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Simple Summary: Adenoid cystic carcinoma of the lacrimal gland is a rare but aggressive cancer
with poor long-term prognosis. Due to the rarity of this cancer, little is understood about its molecular
makeup, hindering the development of targeted therapeutic options to manage the disease. In this
study, we combine the power of bulk RNA sequencing and the resolution of spatial transcriptomics
to uncover the transcriptomic landscape of the cancer and its surrounding microenvironment. We
identified novel transcriptomic signatures for the various cellular compartments within these cancer
specimens and identified a putative cancer stem cell cluster which had not previously been reported
and may be related to treatment resistance responses. We uncover a specific transcriptomic signature
attributable to cancer foci and distinguish it from differential signatures previously reported in these
tumors which arise from stromal and other tumor microenvironmental compartments. Elucida-
tion of a cancer specific signature can be potentially harnessed in the development of advanced
treatment options.

Abstract: Although primary tumors of the lacrimal gland are rare, adenoid cystic carcinoma (ACC)
is the most common and lethal epithelial lacrimal gland malignancy. Traditional management of
lacrimal gland adenoid cystic carcinoma (LGACC) involves the removal of the eye and surrounding
socket contents, followed by chemoradiation. Even with this radical treatment, the 10-year survival
rate for LGACC is 20% given the propensity for recurrence and metastasis. Due to the rarity of
LGACC, its pathobiology is not well-understood, leading to difficulties in diagnosis, treatment,
and effective management. Here, we integrate bulk RNA sequencing (RNA-seq) and spatial tran-
scriptomics to identify a specific LGACC gene signature that can inform novel targeted therapies.
Of the 3499 differentially expressed genes identified by bulk RNA-seq, the results of our spatial
transcriptomic analysis reveal 15 upregulated and 12 downregulated genes that specifically arise from
LGACC cells, whereas fibroblasts, reactive fibrotic tissue, and nervous and skeletal muscle account
for the remaining bulk RNA-seq signature. In light of the analysis, we identified a transitional state
cell or stem cell cluster. The results of the pathway analysis identified the upregulation of PI3K-Akt
signaling, IL-17 signaling, and multiple other cancer pathways. This study provides insights into the
molecular and cellular landscape of LGACC, which can inform new, targeted therapies to improve
patient outcomes.
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1. Introduction

Lacrimal gland adenoid cystic carcinoma (LGACC) is a rare orbital malignancy no-
torious for its unpredictability and universally devastating lethality. Despite various
permutations of the bimodal locoregional approach of surgery and radiation therapy, the
survival rate is less than 50% at five years and less than 20% at ten years [1]. A recent long-
term follow-up study reported improved survival outcomes by integrating neoadjuvant
intra-arterial cytoreductive chemotherapy (IACC) as the third arm of a trimodal strategy [2].
Despite the salutary advantage of an IACC-anchored trimodal protocol in achieving local
disease control, disease relapse may occur 5–15 years later. To augment the shortcomings
of conventional chemotherapy, surgery, and radiation therapy treatment options, a more
thorough understanding of the molecular makeup of LGACC is required to identify new
and effective targeted treatments [3–5].

Malignant transformations in LGACC, as with other ACCs, occur due to amplifications
and translocations of the MYB proto-oncogene. Subsequent activating mutations in the
NOTCH pathway correlate with more aggressive tumor phenotypes and poor prognosis [6].
Unfortunately, MYB and NOTCH are currently not targetable molecules, and efforts to
indirectly inhibit them have not been successful in stopping ACC progression. Thus,
exploring the transcriptomic signatures elicited by these genomic aberrations remains the
most fruitful space in discovering LGACC-specific therapeutic interventions.

Initial identification of tumor-relevant pathobiological signatures is routinely per-
formed by analyzing differential expression profiles between malignant and healthy control
tissues. When performed on bulk tissue specimens, however, this approach fails to discern
tumor-specific signatures from those of surrounding and ‘contaminating’ phenotypes,
which can obscure the underlying tumor biology. This is especially true for tumors that
are typically excised en bloc with other tissue structures and for which obtaining primary
untreated specimens is not feasible as is the case for LGACC. In this study, we combine
bulk RNA sequencing (RNA-seq) and spatial transcriptomics to investigate the key genes
and pathways specifically enriched in LGACC clusters within excision specimens. This
approach permits a high-resolution interrogation of LGACC in which we distinguish
microenvironment and stromal components from tumor cell signatures. Through our
analyses, we identify potential tumor-specific biomarkers and targetable pathways. These
insights may facilitate the development of ACC-specific targeted therapies that can enable
globe-sparing approaches to LGACC management. We also demonstrate that some of the
most significant differential changes reported in the ACC literature by bulk RNA-seq do
not arise from tumor cells but originate from normal surrounding tissues, skewing their
value as potential therapeutic targets.

2. Materials and Methods
2.1. Bulk RNA-Seq and Analysis

LGACC samples (n = 5) were post-IACC treatment, excised specimens. Normal
lacrimal gland samples were from non-LGACC patients. Samples were immediately flash-
frozen. Tissue samples were subjected to RNA extraction using a Direct-zol RNA kit (Zymo
Research, Irvine, CA, USA). Purified total RNA from 7 samples, 5 LGACC and 2 normal
lacrimal gland controls (noncancerous), were sent for library preparation and sequencing
(Onco-Genomics Shared Resource, University of Miami Miller School of Medicine, Miami,
FL, USA). RNA quality was based on an RNA integrity number (RIN) score with the
minimum threshold set at 6 to proceed with sequencing. Paired-end sequencing with
30–40 million reads was performed on a NovaSeq 6000 (Illumina, San Diego, CA, USA).
After assessing the raw fastq files for quality with FastQC, reads were trimmed with
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trimadapt and aligned against the human genome (GRCh38) using STAR. Gene counts
were identified as counts per million (CPM) from STAR output and imported into R Studio
for differential gene expression (DGE) analysis using edgeR (Version 3.40.1). Genes with a
minimum CPM of 5 were removed, and the remaining genes were normalized. Stringent
filtering analysis was carried out for DGE analysis using an FDR value < 0.05 and logFC > 2
or <−1. See the data availability section for gene expression data.

2.2. Spatial Transcriptomics

Spatial transcriptomics was completed using a 10× Genomics Visium formalin-fixed
paraffin-embedded (FFPE) Spatial Transcriptomics kit (10× Genomics, Pleasanton, CA,
USA). Spatial transcriptomics was conducted on one post-IACC archival FFPE LGACC
sample classified at T4bN0M0 in accordance with AJCC TNM Classification 7th Edition
that was from a different patient from bulk RNA-seq. RNA was extracted from 3 FFPE
10 µm slivers per sample using a Qiagen RNeasy FFPE Kit (Qiagen, Hilden, Germany), and
DV200 quality was measured using the 2100 BioAnalyzer system (Agilent Technologies
Inc., Santa Clara, CA, USA). A sample section was selected by pathology that encompassed
the cancer and surrounding tissue, and the quality was deemed acceptable by collaboration
with 10× Genomics to proceed with the experiment.

The region of interest was selected by pathology that included the cancer and sur-
rounding noncancerous tissue. FFPE block was cut at 10 µm thickness and mounted on
a 10× Visium (FFPE protocol, version 1) (10× Genomics, Pleasanton, CA, USA) slide
according to the manufacturer’s specifications. The slide was dried in an oven for 2 h,
followed by drying overnight at room temperature in a desiccator. The following day, the
slide was heated on a thermocycler adapter for 2 h at 60 ◦C. Hematoxylin and eosin (H&E)
staining was performed according to standard procedures. A temporary coverslip was
applied using 80% glycerol for imaging and then easy removal in water. Images of H&E
stained slides were captured using Leica Aperio AT2 (Leica Microsystems, Exton, PA, USA).
Sections were permeabilized, and cDNA synthesis was performed on-slide. The cDNA
generated was used for library preparation according to the manufacturer’s instructions.
Paired-end sequencing was performed using NovaSeq 6000 (Illumina, San Diego, CA, USA)
by the Onco-Genomics Shared Resource (University of Miami Miller School of Medicine,
Miami, FL, USA, 33137).

2.3. Pathology Annotations

The H&E image of the sample was read and annotated by an experienced ophthalmic
pathologist (Figure S2). The H&E stained slide and the sequencing results were analyzed
using cluster analysis. The annotated classifications were compared with the computational
clustering analysis of the transcriptome for similarity.

2.4. Spatial Transcriptomic Analysis

SpaceRanger pipeline was used to process and align FASTQ files to the human ref-
erence genome GRCh38. Following SpaceRanger processing, counts were processed in
Seurat R Program (Version 4.3.0) [7–10]. Cells with no expression were removed. Counts
were normalized using the SCTransform command that accounts for biological variance
and visualized with SpatialFeaturePlot (Figure S3A). We performed principal component
analysis (PCA) and Seurat’s FindClusters function to determine the ideal resolution (0.8)
for discerning discrete clusters in the cluster analysis (Figure S3B). Cluster identification
and differential gene expression analysis were performed using the Seurat commands
RUNPCA, FindNeighbors, FindClusters, and RUNUMAP. All spatial transcriptomic fig-
ures were made using Seurat commands. Monocle3 (Version 1.3.1) was used to perform
trajectory analysis [11–13]. See the data availability section for cluster gene expression data.
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2.5. Gene Ontology (GO) and Pathway Analyses

Overexpressed and downregulated genes in each cluster were investigated via gene
ontology and pathway analysis. RNA-seq differentially expressed genes were analyzed
for downstream GO and pathway analysis using Database for Annotation, Visualization,
and Integrated Discovery (DAVID) v6.8 Functional Analysis Tool using GOTERM DIRECT
ontologies and KEGG pathway analysis on differentially expressed genes [14]. GO and
pathway plots were generated with ggplot2 (Version 3.4.0) [15].

2.6. Immunofluorescent Staining

Post-IACC archival LGACC sections were cut at 10 µm thickness (n = 3). Slides were
incubated in primary antibodies diluted in PBS at 4 ◦C overnight (Table S1). Slides were
then incubated with AlexaFluor (Abcam, Cambridge, UK) secondary antibodies (1:200)
for 2 h. SlowFade Diamond Antifade Mountant with DAPI (Thermo Fisher Scientific,
Waltham, MA, USA) was used. Staining was conducted on the entire tissue slide. Imaging
was performed on a Leica AOBS SP8 confocal microscope (Leica Microsystems, Exton,
PA, USA).

3. Results
3.1. Bulk RNA-Seq

The results of our bulk RNA-seq analysis identified 3499 differentially expressed
genes (DEGs) between LGACC (n = 5) and normal lacrimal gland from healthy donors
that have been identified to not have any related disease prior to sample acquisition
(n = 2). Of the DEGs, 1228 and 2271 were upregulated and downregulated, respectively,
in LGACC compared with normal lacrimal gland. The top 1000 most significant genes
evaluated by the lowest FDR value are represented in a heat map (Figure 1A). Filtering for
significant DEGs was carried out with stringent criteria to discern genes that differentiate
LGACC to normal lacrimal gland (Figure 1B). The results of the two-dimensional principal
component analysis (PCA) showed distinct clustering of the control and cancer samples,
which separately clustered into two groups, potentially due to the sample size (Figure S1A).
The results of the gene ontology (GO) analysis revealed that the extracellular matrix (ECM)
is the leading upregulated biological process, cellular component, and molecular function
(Figures 1C and S1B,C). The most downregulated GO terms included the immune response
for biological processes, the integral component of the membrane for cellular components,
and the metalloendopeptidase activity for molecular function.

Since the ECM was the most upregulated GO term, we specifically looked at different
collagen gene expression levels. We plotted the top 10 differentially expressed collagens
from RNA-seq to show the consistent, high overexpression of collagens in our cancer
samples (Figure 1D). The collagen CPM for the normal samples is nonzero, indicating the
expression detection of collagen transcripts, albeit significantly lower than that for the
LGACC samples.

3.2. Spatial Transcriptomics

We performed spatial transcriptomics on an LGACC that had undergone IACC treat-
ment (Figure 2A). About 97.1% of reads to the probe set were mapped with 16,624 genes
detected. The results of our analysis identified 7 cell clusters (Figure 2B) and identified
the top expressing genes through finding all markers for each cluster and plotting the
top 10 genes for each (Figure 2C). Based on the top expressed genes, differential gene
expression, pathology annotations, biological processes, and pathway analysis of each
cluster, we identified phenotypes associated with each cluster (Figure 2C–E). Based on gene
expression and histology, clusters 0, 2, and 4 are skeletal muscle due to the high expression
of APOD, MB, TCAP, and TNNC2 with significant upregulation of contractile components
and cardiomyopathy processes (Figures 2C–E and 3A,B). Cluster 1 is fibrous tissue based
on its high expression of multiple collagens, DCN, and SPARC, as well as the upregulation
of cell adhesion, extracellular matrix, and other reactive processes (Figures 2C–E and 3A,B).
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Cluster 6 only had 8 genes overexpressed when compared with the other clusters, including
HBA1 and 2, SNCA, and EEF2. The top upregulated biological process is the response to
hydrogen peroxide (Figure 2C–E). Based on the distinct transcriptomic signature and the
pathologist’s annotations, we identified cluster 6 as reactive fibrotic cells (Figure 3B).
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Figure 1. RNA sequencing analysis of LGACC vs. normal lacrimal gland. (A) Heat map of top
1000 differentially expressed genes of normal control (C) samples (n = 2) vs. LGACC (T) samples
(n = 5). (B) Volcano plot of logFC by −log10(FDR) showing differentially expressed genes with logFC
cutoff > 2 and <−1 and FDR < 0.05. Red and blue dots represent downregulated and upregulated
genes, respectively. (C) Biological process gene ontology analysis of up- and downregulated genes.
X-axis represents −log10 (p-value) of gene ontology value. Downregulated gene ontologies are
represented with a negative value. (D) Box plots of RNA-seq counts per million (CPM) values for the
top 10 differentially expressed collagens comparing normal lacrimal gland with LGACC. Statistical
significance indicated by astricks represented as follows: * p value less than 0.03, ** p value < 0.01,
*** p value less than 0.001, and **** p value < 0.0001.
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Figure 2. Spatial transcriptomics elucidates LGACC and surrounding tissue signatures. (A) Hematoxylin–
eosin (H&E) staining of LGACC section. (B) Spatial transcriptomic clustering results overlaid on
H&E stained section. (C) Heat map of top markers for each cluster based on PCA. (D) Gene ontology
biological process analysis of upregulated genes for each cluster. (E) KEGG pathway analysis of
upregulated genes for each cluster.
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Figure 3. Determining the identity of each cell cluster in spatial transcriptomic sample. (A) Violin
plots of genes specific to cell type and top expressing genes in clusters. (B) Spatial plots showing the
location of each cluster named by cell type determined from analysis.

Cluster 5 was the only cell cluster with an expression of MYB, the most common
gene upregulation signature in LGACC tumors, and a high expression of GABRP, MYC,
and other proto-oncogenes (Figures 2C and 3A). Upon the downstream analysis of pro-
cesses and pathways, cluster 5 had multiple cancer signatures including small-cell lung
cancer, PI3K-Akt signaling, and pathways in cancer significantly upregulated. Pathology
annotations also confirmed that cluster 5 encompasses the malignant LGACC phenotype
(Figures 2D,E and S2).

Cluster 3 presents transcriptionally distinct from the LGACC cluster (cluster 5) and
from the surrounding supportive tissue, but histologically, it appears to be both integrated
among the cancer area, as well as abutting the cancer section (Figures 4A and S2). With
spatial transcriptomics, we have identified a novel cancer stem cell cluster that abuts the
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LGACC tumor foci that is unique at the transcriptomic level. We performed Monocle
trajectory analysis to investigate whether cluster 3 may be a precursor to cluster 5 or if
it may arise from cluster 5. Trajectory analysis utilizes statistical models to identify the
cell state order and can predict the lineages of cells [11]. Based on this analysis, cluster
3 derives from cluster 5 (Figure 4C). We individually compared cluster 3 with clusters
0 through 5 to identify the pathways upregulated in this cluster (Figure S4). Cluster 3
was found to have more of a muscle-like phenotype when compared with fibrous tissue
(cluster 1) and LGACC (cluster 5) (Figure S4B,E). Yet when compared with the muscle cell
clusters (clusters 0, 2, and 4), cluster 3 differential gene signatures were enriched for cancer-
specific pathways (Figure S4A,C,D). Pointedly, when compared with muscle cell clusters,
cluster 3 significantly overexpresses GABRP and MYC (also differentially overexpressed
in the LGACC cluster), as well as CTNNB1 and COL1A1 (Figure 4B). We visualized the
gene expression patterns of MYB, COL1A1, COL9A1, GABRP, CTNNB1, and MYC in the
Monocle trajectory (Figure 4D).
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Figure 4. Characterization of cluster 3 as potential transition or cancer stem cell cluster. (A) UMAP of
cell cluster identities. (B) Violin plots of gene signature of cluster 3 alone and when compared with
muscle cell clusters. (C) Monocle trajectory map indicating a zoomed-in UMAP of cluster 5 (LGACC)
(indicated as 1 on the graph) as the primary and cluster 3 (indicated as 2 on the graph) cells coming
from the malignant cluster. (D) UMAPs of genes of interest for cluster 3 found in trajectory analysis.

3.3. Combination of Bulk RNA-Seq and Spatial Transcriptomics Identifies Markers of LGACC and
Surrounding Tissue

In our spatial transcriptomic analysis, we were able to discern a gene expression sig-
nature restricted to LGACC tumor foci. We then overlaid our bulk RNA-seq analysis to the
spatial LGACC cluster (cluster 5) to elucidate an LGACC-specific transcriptomic signature.
Spatial transcriptomics is extremely beneficial in discerning expression signatures restricted
to specific cell types within a sample but lacks the sequencing depth of other NGS platforms.
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The results of our integrated analysis identified 27 statistically significant genes that are
differentially expressed in the RNA-seq data and have the same directional expression in
spatial transcriptomics (Figure 5A).
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Figure 5. LGACC-specific signature identified through spatial transcriptomics and bulk RNA se-
quencing. (A) Venn diagram representing differentially expressed genes from bulk RNA sequencing
and spatial transcriptomics and the overlap found between the two. (B) Stacked violin plot of 15 over-
expressed genes that are found in both bulk and spatial transcriptomics. (C–G) Immunofluorescent
staining of LGACC-specific signature and surrounding tissue signatures.
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We also confirmed the expression and LGACC-specific localization of several markers
found in our LGACC signature through immunofluorescent staining. Immunofluores-
cent staining selection was determined by expression level, antibody availability, and
antibody performance. We conducted staining for fatty acid binding protein (FABP7)
(Figure 5E–G), MYB (Figures 5C and S5), and β-catenin (CTNNB1) (Figures 5C,D and S5).
In contrast, periostin (POSTN), which is significantly upregulated in bulk RNA-seq but was
not included in our integrated bulk-spatial transcriptomic analysis, was demonstrated by
immunofluorescent staining to be a marker in fibrous tissues surrounding cancer clusters
(Figures 3A and 5E). Collagen type 1 alpha chain 1 (COL1A1) is not specific to just LGACC;
it is also expressed in the surrounding fibrotic and muscle tissue (Figures 3A and 5D). We
used myoglobin (MB) as a muscle marker that was noted in the spatial transcriptomic anal-
ysis to stain the surrounding muscle compared with the cancer in the immunofluorescent
images (Figure 5F). All evaluated immunofluorescent staining of LGACC samples exposed
specific signatures that further confirmed our bulk RNA-seq results (Figures 5 and S5).

4. Discussion

LGACC is a highly aggressive and lethal cancer for which effective treatment remains
elusive. Understanding the molecular characteristics specific to LGACC is critical for
further treatment development, molecular monitoring of disease progression, and overall
enhanced management. Through integrated bulk RNA-seq and spatial transcriptomics in
this study, we elucidate the LGACC-specific component within the landscape of differential
expression signatures between malignant ACC and normal excretory gland tissues. Even
with the rarity of this cancer, we were able conduct bulk RNA sequencing on 5 tumor
samples and further validate and characterize this signature with an additional sample for
spatial transcriptomics allowing for an in-depth transcriptomic analysis. From the bulk
RNA signature, we identified the signature of LGACC and the surrounding supportive
tissue using spatial transcriptomics. We deconvoluted the gene expression signature
from the muscle and fibrous tissue that we had observed in the bulk RNA-seq and were
able to validate the LGACC-specific signature from the bulk sequencing with spatial
transcriptomics. This signature can inform the development of novel targeted treatments
for ACC while reducing setbacks of targeting non-ACC differential markers present in
these types of specimens.

The current standard of practice in the management of LGACC uses IACC or proton
therapy prior to the removal of the tumor. Due to this treatment schedule, it is extremely
rare to obtain primary untreated samples of this tumor; thus, our study is performed on
post-IACC samples, and the results presented must be contextualized as such [4]. Due
to this limitation, and because spatial transcriptomics provides insights about a singu-
lar point in time of the tumor state, we cannot discern a precise evolution for any cell
state in our specimens beyond that which is produced by lineage prediction algorithms
currently available.

One particular cluster of interest (cluster 3) was not readily identifiable solely based
on its transcriptional and/or pathological features. Physically, cluster 3 surrounds and
abuts LGACC foci. On UMAP projections, its transcriptomic signature approximates it to
the LGACC cluster. To further elucidate the biological relevance of cluster 3, we performed
Monocle trajectory analysis to determine if this cluster is a precursor transition state or
cancer stem cells arising from the malignant cluster. The results of our analysis suggest that
cluster 3 results from the LGACC cluster, leading us to hypothesize that it is a cancer stem
cell (or otherwise quiescent ACC) cluster, presumably arising from post-IACC treatment
reactivity. Further evidence for our hypothesis was determined with the indication of
the following cancer stem cell markers: GABRP, CTNNB1, and MYC, which are seen in
breast, colon, and lung cancer stem cells [16–18]. From the available data and knowledge,
we advance this hypothesis of a cancer stem cell or quiescent LGACC phenotype, which
has never been characterized in LGACC. Cancer stem cells are a subgroup of tumor
cells that can arise and further drive cancer progression and metastasis. They can arise
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from response to treatments and hold different genetic mutations that allow them to be
more resistant to treatment modalities [19–21]. Cancer stem cells play an important role
in treatment resistance, tumor recurrence, and aggression of cancer. Identifying cancer
stem cell populations in a tumor can give insight to potential drivers of recurrence and
metastasis, which is common in LGACC. Interestingly, cluster 3 has a unique signature that
distinguishes it from normal muscle as well as from the well-defined cancer cell cluster.
Compared with the muscle cell clusters, this cluster has an upregulation of CTNNB1,
GABRP, and MYC. CTNNB1 is part of the Wnt/β-catenin pathway, which is commonly
known to have mutations in various cancers in which it leads to advanced disease and is
difficult to target. The upregulation of this pathway has been shown in cancer stem cells that
drive metastasis [22–26]. The overexpression of GABRP has been shown to maintain stem
cell characteristics in breast cancer, providing support in chemoresistance and promoting
migration [16,27]. MYC overexpression has been noted in addition to CTNNB1 in cancer
stem cells, as it is a transcription factor that controls cell growth, differentiation, and cell
maintenance. MYC’s role in cancer stem cells is unique as it can perpetuate stemness and
drive malignancy, both important phenotypes in cancer stem cells. MYC is also a key driver
in cancer stem cells of breast and colorectal cancers [17,28–30].

We performed gene ontology analysis of cluster 3 compared with the LGACC cluster
and noted the upregulation of epithelial to mesenchymal transition (EMT). This could
be a signature indicative of this cluster becoming more stem cell in nature. It has been
shown that EMT drives cancer progression, leads to more stemness, drives metastasis,
and results in chemoresistance [27]. When compared with the muscle cell clusters, ECM
pathways and ontologies are noted to be increased. The ECM plays a crucial role in the
tumor microenvironment in many cancers, and it was the most upregulated biological
process in our bulk RNA-seq. The ECM is critically important for cancer progression,
pivotal in the migration and death evasion processes [31,32]. Arolt et al. examined the
role of the ECM in salivary gland carcinomas, identifying how it is essential for cancer
progression and can be involved in chemoresistance development [33]. Other studies have
demonstrated a connection between ECM overexpression and invasion [34–36]. The cancer
stem cells could be supported by the upregulation of ECM properties or could be driving
the overexpression itself, thus promoting cancer progression. LGACC has a poor prognosis
due to early and pervasive perineural invasion in which the involvement of collagens and
the ECM could be potential mediators.

Top overlapping differentially expressed genes from our integrated analysis of bulk
RNA sequencing and spatial transcriptomics have essential roles in cancer such as cell
proliferation and motility. In the overlap analysis, we found the overexpression of ABCA13,
PEG3, and SOX4 that have been shown to be poor prognostic markers in other cancers
including ovarian, glioblastoma, and colon [37–40]. We observed a significant increase
in FABP7 levels as measured by RNA-seq and spatial transcriptomics and validated in
immunofluorescence. In the spatial transcriptomic analysis, this transcript was explicitly
overexpressed in the LGACC cluster. This validates our findings that it is a LGACC-specific
marker and not expressed in surrounding supportive tissues. FABP7 is a cytoplasmic
protein involved in gene regulation and lipid metabolism. It is upregulated in a wide range
of diseases that include breast cancer, melanoma, and optic nerve glioma [41,42]. FABP7 is
crucial for essential cell functions such as proliferation and signaling [43]. Its role has been
described in a wide range of cancers as being upregulated. FABP7, as well as COL27A1,
has been seen to be upregulated in head and neck adenoid cystic carcinoma [44]. When
specifically targeted with shRNA knockdowns, cancer cell proliferation decreases [41,45–47].
The overexpression of FABP7 in LGACC can be a key driver in the proliferation of cancerous
cells, leading to its potential as a candidate molecule to specifically target LGACC.

Brayer et al. conducted RNA-seq on salivary, breast, lacrimal gland, and cutaneous
ACC samples. We contributed to this study by providing LGACC samples (n = 6). Upon
gene expression analysis comparing the different ACC subtypes, COL27A1 and FOSB
were identified as the top overexpressed genes for LGACC in the Brayer paper, validating
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our findings in our overlap analysis. Additionally, ABCA13, EFHD1, and FOSB were
noted as poor outcome predictive markers for ACCs, and we had seen these genes to be
overexpressed in our comparison analysis [48].

Identifying a cancer-specific signature provides the opportunity to identify potential
targeted therapies that can enhance the management of LGACC. While known driver
mutations in MYB and the activation of Notch are not actionable targets right now, we
have identified the BCL2 gene overexpression solely in LGACC cancer cells that has small
molecular inhibitors including Gossypol and Disarib [49–53]. This discovery can offer a
potential targeted treatment for this disease.

From our bulk RNA-seq and spatial transcriptomics overlap analysis, we elucidated
specific molecular characteristics of LGACC. However, spatial transcriptomics and bulk
RNA-seq only give insight into a static state of the tissue and do not give insight into
the origination and progression of the disease. We cannot discern if cluster 3 developed
before or after IACC treatment and cannot ascertain its role in cancer progression. Further
studies of single-cell RNA-seq before and after treatment can provide more insight into
the development of the heterogeneity of the tumor, provided that such samples become
available for study.

5. Conclusions

Current treatments for LGACC are limited and radical, typically including exenter-
ation of the orbital socket followed by high-dose chemoradiation. Despite this harsh
approach, recurrence, metastasis, and disease-specific mortality rates remain extremely
high. Our identification of the LGACC-specific transcriptome allows us to study the
molecular characteristics of LGACC in isolation of the confounding noise in this specific
cancer environment. Furthermore, this analysis provides the molecular foundation to
design targeted therapeutic interventions that can enhance patient outcomes and LGACC
clinical management.
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