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Simple Summary: The surface of a human cell is coated by glycans, which play an important role in
many of the physiological processes that include cell–cell communication, interaction, and adhesion.
The aberration of the process of glycan synthesis plays a role in inflammatory conditions, tumour
progression and metastasis. The process of O-glycosylation is complex and takes place in the Golgi
apparatus, regulated by specific enzymes called ppGalNAc transferases. The incomplete synthesis or
truncated forms of O-glycans such as Tn, STn, T and ST antigens are commonly seen in cancer states.
The increased expression of these truncated glycans is associated with increased invasion potential,
leading to metastasis and poor prognosis in a wide range of cancers. Understanding the expression
of truncated glycans by cancers paves the way for targeted therapies, which have the potential to be
used as serum biomarkers of disease progression and prognosis.

Abstract: Glycans are an essential part of cells, playing a fundamental role in many pathophysio-
logical processes such as cell differentiation, adhesion, motility, signal transduction, host–pathogen
interactions, tumour cell invasion, and metastasis development. These glycans are also able to exert
control over the changes in tumour immunogenicity, interfering with tumour-editing events and
leading to immune-resistant cancer cells. The incomplete synthesis of O-glycans or the formation
of truncated glycans such as the Tn-antigen (Thomsen nouveau; GalNAcα- Ser/Thr), its sialylated
version the STn-antigen (sialyl-Tn; Neu5Acα2–6GalNAcα-Ser/Thr) and the elongated T-antigen
(Thomsen–Friedenreich; Galβ1-3GalNAcα-Ser/Thr) has been shown to be associated with tumour
progression and metastatic state in many human cancers. Prognosis in various human cancers is sig-
nificantly poor when they dedifferentiate or metastasise. Recent studies in glycobiology have shown
truncated O-glycans to be a hallmark of cancer cells, and when expressed, increase the oncogenicity
by promoting dedifferentiation, risk of metastasis by impaired adhesion (mediated by selectins and
integrins), and resistance to immunological killing by NK cells. Insight into these truncated glycans
provides a complimentary and attractive route for cancer antigen discovery. The recent emergence of
immunotherapies against cancers is predicted to harness the potential of using such agents against
cancer-associated truncated glycans. In this review, we explore the role of truncated O-glycans
in cancer progression and metastasis along with some recent studies on the role of O-glycans in
endocrine cancers affecting the thyroid and adrenal gland.

Keywords: aberrant; O-glycans; cancer; metastasis; endocrine

1. Introduction

Glycosylation is the most common post-translational modification process whereby
carbohydrates are commonly linked to proteins to form glycans, which are key to a range
of functions, namely, cell communication, interaction and adhesion. Glycans can be

Cancers 2023, 15, 3266. https://doi.org/10.3390/cancers15133266 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15133266
https://doi.org/10.3390/cancers15133266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-3318-0357
https://doi.org/10.3390/cancers15133266
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15133266?type=check_update&version=1


Cancers 2023, 15, 3266 2 of 14

N-linked, where the carbohydrate is linked to the asparagine end of the polypeptide chain,
or O-linked, where they are covalently linked to serine/threonine. The biosynthesis of
O-glycans, especially the predominant N-acetylgalactosamine (GalNAc), takes place in the
Golgi bodies, unlike N-glycans synthesis, which is initiated in the endoplasmic reticulum
and terminated in the Golgi bodies. Another O-glycan that undergoes post-translational
modification is O–N-acetylglucosamine (O-GlcNAc), which is a single monosaccharide
seen on nuclear and membrane proteins, and catalysed by a single transferase enzyme
unlike the O-GalNAc glycans [1,2]. In contrast, the process of O-GalNAc glycan synthesis
is initiated by a family of about 20 transferase enzymes using the GalNAc backbone to form
core glycans, which are further elongated to form various other glycan structures [3].

The process of glycosylation is very well regulated in non-pathological states and
is crucial in the normal functioning of the cell along with the various other intercellular
interactions [4]. However, the process of glycosylation can be altered in pathological states
such as diseases and human cancers [5,6]. In this review, we briefly review the synthesis of
truncated O-glycans and their role in tumour progression and metastasis. We also highlight
a few studies that reported on truncated O-glycans as a prognostic indicator in endocrine
cancers affecting the thyroid and adrenal glands. We searched PUBMED for articles
published in English from 1995 until 2022 using the keywords “O-glycans”, “Tn antigen”, “T
antigen”, “sialyl Tn antigen”, “ST antigen”, “cancer”, “metastasis’, “endocrine”, “thyroid”,
“parathyroid” and “adrenal tumours”. Articles focusing on N-glycans and non-English
articles were excluded.

Comprehensive reference to glycobiology and O-glycans can be found in the e-textbook
Essentials of Glycobiology, 4th Edition edited by Ajit Varki, Richard D. Cummings, Jeffrey
D. Esko, Pamela Stanley, Gerald W. Hart, Markus Aebi, Debra Mohnen, Taroh Kinoshita,
Nicolle H. Packer, James H. Prestegard, Ronald L. Schnaar, and Peter H. Seeberger. Cold
Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2022.

2. Synthesis of Truncated O-Glycans

O-GalNAc glycans are very heterogenous in structure and formed from eight core
structures (core 1 to core 8) that exist in mammals. Mucins are O-glycosylated proteins that
are membrane-bound or exist as secreted forms. They are abundantly distributed on the
cell surfaces of the digestive respiratory and urinary tracts. Not all of the core glycans are
expressed in all the tissues, with some glycans being tissue specific. The core 1 and 2 glycans
are mucin-type glycans seen predominantly in the intestinal tract and mammary tissue, core
3 glycans are seen in intestinal mucosa and salivary glands and core 4 glycans are found
in intestinal mucosa. In cancer states, truncated forms such as the Tn antigen (Thomsen
nouveau; GalNAcα-Ser/Thr), sialylated STn-antigen (sialyl-Tn; Neu5Acα2–6GalNAcα-
Ser/Thr) and the elongated T-antigen (Thomsen–Friedenreich; Galβ1-3GalNAcα-Ser/Thr)
are observed [7,8]. The sialylated T antigen (ST; Siaα2,3Galβ1,3GalNAc) is the most com-
mon glycan seen in cancers of the breast and stomach [9,10]. These cancer-associated
glycans were first described in breast cancer in 1975 [11]. The basic structure similar in
all the O-GalNAc glycans is the Tn antigen, which may be further sialylated or elongated
to form the various core structures. The predominance of a particular glycan synthesised
is based on the availability of the specific enzymes present in the Golgi apparatus that
regulates the process. The synthesis of the Tn epitope along with the core glycans is shown
in Figure 1.

The enzymes regulating the first step in the synthesis of the O-GalNAc glycans are the
polypeptide GalNAc- transferases (ppGalNAcTs) that determine the glycan-binding site on
the serine or threonine amino acid [12]. As many as about 20 different ppGalNAcTs have
been identified that lead to the modification of the Ser/Thr residues [13,14]. The synthesised
Tn can be expressed as a single antigen or in a multivalent form on a polypeptide chain [15].
The Tn antigen is further converted to T antigen catalysed by the enzyme core 1 β3-Gal-
transferase (core 1 GalT), also known as T-synthase. The core 1 T antigen can undergo a series
of further elongations to core 2 structures or be sialylated to form Sialyl Tn catalysed by the
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enzymes α3-sialyltransferases (ST3Gal) or by α6-sialyltransferases (ST6GalNAc) [16]. One
of the key regulators of the function of the T-synthase is the molecular chaperone COSMC
(gene located on X-chromosome), situated in the endoplasmic reticulum. COSMC has
important functions such as the prevention of misfolding and degradation of the enzyme
T-synthase [15]. Studies in human cancers have shown that aberration of expression of
COSMC or synthesis of the enzyme T-synthase leads to increased expression of Tn and
Sialyl Tn [17,18]. In cancer cells that lack COSMC and T-synthase, aberrant glycans are
synthesised on the cell surface, which alters the intercellular dynamics, including that of cell
recognition by glycan-binding proteins (GBPs) [15]. The variations in glycan core synthesis
and capping are based on the roles that the individual glycans play in the interaction,
recognition, and immune modulation of cells. Moreover, enzymes that regulate glycan
synthesis vary with cell type and cell differentiation [19].
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Figure 1. Synthesis of truncated O-GalNAc glycans (Tn, T, sialyl T and sialyl Tn antigens). The
synthesis begins with attachment of GalNAc to serine or threonine to form Tn, which can be sialylated
to form STn or extended to form core 1 glycan. The core 1 glycans then undergo sialylation or are
converted to core glycan or form Lewis antigens. Abbreviations: ppGalNAcTs—polypeptide GalNAc-
transferases; core 2 GlcNAc T—β1,6 N-Acetylglucosaminyltransferase; Ser/Thr—serine/threonine;
UDP—uridine diphosphate; sLex—sialyl Lewis antigen x; sLea—sialyl Lewis antigen a. The truncated
core O-glycans commonly seen in cancers are boxed in red.

Another truncated glycan, Sialyl-Tn antigen, also known as sTn, contains sialic acid
α-2,6 linked to GalNAc. The expression of the enzyme sialyltransferases ST6GalNAc1
is key in the synthesis of sTn along with mutations of the COSMC gene [20]. A range
of functions have been elucidated by the linkage of sTn to glycoproteins such as MUC1,
CD44, and beta integrin, which are believed to play a role in cell adhesion, migration, and
inflammation by augmenting integrin-linked kinase (ILK) and focal adhesion kinase (FAK)
mediated cell signaling [18,21]. Munkley et al., using high-grade prostate cancer cells,
showed that ST6GalNAc1 induces a switch to a mesenchymal-like pattern with changes
in the expression of E-cadherin to N-cadherin gene expression, and increased expression
of vimentin, SNAIL, β-microglobulin and β-catenin [22]. The same study showed that
the overexpression of ST6GalNAc1 reduced tumorigenicity and metastasis, except for in
breast and gastric cancer, where increased expression was associated with more metastatic
phenomena [23,24]. This illustrates the fact that the effect of ST6GalNAc1 expression varies
with cancer types, and this may be due to the fact that in some cancers the expression of
ST6GalNAc1 overrides the expression of T synthase to form the STn antigen and prevents
the further addition of sugar residues by the GalNAcT’s enzymes [23].
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Core 2 O-GalNAc glycans are formed by the addition of the GlcNAc β1-6 branch
to the GalNAc residue catalysed by the core 2 β1-6 N-acetylglucosaminyltransferases 1,
2, and 3 (C2GnT-1, C2GnT-3, and C2GnT-4) [25]. Unlike the core 1 O-GalNAc glycans,
which are ubiquitously distributed, core 2 glycans tend to be synthesised in specific cell
types. Whether a core 2 or a truncated O-GalNAc glycan is formed is determined by
the competitive role played by the C2GnT and STGalNAc enzymes, with the dominant
STGalNAc enzymes capping T-antigen with sialic acid and preventing the extension of
core 1 glycan [10,26]. The core 2 O-GalNAc glycans can undergo further elongation and
sialylation to form structures such as Lewis and sialyl Lewis antigens, which have been
shown to be highly expressed in many human cancers [27–32]. Tumour cells that express
C2GnT and harbour core 2 O-GalNAc glycans have been shown to evade immune attacks
by NK cells and promote metastasis [33].

3. Role Played by Glycans in Cancer Cell Adhesion

In the progression of cancer, tumour cells acquire features that help in migration
and dissemination in the bloodstream, extravasation at distant sites and colonization to
form metastatic foci, all mediated by cell adhesion molecules (CAMs). Glycans play a role
in cell–cell adhesion and interaction mediated by specific receptors that bind to various
glycan epitopes. Some of the glycan-binding receptors shown to play a role in cell adhesion
both in the normal function of the immune systems and in tumour cell metastasis include
E-selectins, scavenger receptor C-type lectins, galectins and Siglecs. The ligands linked to
the glycans when aberrantly expressed bring about changes in signaling, gene expression
and cellular interactions that are responsible for the initiation and progression of cancer,
promoting aggressive features and metastatic states [34–37].

Selectins are glycoprotein molecules that interact with glycans to mediate various
biological processes, especially the adhesion cascade, whereby the cancer cells tether and
roll on the endothelium. The family of selectins was classified based on the original cell
type where it was identified: E-selectin (endothelium), P-selectin (platelets) and L-selectin
(leukocytes) [38]. The binding of aberrant glycans to the E-selectins confers them a distinct
advantage in cell migration and metastasis. Knockout studies in mice where the cancer
cells did not express the E-selectins showed a reduced ability to metastasise [39]. Studies
using human cancer cells derived from the digestive systems showed that the ligands for
the selectins seen on the endothelium were sialylated Lewisx and Lewisa antigens [40,41].

An important glycoprotein that promotes interaction at the adherens junction between
cells is E-cadherin, and it maintains the integrity and polarity of the epithelial membrane.
E-cadherin interaction with galectin-3 mediated via β-catenin is involved in the regulation
of the Wnt/β-catenin signalling pathway [42]. Loss of E-cadherin expression has been
shown to promote invasion and metastasis, and this loss of expression of E-cadherin has
been shown to be due to the upregulation of SNAIL, SLUG, SIP1 and Zeb 1 (repressors that
target the promoter of E-cadherin) [43]. Both germline and somatic mutations leading to
the truncation of E-cadherin have been observed in gastric cancer [44], breast cancer [45,46]
and pancreatic cancer [47]. The loss of E-cadherin also has a role to play in epithelial–
mesenchymal transition (EMT), whereby the cell adhesions become destabilised, leading
to invasive behaviour and metastasis, which can happen with a single cell or a clone of
cells [48].

The interaction between the cells and cell matrix, whereby the cells acquire a mi-
gratory or metastatic status, is mediated by the crosstalk between E-cadherins and beta
integrins, another cell surface glycoprotein [49]. In addition, E-cadherins, the upregulation
of N-cadherins by galectin-3, results in adhesion and invasion of cancer cells through the
stroma [50]. Other selectins, such as P-selectin (platelets derived) and L-selectins (leukocyte
expressed), are also involved in cancer cell adhesion mechanisms and metastasis, but the
carbohydrate ligands are not the same as seen in association with E-selectins. The ligand
for P-selectin is PSGL-1, which is seen in leukocytes [51]. The lack of PSGL-1 in many
human epithelial cancers probably explains why P-selectins play only a minor role in cancer
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progression. The ligand for L-selectin is sialyl 6-sulfo Lewisx, which is predominantly
expressed in normal epithelial cells but is suppressed in malignant cell types [52,53].

Another glycan-binding receptor is C-type lectins (a transmembrane receptor), seen
on endothelial cells and myeloid cells that sense cell death [54]. They bear a carbohydrate-
binding domain that selectively binds to glycans, mainly Lewisx and Lewisa, similar to
selectins [55]. The exact role played by C-type lectins in cell adhesion is not very well
understood, but a study in breast cancer showed that these lectins may have a role in
metastasis like that propagated by selectins [56]. Galectins play a role in endothelial cell
adhesion by causing the cells to link to each other and the extracellular matrix (ECM). They
interact with cell adhesion molecules (CAMs) such as cadherins, catenins, integrins and
TF antigens to induce signals for cancer cell migration and metastasis [57]. High levels
of galectin-3 cause endocytosis of integrins resulting in cytoskeletal reorganization, such
that the cell adhesions tend to be loose and cause dissemination of the cancer cells [58,59].
Studies in colorectal, glioblastoma, and ovarian cancer have shown that the expression of
the C-lectins by the cancer cells detectable by the lectin Helix pomatia agglutinin (HPA) is
associated with disease progression and poor prognosis [60–62].

MUC1 is a transmembrane O-glycosylated glycoprotein that also plays an important
role in cell adhesion by shielding the small CAMs and inhibiting cancer cell interaction
with adjacent cells. Galectin-3 has been shown to co-express with MUC1 and promote
the adhesion of the cancer cells to endothelium by exposing the small CAMs that are
normally shielded. When MUC1 is overexpressed in cancer along with the TF antigen,
the smaller CAMs are exposed, which enhances the motility of the cancer cells and helps
them migrate through the basement membrane [63,64]. The expression of MUC1 has been
shown to be significantly enhanced in cancers and is associated with metastatic potential
and poor prognosis [65]. EGFR bound to Galectin-3 on the cell surface can be associated
with the MUC1 extracellular domain to activate the PI3K/AKT pathway to increase mitosis,
apoptosis and metastasis [66].

4. Glycans and Metastasis

Cancer metastasis is associated with poor prognosis, and the process of dissemination
of the disease may be via the lymphatic channels (as seen in the case of melanoma, papillary
thyroid cancer and breast cancer) or via the bloodstream (e.g., lung cancer, prostate cancer,
and colon cancer). Whatever the mechanism of spread, there appear to be certain steps
linked to the metastatic process which may be facilitated by aberrant glycosylation, as
shown in Figure 2. Briefly, there is a lack of cohesion between cancer cells, or between the
cancer cells and matrix, which enables cancer cells to migrate through the basement lamina
and into the vascular channel. Following the entry into the vascular channel, the cancer
cells migrate and settle at a distant site. This mechanism is mediated via the interactions
between the glycans and molecules, which act as ligands such as cadherins, integrins,
selectins and immunoglobulins.

There is evidence that malignant tumours express truncated core-2 glycans that ef-
fectively result in metastasis [33,67,68], with other glycan products such as the core-3
and core-4 glycans (O-mannosyl glycans) acting as suppressors of metastasis [69,70]. The
sialylated core-2 glycans such sialyl Lewis antigens interact with the ligand selectin (ex-
pressed by platelets), which are transmembrane glycoprotein cell adhesion molecules and
contribute to the systemic circulation of the cancer cells. When migrating through the
circulation, the cancer cells adhere to the endothelium by expressing E-selectin, which
recognises the glycan Lewis antigens, and then O-glycans (mainly the T-antigen and sialyl
T-antigen) help tether the cancer cells to the endothelium [71]. The endothelial adhesion
of the cancer cells is also mediated by the recognition of galectin-3 by causing homotypic
aggregation and promoting metastasis [72]. An interesting observation using breast cancer
cell lines was the fact that the aggregation of Tn in the lamellopodia of migrating cells
was associated with increased motility and invasion because of GalNAc-T subcellular
localization [73].
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Figure 2. Role of various truncated O-glycans in cancer progression and metastasis. Cancer cells
lose their adhesive mechanisms between cells, between cells and matrix to break free, and migrate
through the extracellular membrane. The cancer cells enter the vascular channels and evade the
immune system attack to survive and migrate through the systemic circulation. Using lectin glycan
interactions mediated by selectins and sialyl Lewis antigens, the cancer cells extravasate through the
endothelium and basement membrane and proliferate at a distant site.

Another mechanism by which the tumour cells express the truncated glycans is by
evasion of natural killer (NK) cell immunity. Using bladder cancer cells in an SCID mouse
model, Tsuboi et al. showed that tumour cells that carried the truncated glycans were
able to evade the NK cell attack [74]. In normal conditions, NK cells are activated by the
interaction between the receptor natural killer group 2 member D (NKG2D) and the tumour
cell-expressed ligand MHC Class I-related chain A (MICA), which induces apoptosis [75].
In tumour cells that evade the NK cells, galectin-3 binds to poly-N-acetyllactosamine in the
NKG2D-binding site of MICA, thereby preventing the interaction of MICA with NK2GD,
and the apoptotic mechanisms are not triggered to promote longer circulation of the tumour
cells [70,75]. This mechanism may explain the metastatic mechanism of cancer progression
in human cancers.

5. Role of Truncated Glycans in Immune Modulation in Cancer

An important mechanism by which cancer cells remain ‘immortal” is by evasion via
immune-mediated cell killing, and this protection is offered to cancer cells by mucins [76].
A group of lectins such as the C-type lectin mannose receptor and Sialic acid-binding
immunoglobulin-type lectins (Siglecs) mediate the interaction between the immune system
and truncated glycans such as STn seen on cancer cells [61,77]. Another lectin that plays
a role in immune regulation is the human CLR macrophage galactose-type lectin (MGL,
CD301), which recognises terminal GalNAc moieties such as Tn and STn [78]. High levels
of MGL on tumour-associated macrophages are associated with poor prognosis, as shown
in stage III colorectal cancer [79].

In humans, there are about 14 functional Siglecs (Sialic acid-binding immunoglobulin-
type lectins) widely expressed in the immune system [77,80]. Some of the Siglecs such
as Siglecs 3 and 5 expressed on monocyte-derived dendritic cells (moDCs) use the STn
epitope to bind to MUC2 [81]. In tumour-associated macrophages, Siglecs 10 and 15 bind to
STn antigen to activate the intracellular ITIMs (immunoreceptor tyrosine-based inhibitory
motifs) and upregulation of immune checkpoints such as PDL-1 to cause tumour microen-
vironment immune suppression [82]. The Siglecs that are expressed on NK cells and
tumour-associated macrophages (Siglecs 7, 9, 10 and 15) cause immunosuppression and in-
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hibit NK cell-mediated tumour cytotoxicity [82–84]. There is evidence that the upregulation
of Siglec ligands decreases the susceptibility to NK cell killing in human cancers [84–86].
Similarly, Siglec 9 found on NK cells, B cells and monocytes binds to mucins produced by
tumours, inducing immunosuppression [81].

6. Aberrant O-GalNAc Glycosylation in Endocrine Cancers

In a recent study that mapped the expression of truncated glycans in a wide range
of epithelial and non-epithelial cancers, high levels of expression of Tn and STn were
noted [87]. The interesting finding was that of a varied level of expression of Tn and STn
based on the cancer phenotypes and their subtypes, with some subtypes expressing only
STn (lung adeno- and squamous carcinomas) and not Tn epitopes [87]. Romel et al. also
showed that the expression of Tn and STn was inversely proportional to the tumour grade,
suggesting that truncated O-glycans play a role in the early stages of cancer development
and progression [35,37,87]. A recent systematic review and meta-analysis of STn expres-
sion in 987 histological tissues from patients with different cancer types indicated a poor
prognosis for those with STn-positive tumours [88]. A summary of truncated O-glycan
expression in various cancers is shown in Table 1. Cancer cells that express a range of
GalNAc glycans detectable by the lectin Helix Pomatia Agglutinin (HPA) tend to show
highly aggressive features [89]. The lectin HPA has binding specificity to O-glycans that
bears GalNAc [90], GlcNAc [91], Tn epitope [92] and blood group antigens [93]. Studies
looking into the expression of truncated glycans in endocrine cancers are limited to a
handful of studies [36,94,95].

a. Thyroid cancer

Differentiated thyroid cancer (DTC) is the most common endocrine cancer and ac-
counts for nearly 3% of all cancers diagnosed worldwide. The global incidence of thyroid
cancer is rising [96], and in Singapore, we showed that the incidence had risen by 220%
over the last 20 years, possibly due to increased early detection [97]. Thyroid cancers can
be very heterogeneous and represent one of the most variable cancers in presentation to
outcomes [98]. On one end of the spectrum, we see disease in an indolent form (early
differentiated thyroid cancer) with excellent outcomes when diagnosed and treated early,
whereas, at the other end, we see disease in the form of poorly differentiated thyroid cancer
(PDC) where metastasis is quite common, and then we have the most lethal of all human
cancers, anaplastic thyroid cancer (ATC), where patients barely survive beyond 6 months
to 1 year despite multimodal therapy. Thyroid cancer progression follows the multistep
carcinogenesis theory [99].

In a study, HPA lectin immunohistochemistry was performed using 110 paraffin wax-
embedded specimens of benign and malignant thyroid tumours, which showed differential
labelling patterns based on the tumour phenotype [94]. In the study, there was a signif-
icant difference between HPA binding glycoproteins in benign and malignant thyroid
tumours, in that papillary and follicular thyroid cancers expressed more positive labelling
localised to the cytoplasm in granular pattern, with marked cell surface localization similar
to that previously reported in breast cancer cells [100]. In the same study, lectin affin-
ity chromatography and Western blotting were performed on 128 fresh thyroid samples
(46 normal thyroids, 22 goiters, 36 adenomas, 4 follicular cancers, 17 papillary cancers, and
3 metastatic papillary thyroid cancers) and showed a qualitative difference in HPA binding
glycoproteins between the benign and malignant phenotypes [94]. The study showed that
as the phenotype changed from a benign to a malignant phenotype, truncated glycan ex-
pression detectable by the lectin HPA increased, highlighting the fact that truncated glycans
cause disease progression. The study also showed positive HPA labelling, indicating that
truncated glycan expression is associated with poor survival [94].

In another study that specifically looked at subtypes of follicular thyroid tumours, us-
ing HPA lectin histochemistry on archival paraffin wax-embedded specimens of
6 follicular adenomas, 10 minimally invasive follicular carcinomas, 13 widely invasive
follicular cancers and 4 metastatic follicular thyroid cancers, the characteristic feature was
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that as the phenotype of the thyroid tumours changed from a benign to the malignant
phenotype, the truncated glycan expressions changed [95]. Another interesting finding was
that as the cancers became more aggressive and metastatic, the HPA labelling increased
and labelling was positive in tumours with vascular invasion in comparison to capsular
invasion only [95].

b. Adrenal cancer

Adrenocortical cancer (ACC) is a rare endocrine tumour arising from the adrenal gland
with an incidence of about 1–2 per million population [101,102]. The condition is commonly
seen in the fourth to sixth decade of life and is more commonly seen in women [103,104].
About a third of ACCs secrete cortisol and generally have a poor prognosis [101], with a
five-year mortality of nearly 80% [36,105]. Nearly half of ACCs, especially in children, have
a genetic predisposition such as Li Fraumeni syndrome or multiple endocrine neoplasia 1
(MEN1) [101].

A two-centre study of 32 patients treated with surgery for adrenocortical carcinoma
that was evaluated with lectin histochemistry of the cancers excised showed that expression
of HPA binding truncated O-glycans was associated with invasive characteristics and
poorer survival (Figure 3) [36]. Patients with positive HPA labelling had a mean survival
of 22 months with a mortality rate of 84% versus negative HPA labelling with a mortality
rate of 23% [36]. Labelling was seen along the cell surface and cytoplasm in the cancer
cells, similar to that observed in thyroid and breast cancer [94,100] (Figure 4). In the study,
positive HPA labelling did not correlate with metastasis, unlike the studies in breast and
colon cancer, where the HPA binding partners of integrin α5 and α6 and annexin 2 and
4 were found to play a key role [106,107]. The exact binding partners were not identified
in the ACC study as it required characterization using affinity chromatography and mass
spectrometry using fresh tumour samples that were not available for the cohort.
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Figure 4. HPA labelling showing intense staining in cytoplasm and cell surface of the cancer cells
in adrenocortical carcinoma. Panel (a) high-power 20× magnification. Panel (b) 40× magnification.
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Table 1. Studies that evaluated truncated O-glycan expression in various human cancers.

Human Cancer Type % of Truncated Glycans Expressed
by Cancers References

Breast cancer Tn (57–92%), STn (33–42%), T (32%) [87,108–110]

Gastric cancer STn (50–78%), Tn (92%), T (20%) [111,112]

Colorectal cancer Tn (51–98%), STn (75–87%), T (20%) [87,113,114]

Lung cancer Tn (16%), STn (33%), T (10%) [87]

Pancreatic cancer Tn (53%), STn (56–97%), T (16–48%) [87,115]

Skin cancer Tn (33–50%), STn (24%), T (25%) [87,116]

Brain cancer Tn (51%), STn (80%), T (20%) [87]

Mesenchymal cancers No expression [87]

7. Conclusions and Future Perspectives

Healthy epithelial cells do not express truncated O-GalNAc glycans, and the increased
expression of truncated O-GalNAc glycans is an indication of cancer. This has been shown
in many human cancers, including those of the breast, colon, lung, pancreas, stomach,
thyroid and adrenal gland. The truncated O-glycans seen are commonly the Tn, STn, T and
ST epitope as a result of increased activity of GalNAc-T’s, T-synthase, ST6GalNAc1 and
ST3GalNAc1. In addition to playing a role in tumour progression and dedifferentiation,
the cancer cells expressing the truncated glycans also develop features to evade immune-
mediated killing. The cancer cells also disseminate through the circulation using ligands
that bind to the truncated glycans and metastasise and embed in distant tissues. The
increased expression of truncated O-GalNAc glycans has been shown to be associated with
poor prognosis and survival. Only two studies investigated the expression of truncated
glycans in endocrine cancers with patterns of expression seen in other human cancers, but
the exact mechanisms that the enzymes play in truncated glycan synthesis and mediators
of disease progression such as integrins, Siglecs and sialylated Lewis antigens need to be
studied further. Studying and characterizing the truncated O-glycan profiles not only of
the high-risk thyroid cancer subtypes but also other aggressive endocrine cancers as well
provides an opportunity to act as a clinical predictor of aggressive disease, aid in accurate
treatment recommendations, act as a new biomarker to help in early diagnosis and develop
new glycan-based therapies for better control of aggressive endocrine cancers.
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