adipose progenitors and mature adipocytes, as well as between well-differentiated
liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS). Given Gli1′s genomic
proximity to CDK4 and MDM2, it was anticipated that Gli1 amplification may contribute
to this phenotype. Surprisingly, Gli1 amplification played less of a role than anticipated,
whereas Gli2 expression appeared to be elevated in DDLPS tumors. Using co-expression
analyses, Gli2 was found to have a positive relationship with cell-cycle-associated path-
ways and TGF-β signaling, a well-known immunosuppressive pathway, which we have
previously shown can regulate Gli2 expression in the bone microenvironment [35–37].
Additionally, Gli2 had an inverse relationship with inflammatory signaling enrichment
terms such as allograft rejection, interferon response, and JAK-STAT signaling. Upon
further investigation, Gli2 expression was found to have an increasing co-expression with
subcutaneous adipose tissue ECM regulators and fibroblast-associated signatures, while
simultaneously having an inverse relationship with markers of adipose tissue macrophages
and T cells.

These results provide novel insights into the role of Hedgehog signaling in the devel-
opment of the dedifferentiated liposarcoma microenvironment, an area of research that is
drastically understudied. Importantly, if Hedgehog signaling contributes to a more robust
extracellular matrix in adipose tissue and adipocyte-derived tumors, then perhaps this
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can result in immune exclusion and a pro-tumorigenic microenvironment or fibrotic tissue
formation. The most intriguing finding from our analyses is the strong inverse relationship
between Gli2 expression and HLA-A and HLA-C, both class I HLA antigens. Previous work
in sarcoma tumor models has shown that HLA (−) tumor cells have a greater propensity to
form tumors than their HLA (+) counterparts and express a more multipotent mesenchymal
transcriptional profile, often upregulating markers of bone differentiation [38]. This could
also suggest an association between Gli-mediated Hedgehog signaling and tumor-initiating
cell populations. Additionally, an inverse relationship between Gli2 and HLA class I
antigens has been previously established in other tumor models during acquired drug
resistance of tumor cells compared to wild type [39]. There is an increasing body of work
linking Gli-mediated Hedgehog signaling to immune suppression [40–44] in the tumor
microenvironment, often through cancer-associated fibroblasts; however, this has not been
studied in the dedifferentiated liposarcoma tumor microenvironment. Fibroblast-specific
Hedgehog signaling has been investigated in several epithelial tumor models [45–49] but
not in sarcoma models and more specifically DDLPS. Tumor-cell-intrinsic Gli-mediated
Hedgehog signaling has been identified as an oncogenic pathway in many bone-derived
sarcomas [50–57], which is unsurprising, given the role of Hedgehog signaling in embry-
onic development and skeletal patterning. This highlights the importance of understanding
the nuance of tumor biology and the biological overlap between canonical mesenchymal
development and sarcoma tumor biology.

Overall, this study aimed to develop hypotheses regarding liposarcoma tumor dedif-
ferentiation, an area that could potentially be exploited as a therapeutic vulnerability using
previously collected and publicly available genomics and transcriptomics data, an under-
utilized resource in sarcoma research. Given the rare incidence of these tumors compared
to epithelial-derived neoplasms, molecular targeted research has lagged. Here we propose
that Hedgehog signaling, a driver of sarcoma formation in other tissue types [28,50,58–61],
may play a role in ECM deposition and fibroblast function, while simultaneously inhibiting
immune infiltration of DDLPS tumors. As a subsequent result, poor immune infiltration
and therapeutic response may occur, leading us to postulate that Gli-mediated Hedgehog
signaling could be an early indicator of immune exclusion and poor prognosis for DDLPS
moving forward. Importantly, stromal and immune invasion have been shown to be a
prognostic indicator for sarcoma tumors [62]. Our results indicate that therapeutics target-
ing regulatory mechanisms of cellular invasion or intrinsic tumoral stemness, a negative
regulator of immune cell infiltration [63], may prove promising in the future. Based on
the multidisciplinary nature of soft tissue sarcoma management, bioinformatics-based
approaches may be used to supplement the extensive technological advancements that
have occurred in the surgical field, allowing for clinicians to better establish protocols for
post-operative monitoring. Novel clinical monitoring methods may eventually implement
an integrated platform where clinical patient data can be profiled against bioinformatics
platforms to better inform clinical care in the future [64].

4. Limitations

The authors acknowledge the limitations of data-mining-driven approaches in regard
to tumor biology, particularly in the absence of terminal validation studies for the hypothe-
ses presented above. Studies such as these are bound by the confines of the experimental
methodologies performed by other laboratories, limiting the scope of conclusions that
can be effectively drawn from these analyses. One example being the limited inclusion
criteria for patient tumors in datasets. Variables such as this highlight the nuance of tu-
mor heterogeneity, making it imperative that robust sample collection combined with
multi-omics approaches are employed moving forward. Future work on this project will
directly target Gli2 in syngeneic murine liposarcoma models to determine if Gli2-mediated
Hedgehog signaling contributes to intrinsic tumor dedifferentiation and stemness or im-
mune exclusion. In addition, single-cell RNA sequencing on DDLPS tumors should be
performed to determine if Gli2 and Hedgehog signaling are expressed in tumor cells or in
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other mesenchymal populations, such as fibroblasts or progenitor cells, within the tumor
mass. Additionally, using patient tumors to decipher the relationship between Hedgehog
signaling and immune exclusion will allow for better characterization of Gli-mediated
Hedgehog signaling as a potential predictor of response to immune checkpoint blockade or
differentiation-based therapies.

5. Methods
5.1. Software, Databases, and Computational Tools

This work used a variety of computational tools and software to perform genomics
profiling and co-expression analyses of previously collected primary sarcoma tumor tissue
and normal adipose tissue. Appropriate software and web databases are listed with a brief
description of its functionality in this publication in Table 1.

Table 1. Software and databases used.

Software/Database Description Location

Gene Expression Omnibus (GEO)
• Samples collected by other laboratories

with results from expression or
genomics profiling

https://www.ncbi.nlm.nih.gov/geo/
(Accessed on 12 August 2022)

GEO2R

• Integrated comparative R script for use
within GEO

• Can apply logarithmic transformation
and post hoc analyses

https://www.ncbi.nlm.nih.gov/geo/geo2r/
(Accessed on 12 August 2022)

ShinyGO (0.77) • Functional enrichment
• Gene ontology analysis

http://bioinformatics.sdstate.edu/go/
(Accessed on 9 December 2022).

CBioPortal

• Data visualization
• Genomics profiling
• Mutual exclusivity tests
• Co-expression analyses

https://www.cbioportal.org/
(Accessed on 10 June 2021)

GSEA
• Gene Set Enrichment Analysis of

Expression profiles uploaded by user
• Gene sets can be obtained from MsigDB

http://www.gsea-sigdb.org/gsea/index.jsp
(Accessed on 17 April 2022)

GraphPad Prism (9.5.0)
• Statistical analyses
• Graph generation
• Correlation heatmap matrices

Biorender • Biological figure generation https://www.biorender.com/
(Accessed on 19 February 2023)

Human Protein Atlas

• Bulk and single-cell RNA sequencing
for normal subcutaneous and visceral
adipose tissue

• Gene markers for adipose tissue
resident cell populations

https://www.proteinatlas.org/ENSG00000
074047-GLI2/single+cell+type
(Accessed on 13 June 2022)

5.2. Dataset Accession and Descriptions

This study largely employed previously published and publicly available datasets to
interrogate mechanisms of dedifferentiation in liposarcoma (LPS) tumors. Given the rare
incidence of LPS tumors, this allowed us to expand our sample pool for genomics and
transcriptomics analyses to a much larger amount than would have been achievable by
our laboratory. However, this introduces caveats due to different sequencing and array

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinformatics.sdstate.edu/go/
https://www.cbioportal.org/
http://www.gsea-sigdb.org/gsea/index.jsp
https://www.biorender.com/
https://www.proteinatlas.org/ENSG00000074047-GLI2/single+cell+type
https://www.proteinatlas.org/ENSG00000074047-GLI2/single+cell+type
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platforms being used for prior publications, and as such, the authors suggest that this
approach and publication be validated in greater detail prior to the use of preclinical
models.

5.3. Genomics Profiling

Genomics analyses were performed using the CBioPortal [7,8] visualization platform.
Data were uploaded previously by other laboratory groups in the publications outlined
in Table 2. Samples from the TCGA-SARC [12], MSK-IMPACT [26] (Sarc_MSKCC_2022),
and GSE21124 [27] (SARC_MSK_2010) datasets were filtered to only include DDLPS tumor
samples. Chromosome 12q13-12q15 amplification status for these tumors was evaluated
with CDK4/MDM2 and Gli1 amplification status relative to tumor-matched normal sam-
ples. Mutual exclusivity tests were performed with CBioPortal to evaluate the likelihood of
amplifications co-occurring with one another.

Table 2. Datasets used and accession locations.

Dataset PMID/URL Accession Location Description

GSE30929 21335544 Gene Expression Omnibus (GEO)
GSE30929

Expression analysis by
UG133A array
WDLPS (n = 52)
DDLPS (n = 40)

GSE20697 20887899 Gene Expression Omnibus (GEO)
GSE20697

Whole-transcript expression data by
UG133A array
Time course of adipose stem cell
differentiation

MSK-IMPACT 35705560 CBioPortal
Sarcoma_MSKCC_2022

Genomics profiling by sequencing
DDLPS (n = 167)

TCGA-SARC 29100075 CBioPortal
sarc_tcga_pan_can_atlas_2018

Genomics and transcriptome profiling
by sequencing
DDLPS (n = 59)

GSE21124 20601955
CBioPortal, Sarc_mskcc (2010)
Gene Expression Omnibus (GEO)
GSE21122/GSE21123

Expression and genomics analysis by
UG133A array
DDLPS (n = 50)
Matched Normal (n = 50)
Normal Fat (n = 9)

Human Protein Atlas 25613900
28495876

https://www.proteinatlas.org/
ENSG00000074047-GLI2
(Accessed on 13 June 2022)

Bulk RNA sequencing and single-cell
sequencing of subcutaneous adipose
tissue

Datasets used in this publication are shown in Table 2, while a more detailed descrip-
tion can be found in the supplemental information.

5.4. Transcriptional Profiling, Differentially Expressed Genes, and Co-Expression Analysis

Differentially expressed genes were collected using the GEO2R analytical package
within the Gene Expression Omnibus (GEO). Samples were assigned based on provided
descriptions from the data uploaders, and comparative statistical analyses were performed
using default parameters with the significance threshold being designated at α < 0.05.
Statistical comparisons for differentially expressed genes were analyzed using two-tailed
t-test when comparing two groups, with p-value adjustments determined by Benjamini–
Hochberg False Discovery Rate correction.

Direct mRNA expression values were collected using a variety of approaches. For
datasets available through CBioPortal [7,8], genes were queried and expression values
were downloaded for either normalized expression or mRNA z-score distributions across
uploaded samples. For cohorts unavailable through CBioPortal [7,8], expression values
were collected through uploaded matrix files accessible through GEO and evaluated using

https://www.proteinatlas.org/ENSG00000074047-GLI2
https://www.proteinatlas.org/ENSG00000074047-GLI2
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predesignated probe labels by manufacturers for the array platforms. Statistical compar-
isons of RNA expression values were performed using GraphPad Prism with two-tailed
t-test or two-way ANOVA, with Tukey’s post hoc test for two groups or three groups,
respectively.

Co-expression analyses were performed internally in CBioPortal [7,8] where mRNA
expression values of two genes can be directly compared and the strength of the correla-
tion can be determined using Spearman’s correlation test and false discovery correction.
Co-expression analyses were performed using statistical adjustments identified by false
discovery correction. This method was used to evaluate transcriptional co-expression with
Gli2 within the TCGA-SARC [12] and GSE21124 [27] cohorts. In order to collect Spear-
man’s correlation data from GSE30929 [14], correlation tests of raw expression values were
performed in GraphPad prism, due to GSE30929 [14] being unavailable in CBioPortal [7,8].
These data were used to validate the co-expression findings from the previous two cohorts,
but no direct findings were extrapolated from this analysis.

5.5. Microarrays, Tissue RNA Sequencing, and Single-Cell RNA Sequencing

Genomics and transcriptomics profiling were performed as designated by the dataset
uploaders within their respective publications. Due to variability in experimental pro-
cedures, no cross-dataset comparisons were made to eliminate confounding factors that
would otherwise be introduced by experimental variability.

All microarray expression data were collected using the Affymetrix Human Genome
U133A Array (GSE30929 [14], GSE21124 [27], GSE20697 [13]). Genomics array profiling was
collected using the Affymetrix Mapping 250K Sty2 SNP Array (GSE21124 [27]). Sequencing
was performed as outlined in original publications [12,26].

5.6. Gene Set Enrichment Analysis (GSEA) and Gene Ontology

GSEA was performed on expression files collected from GSE30929 [14] to determine
pathway enrichment for Hedgehog signaling between WDLPS and DDLPS tumors. Files
were formatted as required by GSEA software, and gene sets were collected from the
molecular signatures database (MSigDB). Hallmark_Adipogenesis and Adipocytokine
signaling were used as validation datasets for WDLPS tumors. KEGG_Hedgehog (Ta-
ble S14), GCNP_SHH_UP_EARLY.V1_UP (Table S15), and GCNP_SHH_UP_LATE.V1_UP
(Table S16) were used to evaluate enrichment of Hedgehog pathway components and
downstream activity.

Gene ontology and functional enrichment analyses were performed using ShinyGO
(version 0.77). ShinyGO autogenerated plots from functional enrichment or gene ontology
data.

5.7. Statistical Analyses

Default analytical packages, statistical analyses, and parameters of previously defined
software and databases were used when collecting data from CBioPortal [7,8] and GEO2R.
User-performed statistical analyses were performed in GraphPad Prism (9.5.0). Statistical
outliers of Gli1 mRNA expression were detected using Rout’s outlier test. Corresponding
Gli2 expression values were removed from analysis. One-way ANOVA or Student’s t-tests
were performed when comparing three or more groups or two groups, respectively. mRNA
expression values were Log2-transformed, when appropriate. Spearman’s correlation
analyses were performed using mRNA expression data collected from datasets and only
compared internally within each dataset or patient cohort. No cross-dataset comparisons
were made to eliminate confounding variables introduced by experimental procedures or
analyses in other laboratories.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers15133360/s1, Figure S1: Hedgehog pathway components
enriched in DDLPS and Adipose Progenitor Cells, Figure S2: Genomics Analysis of Gli1 amplification
in two independent DDLPS patient cohorts, Figure S3: Gene Set Enrichment Analysis validation Gene
Sets. GSEA was performed to evaluate hedgehog signaling enrichment between DDLPS and WDLPS
tumors from the GSE30929 cohort. Adipokine signaling and adipogenesis gene sets were used
for validation of WDLPS tumoral expression, Figure S4: Gli2 is enriched in mesenchymal adipose
progenitors and absent from immune populations and mature adipocytes in adipose tissue, Figure S5:
Gene Ontology of genes clustered with Gli2 expression during bulk tissue RNA−seq from the human
protein atlas. Gli2 clustered with 335 genes, with high confidence, associated with fibroblasts across
catalogued tissues, Figure S6: Gene Ontology of genes clustered with Gli2 expression during single
cell RNA−sequencing form human protein atlas, Figure S7: Co−expressed Genes were evaluated
across three independent DDLPS experimental cohorts. Genes with Spearman’s R > +0.5, Table S1:
Gene Ontology of Genes enriched in adipose progenitors and DDLPS, Table S2: Gene Ontology
of Genes enriched in adipocytes and WDLPS, Table S3: DDLPS (n = 40) Tumor Samples used in
analyses from GSE30929 cohort, Table S4: WDLPS (n = 52) Tumor Samples used in analyses from
GSE30929 cohort, Table S5: Time course: Human Adipose Stem Cell Differentiation, Table S6: ASC
Differentiation: Full Time Course, Table S7: DDLPS Tumor Samples (n = 167) used in Genomics
Profiling from MSK-IMPACT Cohort, Table S8: DDLPS Tumor Samples (n = 59) used in Genomics
and Transcriptome Profiling from TCGA-SARC Cohort, Table S9: DDLPS Tumor Samples (n = 50)
used in Genomics and Transcriptome Profiling from GSE21124, Table S10: Normal Fat Samples (n = 9)
used in Transcriptome Profiling from GSE21124, Table S11: Matched Normal Samples (n = 50) used
in Genomics Profiling from GSE21124, Table S12: Tumor Samples (n = 50) used in Genomics Profiling
from GSE21124, Table S13: Genomic Alterations in Tumor Samples (n = 50) used in Genomics Profiling
from GSE21124, Table S14: KEGG Hedgehog pathway Gene Set (hsa04340), Table S15: Gene Set
GCNP_SHH_UP_EARLY.V1_UP, Table S16: Gene Set GCNP_SHH_UP_LATE.V1_UP.
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