
Citation: Schiavoni, V.; Campagna,

R.; Pozzi, V.; Cecati, M.; Milanese, G.;

Sartini, D.; Salvolini, E.; Galosi, A.B.;

Emanuelli, M. Recent Advances in

the Management of Clear Cell Renal

Cell Carcinoma: Novel Biomarkers

and Targeted Therapies. Cancers 2023,

15, 3207. https://doi.org/10.3390/

cancers15123207

Academic Editor: Jörg Ellinger

Received: 25 May 2023

Revised: 13 June 2023

Accepted: 14 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Recent Advances in the Management of Clear Cell Renal Cell
Carcinoma: Novel Biomarkers and Targeted Therapies
Valentina Schiavoni 1,†, Roberto Campagna 1,† , Valentina Pozzi 1 , Monia Cecati 1, Giulio Milanese 1,
Davide Sartini 1,* , Eleonora Salvolini 1,* , Andrea Benedetto Galosi 1 and Monica Emanuelli 1,2

1 Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy;
v.schiavoni@pm.univpm.it (V.S.); r.campagna@univpm.it (R.C.); v.pozzi@univpm.it (V.P.);
moniacecati@gmail.com (M.C.); g.milanese@univpm.it (G.M.); a.b.galosi@univpm.it (A.B.G.);
m.emanuelli@univpm.it (M.E.)

2 New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche,
60131 Ancona, Italy

* Correspondence: d.sartini@univpm.it (D.S.); e.salvolini@univpm.it (E.S.); Tel.: +39-071-2204673 (D.S.);
+39-071-2206014 (E.S.)

† These authors contributed equally to this work.

Simple Summary: The aim of the present review is to discuss novel prognostic and therapeutic
markers for clear cell renal cell carcinoma, a subtype of renal cell carcinoma which is the most
common variant and is characterized by high aggressiveness, invasiveness and metastatic potential,
features that are responsible for the high mortality rate observed for this neoplasm. We firstly provide
a background regarding the epidemiology and risk factors, and then, we focus on the established
prognostic markers as well as novel ones. Subsequently, we analyze the recent advances in clear cell
renal cell carcinoma treatment, and we discuss potential novel biomarkers for targeted therapy.

Abstract: Renal cell carcinoma (RCC) belongs to a heterogenous cancer group arising from renal
tubular epithelial cells. Among RCC subtypes, clear cell renal cell carcinoma (ccRCC) is the most
common variant, characterized by high aggressiveness, invasiveness and metastatic potential, features
that lead to poor prognosis and high mortality rate. In addition, diagnosis of kidney cancer is
incidental in the majority of cases, and this results in a late diagnosis, when the stage of the disease is
advanced and the tumor has already metastasized. Furthermore, ccRCC treatment is complicated by
its strong resistance to chemo- and radiotherapy. Therefore, there is active ongoing research focused
on identifying novel biomarkers which could be useful for assessing a better prognosis, as well as new
molecules which could be used for targeted therapy. In this light, several novel targeted therapies
have been shown to be effective in prolonging the overall survival of ccRCC patients. Thus, the aim
of this review is to analyze the actual state-of-the-art on ccRCC diagnosis, prognosis and therapeutic
options, while also reporting the recent advances in novel biomarker discoveries, which could be
exploited for a better prognosis or for targeted therapy.

Keywords: renal cell carcinoma; clear cell renal cell carcinoma; biomarker; prognosis; therapy

1. Introduction

Renal cell carcinoma (RCC) is classified among the 10 most common cancers in the
world, accounting for 2–5 percent of all malignancies, particularly in the developed world,
doubling the incidence in the United States of America [1,2]. RCC represents the most
common cancer of the kidney and approximately 300,000 individuals worldwide are
affected by this neoplasm. It is also responsible for over 10,000 deaths annually, thus
representing the most lethal urological malignancy, displaying a 5-year survival rate of
about 75% [3,4]. The risk in developing RCC increases with ageing, and the onset peak
is around 70 years old [5]. The diagnosis of the disease at an initial stage is crucial for a
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favorable prognosis. Unfortunately, about 50% of all RCC cases are discovered incidentally,
due to the lack of symptoms in the early stages of the disease. Moreover, 20% of patients
are diagnosed as metastatic and more than 30% with localized cancer will develop distant
metastasis following the complete resection of the primary tumor [6,7].

RCC is part of a heterogenous cancer group that originates from renal tubular ep-
ithelial cells [1]. Different subtypes were described, each one with different histology,
genetic features and distinct response to therapy resulting in a variable clinical outcome.
Most frequent RCC subtypes are clear cell (ccRCC, ~70–80% cases), papillary cell (pRCC,
~10–15% cases, and chromophobe renal cell carcinoma (chRCC, ~5% cases) [8]. Another
rarer type of RCC is represented by that with sarcomatoid features [9,10].

In particular, ccRCC derives from epithelial cells of the proximal convoluted tubule in
the nephron and it is histologically characterized by cells with clear cytoplasm [8]. ccRCC
is the most common subtype and it accounts for a large part of mortality observed in RCC.
ccRCC is hereditary for 2–3% of cases, particularly affecting subjects with an alteration
of the von Hippel–Lindau (VHL) gene [11]. Indeed, ccRCC is characterized by a high
proliferation rate compared to the other subtypes and it often metastasizes in the lungs,
liver, bones and, for about 15%, in lymph nodes [12].

pRCC is classified as the second most frequent histologic subtype of RCC. Although
most cases of pRCC are sporadic, it is subdivided in 2 hereditary forms: type 1 and type 2,
depending on the stage, the grade and the prognosis of the disease. The type 1 is associated
with a hereditary component which comprises MET mutations; type 2 is linked to mutations
in fumarate hydratase gene, and it is associated with a worse prognosis [13,14].

chRCC is the third most common histologic subtype of renal cancer [15]. It is classified
into two types: classical type and eosinophilic variant [16]. chRCC is characterized by
positive prognosis, in fact it is considered less aggressive compared to other RCC subtypes,
due to the low tendency to develop metastases [8].

Both pRCC and chRCC are less aggressive than ccRCC and display a better
prognosis [12]. In this review, we will focus on ccRCC since it is the most aggressive
subtype among the RCCs.

ccRCC is characterized by DNA alterations, including the copy number alterations
(CNAs), as the loss of chromosome 3p and VHL inactivation, methylation and mutations,
which are involved in tumor development and progression [17].

These molecular changes are responsible for pathway disruption and aberrant growth
factor production, such as vascular endothelial growth factor (VEGF), platelet-derived
growth factor (PDGF) and HIF pathways, which promote oncogenesis [18]. Invasiveness,
ability to develop metastasis and chemoresistance are a major challenge in the treatment of
most of neoplasms [19–23].

Thus, considering that ccRCC is characterized by high incidence and late diagnosis,
tendency to metastasize and a remarkable chemoresistance, the research of new biomarkers
for early diagnosis is of primary importance for a more accurate prognosis and for develop-
ing new targeted therapies for the management of this malignancy [24]. In fact, due to the
combination of all these negative features, the survival rate for ccRCC is very low [24].

Even if several prognostic factors and diagnostic targets have been identified, the
implementation of research is rapidly ongoing attempting to improve the ccRCC diagnosis,
prognosis and therapy. In this review we will comprehensively describe the recent advances
in ccRCC biomarker discoveries for diagnosis, prognosis and therapy.

2. Epidemiology

RCC accounts for about 2% of cancer diagnoses and deaths worldwide; however, this
number will increase over the years [25]. Kidney cancer has an ever-increasing incidence:
431,000 people a year have a diagnosis of RCC; 271,000 cases are diagnosed in men, while
160,000 are diagnosed in women, according to 2020 GLOBOCAN data [26], with a ratio of
incidence between males and females of about 2:1 [27]. The highest incidence is observed
in developed countries, while Asia and Africa have, on the contrary, a very low incidence,
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demonstrating that both race and lifestyle have a role in the incidence (Figure 1) [28].
Early diagnosis is very important, since the survival rate can change based on the disease
stage [29].
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Particularly, clear cell renal cell carcinoma is the most common histological subtype,
representing 75–80% of all cases of RCC, and it is responsible for most of the morbidity
and mortality of RCC [30]. It has the worst prognosis among all the most frequent RCC
variants [31,32]. About 20–30% of patients have metastasis, and 30% of those with a
localized carcinoma at an advanced stage will develop metastases [33]. The metastatic
form is more aggressive, and it is related with a large mortality rate [34,35]. ccRCC can
affect patients of different ages, but people between 60 and 70 years old are more likely to
experience the disease than younger people [36]. It is diagnosed more often in males than in
females—indeed, it is classified as the seventh most common malignancy among men. The
survival rate is estimated at 60–70% after treatment in the initial stage of the disease, but the
5-year survival rate for advanced forms is poor with less than 10%, despite the progress in
therapies [30,32]. Moreover, ccRCC has the highest mortality rate considering genitourinary
cancers, and clinical outcomes are also not satisfactory due to drug resistance [37]. Thus, the
identification of new molecular targets and the development of new therapeutic strategies
are therefore of vital importance [34].
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3. Risk Factors and Prevention

North America and Europe have the highest RCC incidence worldwide. The increasing
incidence is likely due to improved detection by means of imaging techniques, but it could
also depend on a higher prevalence of risk factors related to lifestyle such as obesity,
hypertension and smoking [38]. Other factors that are considered related to the risk
of developing RCC are age, sex, race and hereditary diseases [25,26]. Sporadic RCC is
diagnosed in patients aged 65 to 74. Nevertheless, the average age is lower (44 years)
among subjects affected by a hereditary disease, VHL disease, who have a 70% lifetime
risk and represent 5% of all ccRCC cases [39]. Furthermore, pRCC diagnoses have a
higher probability among subjects > 60 than ccRCC, while chRCC does not appear to be
significantly age-related [2,40].

RCC is more common in males than in females, as well as for most other cancers.
Moreover, the survival rate is lower in men [41]. This is probably associated with modifiable
risk factors, such as smoking, hypertension and obesity. On the contrary, chRCC has a
higher probability in women than ccRCC or pRCC [12,41].

Race is another risk factor: the incidence of RCC is variable in different ethnic groups
in the United States, as shown in a study by Batai et al. demonstrating a higher incidence
among African Americans, Hispanic Americans and Native Americans compared to White
Americans [42]. In addition, the higher incidence of ccRCC among Caucasian Americans is
also noticeable, while pRCC results are more common among African Americans. Moreover,
these discrepancies are due not only to race differences, but also to the lack of health care,
inability to access screening, limited access to cancer treatments and a poor quality of
life [43].

As previously mentioned, hereditary diseases are also considered among risk fac-
tors. Phosphatase and tensin homolog (PTEN) hamartoma tumor syndrome/Cowden
syndrome—associated with germline mutations in the PTEN gene—predispose individ-
uals to various subtypes of RCC, including ccRCC, pRCC and chRCC. VHL disease is
characterized by mutations in VHL gene on chromosome 3, mutations that are found in
90% of ccRCC and lead to a decrease of gene products and an increased expression of
HIF-1,2 [44]. ccRCC is also linked with mutations in BRCA1-associated protein 1 (BAP1).
Patients with somatic BAP-1 mutations have a high malignant form of ccRCC and the
mean age of diagnosis is 40–45 years [45]. Other genetic syndromes linked with ccRCC
are hereditary paraganglioma–pheochromocytoma syndrome (PGL/PCC), which involves
mutations in the succinate dehydrogenase (SDH) gene, hyperparathyroidism-jaw tumor
syndrome (HPT-JT), characterized by mutations in cell division cycle (CDC73) gene and
tuberous sclerosis complex (TSC) [46–48].

Hereditary papillary renal cell carcinoma (HPRCC) is a familiar renal tumor syndrome
characterized by a predisposition to the bilateral and multifocal development of type 1
papillary renal cell carcinoma. HPRCC is transmitted as a dominant character, and it is
linked with mutations of the MET oncogene that can activate cell proliferation signaling and
inhibition of apoptosis and promote cancer progression [49]. Hereditary lipomatosis and
renal cell cancer (HLRCC) is a hereditary syndrome linked with type 2 pRCC, characterized
by mutations in fumarate hydratase (FH) gene. The inactivation of FH gene leads to an
increase of HIF-1, which promotes tumor metastasization [50]. BHD, caused by a germline
mutation of the FLCN gene, is instead associated in particular with chRCC subtype, and it
is less malignant than VHL-disease-associated ccRCC and HLRCC [16].

The risk factors listed until now are all unmodifiable, but even modifiable factors
contribute to the development of RCC, such as tobacco smoking, alcohol consumption,
eating habits and body weight. The primary prevention concerns the change of lifestyle
with the aim of avoiding or reducing the onset or the development of the disease. Tobacco
smoking is related with the risk of developing RCC, as well as other types of cancer [43].
In fact, tobacco smoke contains carcinogens—as beta-naphthylamine and nicotine—that
are metabolized when they are filtered through the nephron, promoting inflammation and
inducing DNA damage and thus, starting the carcinogenesis [2]. The risk of the develop-
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ment of RCC is greater in smokers, and it is related to the number of cigarettes smoked
and the duration of smoking. In fact, a previous study demonstrated that regular smokers
are 3.6 times more likely to develop the disease than non-smokers [51]. Instead, another
study showed that the relative risk (RR) is lower in patients who have stopped smoking for
10 years [52]. The research article by Patel et al. is interesting, which revealed that smoking
is an important risk factor for ccRCC and pRCC, but not for chRCC subtype [53].

Obesity is also related to the likelihood of developing kidney malignancies, and an
association has been found between a higher body mass index (BMI) and RCC risk. Ac-
cording to a study from the European Prospective Investigation into Cancer and Nutrition
(EPIC), a higher BMI is associated with a RR equal to 2.25 of RCC. The vitamin D and
omega-3 trial (VITAL) study showed that a 5 Kg weight gain increases the risk by 25% in
males and 35% in females [26,54]. Another study demonstrated that obesity represents
a risk factor for ccRCC (RR = 1.8) and chRCC (RR = 2.2), while it is not associated with
the development of pRCC [55]. Even diet could contribute to the development of RCC;
in particular, the consumption of fruit and vegetables could have a protective effect and
reduce RCC prevalence rate, while a diet rich in dairy and proteins is associated with
a higher risk of RCC. However, the relationship between food and kidney cancer is not
as strong as in other types of malignancies, such as gastric or colorectal cancer [56]. As
concerns alcohol, a moderate intake is associated with a decreased risk of RCC, while heavy
drinking leads to an increase of risk in both men and women [26].

Although RCC is not linked to a specific occupational exposure to substances, unlike
bladder cancer and malignant mesothelioma, trichloroethylene (TCE) has been associated
with kidney cancer, particularly with the ccRCC molecular subtype ccB, as well as with
liver cancer and lymphoma [57]. TCE is a degreasing agent, and it is considered highly
carcinogenic. It is found in the blood of 10% of US population, according to a study from
the National Health and Nutrition Examination Survey (NHANES), and it seems to be able
to cause DNA adducts, renal cell genotoxicity and cytotoxicity after its activation by the
pathway involved in glutathione transfer in the liver and kidney [57]. Other chemicals such
as benzene, vinyl chloride, herbicides and cadmium are indicated as agents that contribute
to RCC development [58].

Hypertension and type 2 diabetes are considered associated with an increased risk
of developing RCC. According to a study carried out in the US, the overall risk (OR)
for RCC is doubled in patients with hypertension, but it was also demonstrated that the
overall response rate (ORR) was higher in African Americans (ORR = 2.8) than in White
Americans (ORR = 1.9) [59]. Moreover, a meta-analysis of 18 prospective studies found
that patients with a history of hypertension have an increase of RCC risk of 67%, and each
increase of 10 mm Hg in blood pressure was associated with 10–22% increased risk of kidney
cancer [60]. The possible link between kidney malignancies and hypertension is not defined
yet, but it could involve chronic renal hypoxia and lipid peroxidation due to the formation of
reactive oxygen species (ROS). Indeed, oxidative stress is a key process involved in several
pathological conditions, including cancer onset and progression [61–66]. Furthermore, the
efficacy shown by antihypertensive agents against RCC metastasis, as shown in some basic
and meta-analytic studies [67], is interesting. As concerns type 2 diabetes, its relationship
with RCC is unclear. In the Nurses’ Health study, a significant association between these
two types of disease was found—above all, a higher risk of RCC in women [68,69]. In
addition, metabolic factors such as obesity, hypertension, diabetes and dyslipidemia have
been shown to be related to the onset and development of ccRCC [70].

It would be of great importance to be able to make a diagnosis of ccRCC at an early
stage, in order to improve the patient survival rate and to make treatment more effective;
however, there are currently no screening programs for the early detection of ccRCC.
A screening program could also be useful as an economic strategy to reduce the costs
resulting from systemic therapies. Tumor markers with high sensitivity and specificity
have not yet been validated for ccRCC screening, but some candidate molecules have been
recently proposed, such as aquaporin 1 (AQP1) and perilipin 2 (PLIN2). Furthermore,
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DNA methylation, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have
been reported to be associated with some subtypes of RCC [71].

4. Diagnosis

Diagnosis of kidney cancer is incidental in 60% of cases. Localized RCC is generally
asymptomatic, and indeed, the clinical examination allows only late diagnosis because
the “classical triad” of symptoms, including flank pain, gross hematuria and palpable
abdominal masses, are not very frequent [72]. Therefore, the discovery of disease occurs
when the patient undergoes medical tests, such as ultrasound of the abdomen, for other
reasons—25–30% of ccRCC cases are metastatic at initial diagnosis. RCC can give metastases
in the lung (50–60% of cases), in the liver (30–40% of cases) and in bone, but also in the
other kidney as well as in the adrenal, brain, spleen, gut and skin [73,74].

Laboratory examination of serum creatinine, hemoglobin, leukocyte and platelet
counts, lymphocyte to neutrophil ratio, lactate dehydrogenase, C-reactive protein (CRP)
and serum-corrected calcium should be ordered if RCC is suspected [72].

Diagnostic imaging techniques are essential for the diagnosis of kidney cancer. Usually,
RCC and clinical benign cystic kidney are diagnosed by ultrasonography, and CT is used
to evaluate local invasiveness, involvement of lymph nodes or distant metastases. Further-
more, MRI and thoracic, abdominal and pelvic CT with contrast medium are mandatory for
accurate tumor staging in suspected malignant cases. Abdominal MRI and high-resolution
CT scan without contrast medium are recommended in cases of allergy to CT contrast
medium [12,75].

In the case of suspected malignant lesion, a renal tumor core biopsy is performed in
order to have histopathological confirmation of malignancy. In particular, a biopsy is rec-
ommended before treatment with ablative therapies and in patients with metastatic disease
before starting systemic treatment because it has high accuracy and furthermore, complica-
tions such as bleeding or tumor seeding are rare [76]. Moreover, through histopathological
analysis it is possible to define the RCC subtype, since ccRCC shows different features
compared to other variants; in particular, it is characterized by nested clusters of cells with
a clear cytoplasm, surrounded by a dense endothelial network [8].

5. Prognostic Factors

Prognostic factors inform about patient outcomes regardless of medical and/or surgi-
cal treatment [77]. They are classified into anatomical, histological, clinical and molecular
factors. The first two are supported by a higher level of evidence than clinical and molecular
factors. Currently, the most used anatomical prognostic factor is the tumor, nodes and
metastasis (TMN) staging system, proposed by the International Union Against Cancer
and the American Joint Committee on Cancer and used as a prognostic system since 1977
for multiple solid tumors [6,78,79]. The TNM staging system defines local extension of the
primary tumor, extension into the adrenal gland, extension beyond the renal capsule or
Gerota’s fascia (T), involvement of regional lymph nodes (N) and spread to distant sites,
showing the presence of distant metastases (M) [79]. In particular, the letter T, referring to
the size of the primary tumor, is flanked by a scale ranging from 1 to 4, gradually defining
tumors of larger dimensions. N indicates whether the cancer has extended to the lymph
nodes and ranges from 0 to 3. M indicates metastases and can range from 0 to 1. Staging of
renal cell carcinoma is mainly based on pathological examination and diagnostic imaging:
stages I and II tumors, T1N0M0 ≤ 7 cm and T2N0M0 > 7 cm, respectively, are limited to
the kidney, while stage III and IV include tumors that extend beyond the kidney [6].

In addition to TNM staging, several factors influence the prognosis of patients with
ccRCC, among which the microscopical and macroscopical histopathological factors. Partic-
ularly, tumor grade, subtype, presence of sarcomatoid or rhabdoid features, tumor necrosis
and microvascular invasion (MVI) are considered histological prognostic factors. The
European Association of Urology (EAU) guidelines recommend the use of tumor grade and
subtype [80]. Fuhrman and World Health Organization/International Society of Urological
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Pathology (WHO/ISUP) grading systems have been introduced to histologically classify
RCC cells by means of morphological parameters. Through these systems, the lesion is
classified according to the pathological stage, tumor dimensions, cell arrangement and
type and nuclear grade. This latter turned out to be the most effective in predicting the
development of metastases after nephrectomy [81]. The Fuhrman grading system is based
on the assessment of nuclear size, shape and prominence in a four-level classification
scheme. In 2012, ISUP reformed the Fuhrman system by basing the classification of tumors
graded 1 to 3 on nucleolar prominence, allowing for less inter-observer variation, while
grade 4 tumors are defined on the basis of nuclear pleomorphism, presence of giant cells,
or sarcomatoid /rhabdoid differentiation. Furthermore, the percentage of sarcomatoid
component is considered to be prognostic, a larger percentage being associated with a
worse survival. This classification is recommended for ccRCC and pRCC, but not for
chRCC [82]. The morphotype of RCC is another prognostic factor: clear cell subtype has
an unfavorable outcome compared to pRCC and chRCC, but this difference is lost when
tumor stage and grade are considered [78,82]. In fact, the prognosis is worse in all RCCs of
higher stage and grade.

Tumor necrosis and microscopic vascular invasion are other prognostic factors. Once
added into the ISUP classification system, the first one provided a greater predictive ability
for cancer-specific survival with respect with the latter alone [83]. Tumor necrosis has been
reported in 21–32% of ccRCC cases and is related to larger tumor size, higher grade and
higher proliferative activity. This prognostic factor is associated with aggressive tumor
behavior, thus affecting patient survival: 10-year cancer specific survival in grade 3 tumors
without necrosis is in fact 62%, while it drops to 30% in grade 3 tumors with necrosis [83].

Metastatic spread of RCC can occur via both blood and lymph vessels. Microscopic
vascular invasion (MVI) is linked to the presence of tumor cells within microscopic veins or
lymphatic vessels and, in several retrospective studies, it is associated with inferior survival.
MVI is more frequent in ccRCC than in non-ccRCC, recurring in 29% versus 12% of cases,
respectively [6]. While macroscopic tumor invasion into the renal vein and the inferior
vena cava has been recognized as a prognostic factor within TNM system for a long time,
MVI has been only recently recommended as a prognostic tool by the ISUP. In a study of
Bedke et al., MVI and lymphovascular invasion (LVI) were validated as prognostic factors
for RCC, showing that they both correlate with low survival. Moreover, they have also
been associated with advanced TNM stage, high Fuhrman grade and sarcomatoid features.
In univariate analysis, they both correlate with cancer-free survival, while in a multivariate
analysis. MVI was shown to be an independent prognostic factor. Microvascular and
lymphovascular invasion are both related to metastatic spread and lower survival in
ccRCC patients and are validated as prognostic factors for poor outcome [84]. Among
macroscopical histopathological prognostic factors there are tumor invasion into perirenal
tissues, macrovascular invasion into the renal vein and inferior vena cava, as mentioned
above, and local lymph nodes. Tumors that exhibit these characteristics show an inferior
progression-free and overall survival compared to stage I and II tumors [85].

Clinical factors can be considered prognostic and, among these performance statuses
(PSs), presenting symptoms and paraneoplastic syndromes have been investigated. In
addition, laboratory tests of serum creatinine, hemoglobin, leukocyte and platelet counts,
lymphocyte to neutrophil ratio, lactate dehydrogenase, C-reactive protein and calcium are
required [78]. These factors have been included in different prognostic scoring systems for
risk assessment as they are prognostic for survival [72]. Independent prognostic factors
have been combined to develop prognostic models to be used to predict cancer outcomes.
Clinical and histopathological factors were added to the TNM system for the development
of these prognostic models [78].

Particularly, for localized RCC, pre- and post-operative scores have been developed
to assess patients’ prognosis. The first nomogram was developed in 2001 by Kattan et al.
Later, the UCLA integrated staging system (UISS), the stage, size, grade and necrosis
score (SSIGN), the Cindolo, the Leibovich, the Sorbellini and the Karakiewicz models
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were introduced. These models include all RCC subtypes, but only Leibovich introduced
different algorithms for each histological variant; it was developed for use in ccRCC.
Prognostic models and nomograms are mentioned in the EAU guidelines, but their use
in routine clinical practice is not recommended [86,87]. The two most used are UISS and
SSIGN. The latter is included in the guidelines and is used for patient stratification, mainly
for therapeutic clinical trials and for evaluating the role of biomarkers in predicting patient
survival. For risk assessment during cytokine treatment in metastatic disease, the Memorial
Sloan Kettering Cancer Center (MSKCC) model proposed by Motzer et al. was the gold
standard. This model evaluated as prognostic factors a poorer Karnofsky PS, absence
of prior nephrectomy, high lactate dehydrogenase, low hemoglobin and high albumin-
corrected calcium. Further refinement was obtained by Heng et al., who introduced the
International Metastatic RCC Database Consortium (IMDC) score. In this system, the
prognostic factors considered are six: Karnofky PS, time from diagnosis to treatment,
hemoglobin, corrected calcium, platelet and neutrophil count. As in the MSKCC model,
3 risk groups were generated to stratify patients according to the overall survival: favorable,
intermediate and poor, on the basis of the risk factors involved (0 factors; 1 to 2 factors; 3 to
6 factors, respectively) [78,88,89]. Currently, prognostic factors of IMDC are recommended
for the management of metastatic ccRCC. IMDC may also be prognostic even after second-
line treatment, although it has been developed in treatment-naïve patients.

Nowadays, no molecular prognostic factors are included in the above-mentioned prog-
nostic models. Although genetic or other biomarkers are not routinely used to predict the
prognosis of patients with RCC, in ccRCC several genetic alterations have been described
that could improve current prognostic models. The identification of molecular markers is
also useful to know better the RCC biology and to develop new targeted therapies [26,78].
Several molecular prognostic markers have been studied over the years. Many molecu-
lar changes associated with tumor development and progression have been described in
ccRCC. The use of genomic, transcriptomic, and proteomic signatures could be a valid
biomolecular approach for the evaluation of patient prognosis, but it is also useful for
having an early diagnosis [4].

DNA mutations are frequent in each type of tumor, including ccRCC. Chromosomal
abnormalities, particularly in chromosome 3 for ccRCC, have been associated with a worse
prognosis. Furthermore, the most frequent mutational events occur in the short arm of
chromosome 3, which includes VHL, PBRM1, BAP1 and SETD2 genes, and the loss of this
arm is a frequent event in ccRCC. The resulting loss of heterozygosity leads to the loss of
a copy of the above-mentioned genes. In ccRCC, mutations in PBRM1, BAP1 and SETD2
have been reported in 40%, 14% and 3% of cases, respectively. The first two have been
related to an unfavorable prognosis [17]. Additionally, the gain of 7q and the loss of 9p, 9q
and 14q are associated with a worse survival, suggesting alterations of genes involved in
the progression of the tumor [90,91].

Among DNA alterations, the inactivation of VHL tumor suppressor gene has been
observed in most patients with sporadic ccRCC. VHL gene deficiency results in the ac-
tivation of HIF-1α and -2α, which in turn, leads to the upregulation of proangiogenic
genes, including VEGF [92]. HIF-2α expression is increased in 75% of subjects affected by
ccRCC, while the percentage drops to 38% in non-clear cell RCC patients. In particular, in
ccRCC patients HIF-2α is associated with a more aggressive phenotype. However, VHL
inactivation cannot be considered a prognostic factor since it is found in 80% of ccRCC
cases. Nevertheless, it has been hypothesized that the loss of VHL function caused by gene
mutations affects the progression of RCC [6,93]. Another effect caused by the inactivation
of the VHL gene is the increase in VEGF concentration, which induces tumor angiogenesis.
In ccRCC particularly, VEGF is related to the size of tumor, Fuhrman grade, tumor necrosis,
tumor stage, MVI and RCC-specific survival. Moreover, downstream molecules of the
VEGF pathway, such as phospho-extracellular signal-regulated kinase (pERK), could be
used as biomarkers for response to therapy, although further confirmatory studies are
needed [80].
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Among the molecular prognostic factors studied are also Ki-67, p53 and PTEN [78].
Ki-67 is a cellular proliferation marker whose high expression is linked to higher recurrence
rates and worse survival. Furthermore, it is associated with an aggressive phenotype of
ccRCC [94]. p53 has controversial prognostic significance but it has been shown to be an
independent predictor of metastasis-free survival in patients with localized ccRCC. Lastly,
the loss of the tumor suppressor PTEN occurs during carcinogenesis, which is related to a
worse prognosis in RCC [95,96].

Genetic signatures can help distinguish different risk groups in RCC. In particular, an
expression panel of 34 genes, ClearCode34, was developed from the ccA/ccB classification
in order to predict recurrence risk in patients with localized ccRCC, and it outperformed
UISS and SSIGN systems in terms of discrimination. Both molecular subtypes of ccRCC
were associated with recurrence-free survival (RFS), cancer-specific survival (CSS) and
overall survival (OS) and ccA was found to correlate with a better survival than ccB [97,98].
Additionally, many different markers have been studied after the introduction of im-
munotherapy, to evaluate the response to immune checkpoint inhibitors used alone or in
combination with cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitors, tyrosine kinase
inhibitors (TKI) or mTOR inhibitors. Programmed death-ligand 1 (PD-L1) is expressed on
the surface of tumor cells, and it is involved in the mechanism of tumor immune evasion.
PD-L1 positive tumor cells are associated with an inferior survival in ccRCC; the 5-year
cancer-specific survival rate of these patients was in fact 42–47%, while PD-L1 negative
patients have a greater percentage (66–83%). In addition, a higher expression of PD-L1
corresponds to a higher tumor grade and stage [99].

DNA methylation, miRNA and lncRNAs are epigenetic phenomena which can regu-
late gene expression in several cancerous and non-cancerous diseases [66,100–102]. RNA
and cell-free DNA are potential non-invasive biomarkers for ccRCC because they can
be detected in serum and urine samples. In ccRCC, an alteration in DNA methylation
was observed in the pre-cancerous state and it was associated with high-grade tumors.
Through cell-free methylated DNA immunoprecipitation and high-throughput sequencing,
Nuzzo et al. were able to detect early tumors by non-invasive methods, using plasma and
urine samples. A total of 300 differentially methylated regions have been identified and
used to build a classifier in order to distinguish RCC samples from both control plasma and
urine [103]. Moreover, a study by Minardi et al. shows a higher overall methylation rate in
tumor than in healthy tissue. This group also studied histone acetylation, demonstrating
an inverse pattern compared to methylation. A higher percentage of global methylation
and a decrease in acetylation with increasing Fuhrman grade have also been observed, thus
suggesting a correlation of these markers with tumor aggressiveness [104].

MicroRNA and long non-coding RNA are RNA molecules that are transcribed, but
do not code for any protein. By binding to the complementary sequence in the 3′UTR
region of mRNAs, they negatively regulate gene expression. The expression profile of
miRNA is considered a tumor marker, since the alteration of their expression occurs due to
chromosomal abnormalities, epigenetic mechanisms and mutations in the sequence of their
DNA that affect their genomic position. Given that they can be detected in serum, plasma
and urine samples by means of non-invasive procedures, miRNAs have gained relevance
for ccRCC early diagnosis and prognosis [105].

One of the most studied and most important circulating miRNAs is miR-210. An
elevated level of miR-210 was found in the serum of early-stage ccRCC patients, compared
with healthy controls, thus proving its suitability as a biomarker for early detection. More-
over, it has been reported that miR-210 upregulation occurs in the presence of a hypoxic
environment with accumulation of HIF-1α [106].

Along with miR-210, two other miRNAs were found upregulated in ccRCC: miR-1233
and miR-155. In addition, miR-210 and miR-1233 have been shown to be downregulated
after surgery, thus proving to be good markers for cancer prognosis [105]. Lower levels
of miR-206 and miR-122-5p were detected in the serum obtained from ccRCC patients,
compared to controls, while an increase in these were observed in metastatic disease,
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thus identifying a correlation between enhanced miR-206 and miR-122-5p expression and
shorter disease-free survival [107]. In addition to these lists, miR-193a-3p, miR-362 and
mir-572 also showed an increase in ccRCC patient serum, while miR-28-5p and miR-378
were decreased compared to control groups. All these were detected in the initial phase
of ccRCC, but some miRNAs have been described as associated with later phases, such
as miR-451, which was found in plasma [108]. This one is downregulated in stage III and
IV of ccRCC and it additionally correlates with a worse response to chemotherapy [108].
Urine samples represent another promising source for searching for miRNA biomarkers.
Particularly, miR-210-3p is upregulated in urine samples of ccRCC patients and after
surgery its levels were found to be decreased [109,110]. miR-122, miR-1271 and miR-15b
were found to be increased in urine specimens [111]. miR-30c-5p, on the contrary, is lower
in ccRCC patients than in healthy controls; in fact, it normally acts as a tumor suppressor
in cancer by inhibiting the heat shock protein family A member 5 (HSAP5) gene, which
is linked to cancer growth, aggressiveness and metastasis. Tumor suppressor miRNA
promoter methylation could be an interesting new strategy to identify disease progression,
as demonstrated with miR-30a-5p that is shown to be elevated in ccRCC and metastatic
urine samples compared to non-metastatic ccRCC and healthy controls [111].

Long non-coding RNAs are also involved in the regulation of gene expression and
are implicated in the development of various cancer types, including RCC. Several studies
have identified an increasing number of lncRNAs that appear to have a regulatory role in
cancer cell proliferation, migration, apoptosis and metabolism. lncRNAs can serve as serum
biomarkers that can be used, like miRNAs, for early diagnosis or to predict the prognosis
of patients, but also as therapeutic targets [112]. Wu et al. developed a panel comprising
5 ccRCC-dysregulates lncRNAs (lncRNA-LET, PVT1, PANDAR, PTENP1, linc00963) able
to distinguish between ccRCC patients and healthy controls [113].

The patient’s prognosis appears to be related to aberrant expression of lncRNAs.
lncRNA MALAT-1, for example, seems to be associated with tumor size and stage, lymph
node metastases, and poor prognosis in ccRCC [114]. The overexpression of NEAT-1
demonstrated in ccRCC correlates with tumor size and grad, and lymph node metastases,
showing a worsening in terms of overall survival. In addition, NEAT-1 knockdown has
been shown to weaken cell proliferation, thus suggesting its suitability for the prediction of
poor prognosis in ccRCC patients [115]. Among the upregulated lncRNAs, lnc-ZNF180-2,
linc00152, HOTAIR and HEIRCC have been described. ATB and FTX are also upregulated
and their inhibition lead to a reduction in cell migration and invasion capacity. H19, TCL6,
CAM1-AS1, GAS5 and LOC389332 act as tumor-suppressors, and are instead, downregu-
lated; in particular, H19 and TCL6 are negatively correlated with TNM stage, lymph node
metastases and distant metastases [116].

lncRNAs also affect cancer cells apoptosis. It has been previously shown by Xiong et al.
that a decreased lncRNA-ATB expression is able to promote apoptosis in renal cell carci-
noma, thus demonstrating that its overexpression could hold back the apoptotic process
during cancer development. CCAT1 is also involved in the regulation of apoptosis and its
knockdown led to an increase in apoptotic RCC cells, as well as caspases 3, 7 and 9. An
increase in oncogenic lnRNAs lowers the percentage of apoptotic cells, which is on the
contrary, enhanced by the forced expression of tumor suppressor lncRNAs, such as GAS5
and TCL6 [117,118]. In addition, lncRNAs contribute to resistance to drugs used for the
treatment of ccRCC. In particular, lncARSR was highly expressed in cells which show a
resistance to sunitinib, while lncSRLR is upregulated in cells with intrinsic resistance to
sorafenib. Xu et al. showed that the knockdown of this latter sensitized resistant cells,
while its overexpression was able to confer drug resistance to reactive cells [119].

RAB17 belongs to RAB family and has been demonstrated to be associated with a
variety of malignancies. In ccRCC, low expression levels of RAB17 have been found to
be correlated with unfavorable clinicopathological features and with poor prognosis. Fur-
thermore, RAB17 expression was demonstrated to be negatively correlated with immune
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cells infiltration, thus suggesting that RAB17 might be a potential prognostic biomarker for
ccRCC patients and for estimating immunotherapy response [120].

Proteinuria, defined as an abnormal amount of protein in the urine, has been found in
several studies to be an additional prognostic factor associated with the survival of kidney
cancer patients after kidney surgery [121]. Indeed, the analyses of several studies show that
proteinuria is a sensitive marker for the evaluation of the progression of chronic kidney
disease in clinical practice. Several studies reported differences in OS at 5 years of follow
up between patients with proteinuria compared to patients with absent proteinuria, with
an increased OS observed for patients not affected by proteinuria (77% vs. 65%) [122].

Moreover, since proteinuria is a known marker of renal damage and an independent
predictor of progression to the state of chronic kidney disease, the possibility should be
considered that it should be evaluated to its level in the pre-operative setting in order to
design a properly tailored treatment strategy for the specific patient [123].

6. Treatment

ccRCC is the most common subtype of RCC and represents 85 percent of all RCC
tumors. Generally, surgery is the gold standard for localized renal cell carcinoma. In
particular, the two most used methods are radical nephrectomy and nephron-sparing
surgery. The latter, when technically feasible, is recommended for patients at stage T1 and
T2 because it allows for the preservation of as much as possible of the normal ipsilateral
renal unit. Instead, cytoreductive nephrectomy (CN) is indicated in patients with metastatic
cancer, characterized by a giant primary tumor and few metastatic lesions. It has been
observed that this technique can act synergistically with immunotherapy by removing
cytokines and proteins that prevent the immune response [124]. CN is a controversial issue,
as it has been shown that sunitinib—in combination with CN—was not superior to sunitinib
alone, and therefore, requires further studies. For elderly patients with poor physical
condition, tumor ablation is the most promising method because it has the advantage of
being minimally invasive and requiring a short treatment time [54]. Instead, the metastatic
ccRCC is treated with immunotherapy using interleukin 2 (IL-2) or interferon-α (IFN-α),
which has remained the main treatment for more than 20 years, although response rates
range from 15 to 25%. All subtypes of RCC are resistant to chemotherapy and radiotherapy,
although some studies have shown that the latter could represent a promising therapeutic
modality, especially stereotactic ablative body radiation (SAbR), which can be used for the
treatment of early inoperable and metastatic RCC [125].

The lack of sensitivity to chemotherapy has stimulated the research of new treatment
options (Table 1).

ccRCC is known as a highly vascular tumor, so antiangiogenic therapies represent the
most sought-after approach. The introduction of therapeutic agents blocking angiogen-
esis by targeting VEGF pathway has been very important in the treatment of ccRCC. In
particular, TKIs have been shown to be effective in ccRCC therapy [24,92]. As previously
mentioned, ccRCC is characterized by inactivating mutations of the VHL gene. pVHL is the
VHL gene product, which targets the α-subunit of the transcription factor HIF for degrada-
tion under normoxic conditions. HIF is composed of two subunits: HIF-α and HIF-β. In
particular, HIF-2α promotes carcinogenesis and controls the expression of genes involved in
angiogenesis, overregulating VEGF. When HIFα accumulates, due to the loss of VHL, it up-
regulates tumorigenic hypoxia-responsive genes, among which is VEGFA, whether there is
enough oxygen or not. Since ccRCC express high levels of VEGFA, inhibitors of VEGF and
its receptors are used to treat this type of disease. Among the drugs that block angiogenesis
by acting against TK, sunitinib and pazopanib—which are used for first-line treatment in
ccRCC after an improvement in progression-free survival (PFS)—have been demonstrated
in pivotal studies comparing sunitinib with IFN-α and pazopanib with placebo [92]. In
addition, a COMPARZ study demonstrated similar PFS between sunitinib and pazopanib.
Recently, cabozantinib, another TKI, which acts against a broad range of targets such as
VEGFR, MET and AXL, has been approved by the Food and Drug Administration (FDA)
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for first-line treatment in patients with advanced ccRCC. Cabozantinib was compared to
sunitinib as initial therapy in a randomized phase 2 CABOSUN study, and it showed a
prolonged PFS in patients with poor/intermediate-risk disease [126]. Lenvatinib is another
TKI that blocks VEGFR, and it is used in combination with everolimus. This combination
is better than either agent alone in previously treated patients [126]. Two additional TKIs
are axitinib and sorafenib, but these are used as second-line agents after demonstrating
an improvement in terms of PFS [24]. Bevacizumab is a monoclonal antibody targeting
VEGFA approved in 2004. It has a consistent PFS benefit in combination with IFN-α in
first-line treatments [127]. A novel inhibitor of VEGF receptor which has recently been
approved by the US FDA is tivozanib, which is used particularly in patients who relapse
after two or more prior systemic therapies [128].

Another therapeutic target is represented by HIF2α. Small-molecule inhibitors of
HIF2α that allosterically disrupt its heterodimerization with HIF1β have been identified. In
particular, PT2385 was the first inhibitor tested in humans and then improved by developing
a second-generation small-molecule antagonist of HIF2α, belzutifan (MK-6482), which has
received the FDA approval in August 2021 [129].

The mTOR signaling pathway represents an additional promising therapeutic target,
since some ccRCCs show mutations in genes encoding components of mTOR pathway.
mTOR is a serine/threonine kinase that forms two complexes: mTORC1 and mTORC2.
The drugs everolimus and temsirolimus, which act by inhibiting mTORC1 and thereby
decreasing the translation of mRNAs that encode proteins involved in cell survival and pro-
liferation, and angiogenesis have been approved for the treatment of advanced ccRCC [130].

Further strategy to treat ccRCC is immunotherapy, which consists in the use of
medicines in order to boost a person’s own immune system to recognize and destroy
cancer cells more effectively. The immune system uses checkpoints, which are proteins
on immune cells needing to be turned on (or off) to start an immune response. Kidney
cancer cells use these checkpoints to avoid being attacked by the immune system. However,
these drugs target the checkpoint proteins, thus helping to restore the immune response
against cancer cells. For a long time, the cytokine IL-2 has been used in high doses, but due
to its toxicity and the absence of predictive biomarkers, checkpoint inhibitors have been
considered [92,131].

Checkpoint inhibitors target immune checkpoint receptors or ligands, among which
PD-1 receptor and its ligands PDL-1/L2, and CTLA-4 receptor and its ligands CD80/86
that reduce T-cell activation and cause cancer cell immunotolerance. Pembrolizumab and
nivolumab are drugs that target PD-1. Nivolumab was approved in 2015 after studies
demonstrating an improvement in overall survival compared with everolimus in patients
with metastatic ccRCC [132]. Pembrolizumab can be used in combination with axitinib or
levantinib in first-line treatment [133]. Nivolumab could be instead employed as second-
line treatment for patients with advanced ccRCC, but its combination with ipilimumab, an
inhibitor of CTLA-4, can be effective for patients with intermediate or poor risk disease
who have not received any treatment [126]. Additionally, the combination of nivolumab
and cabozantinib might be used as the first treatment in people with advanced kidney
cancer [134]. Avelumab is another PD-1 inhibitor that can be employed with axitinib as
first treatment in patients with advanced ccRCC [135].

In the last 15 years, therapies targeting VEGF pathway have been the most used
for the treatment of ccRCC; however, resistance to VEGF-targeted agents universally
develops. For this reason, several studies have been performed in order to evaluate the
combination of drugs, and the most promising ones are combinations of immune checkpoint
inhibitors with VEGF inhibitors or with another immune checkpoint inhibitor, such as
cabozantinib/nivolumab [92].
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Table 1. Molecular targets and relative drugs used for ccRCC management.

Molecular Target Drug Reference

VEGFR

Sunitinib [92]
Pazopanib [92]

Cabozantinib [126]
Lenvatinib [126]

Axitinib [24]
Sorafenib [24]

Bevacizumab [127]
Tivozanib [128]

HIF2α
PT2385 [129]

Belzutifan (MK-6482) [129]

mTOR
Everolimus [130]

Temsirolimus [130]

Checkpoint inhibitors (PD-1 or CTLA-4)

Nivolumab (PD-1) [132]
Pembrolizumab (PD-1) [133]

Avelumab (PD-1) [135]
Ipilimumab (CTLA-4) [126]

7. Novel Strategies

Recently, many efforts have been made to search for new diagnostic and prognostic
molecules that can be used for early diagnosis and to predict the prognosis of patients with
ccRCC. Another important goal of the search for new biomarkers is their potential use as
new therapeutic targets.

Several conceivable biomarkers have been recently investigated, although they all
require further validation studies before being adopted into clinical practice. However,
these emerging biomarkers may be useful for understanding the mechanisms of drug
resistance or for the development of new targeted therapies.

Many studies carried out to search for new molecular markers have been performed
both on tumor tissue samples and on clear cell renal cell carcinoma cell lines.

The SPARC/osteonectin, CWCV and Kazal-like domains proteoglycan 1 (SPOCK1) is
a proteoglycan which is involved in many types of cancer, including RCC. In particular,
it plays a key role in cell proliferation, apoptosis, adhesion and migration, and its overex-
pression contributes to metastasis formation and drug resistance. Higher levels of both
mRNA and protein have been demonstrated in ccRCC compared to healthy tissues, and this
overexpression is related to more advanced clinical stage, larger tumor size, lymph node
and distal metastases, as well as worse prognosis, with shorter OS and disease-free survival.
In vitro and in vivo assays evidenced that knockdown and overexpression of SPOCK1
inhibited and potentiated the proliferative and metastatic capacity of ccRCC cells, respec-
tively. SPOCK1 has also been shown to stimulate the epithelial–mesenchymal transition
(EMT), thus promoting cancer cell invasion, correlating directly with the expression of mes-
enchymal markers and, inversely, with epithelial markers. In fact, its knockdown showed
an increase in epithelial markers such as E-cadherin, thus suggesting a reduced progression
of EMT, while an opposite effect was caused by SPOCK1 overexpression [136,137].

Extracellular matrix (ECM) modifications play a key role in several processes, in-
cluding tissue repair and cell proliferation and motility [138–141]. Interestingly, SPOCK1
has been shown to be involved in the regulation of matrix-degrading metalloproteinases
(MMPs), a family of proteolytic enzymes capable of degrading basement membrane and
extracellular matrix components, being therefore involved in metastasization. In particular,
MMP-2, MMP-9, MMP-14 and MMP-16 are required for EMT progression. In SPOCK1-
depleted ccRCC cell line CAKI-1, MMP-2, -3 and -9 were found downregulated, while only
MMP-2 was downregulated in SPOCK1-depleted 786-O ccRCC cell line, thus suggesting
MMP-2 as a general target in ccRCC cells. Overexpression of SPOCK1 has been shown to
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contribute to an increase in MMP-2 enzymatic activity and in the expression of its upstream
activators, such as MMP-14 and MMP-16, while the knockdown of SPOCK1 triggered their
decrease. Therefore, secreted SPOCK1 induces the MMP-14/MMP-16-MMP-2 axis and
because of this, promotes EMT, thus increasing the invasive capacity of ccRCC cells. The
SPOCK1-MMP-2 axis is related to a worse prognosis and can be considered as a specific
biomarker for the prediction of EMT-regulated invasion of ccRCC cells, as well as a possible
therapeutic target [137].

Another study evaluated MMP-2, MMP-9 and CD44 as possible prognostic biomarkers.
In particular, their immunohistochemical expression was analyzed in association with the
histopathological subtype of RCC (302 total cases, of which 243 ccRCC and 59 non-ccRCC).
CD44 binds to the extracellular matrix and acts as a platform for MMPs. Immunohistochem-
istry showed that there were no significant differences in CD44 expression between ccRCC
and non-ccRCC cases, while MMP-2 and MMP-9 were more expressed in non-ccRCC
cases. Moreover, MMP-2 overexpression was associated with a reduced risk of death in
patients. However, only the ccRCC and CD44 subtypes were independent risk factors
for patient death. A previous study showed that enhanced CD44 expression correlated
with shorter OS in ccRCC, thus considering it as an independent risk factor capable of
predicting recurrence-free survival, disease-specific survival and OS in patients with ccRCC.
In addition, CD44 expression was positively associated with MMP-2 and MMP-9 in the
ccRCC group, and correlated with nuclear grade, thus suggesting the contribution of these
molecular markers to aggressiveness in ccRCC [142,143].

Another potential marker recently investigated is G2 and S-phase expressed 1 (GTSE1),
which acts as an oncogene, promoting cell proliferation, migration and invasion, and
regulating EMT. The GTSE1 protein is linked to the cell cycle and expressed in the G2
and S phases. It is found co-localized in microtubules and tubulin and plays a key role in
chromosomal alignment. In ccRCC, mRNA and GTSE1 protein levels were higher than in
normal tissues and cells, and related to poor patient survival. Through GTSE1 knockdown
experiments, an inhibition of cell proliferation, migration and invasion and an activation of
apoptosis have been demonstrated. GTSE1 works by regulating the expression of Krüppel-
like factor 4 (KLF4), which is a tumor suppressor. KLF4 silencing has been shown to
rescue the inhibition of cell migration caused by GTSE1 knockdown and to reverse EMT.
GTSE1 expression levels are related to OS and disease-free survival, and furthermore, could
be used as a novel biomarker for patient prognosis and as a new therapeutic target for
ccRCC [144].

Molecule interacting with CasL-like protein 2 (MICALL2) is a cytoskeleton regulator
that has been associated with the tumorigenic ability in many malignancies [145]. In partic-
ular, previous studies have shown that it promotes ccRCC malignancy by inducing EMT,
such as SPOCK1 and GTSE1. MICALL2 is more expressed in ccRCC tissues and cell lines
compared to healthy tissue and normal renal tubular epithelial cell lines and it was shown
to have a predictive function in ccRCC carcinogenesis; in fact, MICALL2 overexpression
led to enhanced cell proliferation, migration and invasion, while its knockdown had an
opposite effect. Moreover, in vivo experiments have revealed that an increased expression
of MICALL2 contributes to tumor growth and expansion. Similar to the others listed so
far, it can therefore be considered a new prognostic marker and a potential therapeutic
target [146].

Many other proteins, which are involved in the development and growth of ccRCC,
have been studied in recent years; for example, A disintegrin and metalloproteinase-12
(ADAM12), which belongs to the type I transmembrane protein family. This protein has
an oncogenic role, such as SPOCK1 and GTSE1, and its high expression is an indicator of
poor overall survival. ADAMs are able to regulate cell adhesion, migration and signaling,
as well as proteolysis. These proteins have different types of substrates, including cancer-
related proteins, such as NOTCH receptor and ligand, epidermal growth factor receptor
(EGFR) ligand, interleukin-6 receptor (IL-6R), tumor necrosis factor (TNF) and its receptor,
E-cadherin and CD44 [147]. ADAM dysregulation is linked to the initiation and progression
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of tumors. In particular, ADAM12 is upregulated in both ccRCC tissues and cells and is
correlated with gender, TNM stage and tumor grade. ADAM12 overexpression was shown
to promote tumor growth and metastasis, while its knockdown had a reverse effect, thus
inhibiting cell proliferation, migration and invasion. Being a secreted protein, it can be
detected in blood and body fluids, and this makes it a good tumor marker candidate [148].

Spermatogenesis associated 18 (SPATA18) and EF-hand domain family member D1
(EFHD1), as opposed to SPOCK1, GTSE1 and ADAM12, are two tumor suppressors both in-
volved in mitochondria functions. In particular, SPATA18, also called mitochondria-eating
protein (MIEAP), is a p53-inducible protein which contributes to maintaining mitochon-
drial health by inducing lysosome-like organelles within mitochondria, thus leading to the
elimination of oxidized mitochondrial proteins and improving mitochondrial functions.
In a study by Lingui et al., SPATA18 was found to be overexpressed in ccRCC tissues
compared to normal ones and its expression was associated with a better prognosis in
ccRCC patients, thus suggesting its potential use not only as a diagnostic and positive prog-
nostic biomarker, but also in ccRCC treatment, given its tumor suppressive function [149].
As concerns EFHD1, it is a mitochondrial enzyme that regulates calcium ions, which are
second messengers and play a fundamental role in regulating cell functions. Mitochon-
dria accumulate calcium ions to maintain their balance in the cytoplasm. Alterations in
mitochondrial calcium influence malignant transformation and tumor progression. EFHD1
binds to the core of mitochondrial calcium uniporter (MCU), which is the main calcium
transporter, through its N-terminal domain and this binding prevents the uptake of Ca2+ in
the mitochondria. Since MCU levels are positively correlated with Ca2+ absorption, ROS
production and propensity for metastatic dissemination, its inhibition, caused by EFHD1
binding, blocks Ca2+.absorption by mitochondria. In ccRCC tissues, EFHD1 was found
downregulated at both mRNA and protein levels. Given that a reduced expression of
EFHD1 was correlated with an unfavorable outcome, the enzyme is considered a promising
prognostic factor [150].

Recent studies have shown that pathological behaviors of cancer cells, such as inva-
sion and metastatic spreading, may also depend on the coordination of the membrane
and actin cytoskeleton. ArfGAP with GTPase domain, ankyrin repeat and PH domain
2 (AGAP2) belongs to the AGAP family, including members involved in membrane and
actin cytoskeleton changes, which are essential for normal physiological functions. Arf
GTPase-activating proteins have been shown to be aberrantly expressed in several tumors
and, in ccRCC, an overexpression of AGAP2 related to a reduction in overall survival
has been demonstrated by means of immunohistochemistry. Moreover, overexpression is
associated with clinical stage, poor prognosis and immune cell infiltration. AGAP2 may
therefore be a valid prognostic biomarker. Given its ability to influence the abundance of
immune cell infiltration, it can also become an important component for patients receiving
precision cancer therapy [151].

Cytoskeleton-associated protein 2-like (CKAP2L) is a mitotic spindle protein encoded
by the CKAP2L gene, whose mutations cause spindle organization defects. CKAP2L is
associated with disease progression and prognosis in different types of cancer. Particularly,
in ccRCC, its level of expression appears to be linked to the TNM stage and to a worse
prognosis. In one study, it was suggested that its knockdown induces cell cycle arrest in the
G2/M phase. In addition, since CKAP2L is correlated with numerous immune checkpoint
inhibitor genes, it could indirectly affect immune system functions, thus favoring ccRCC
development [152].

PICALM interacting mitotic regulator (PIMREG) is a mitotic regulator which has a key
role in the metaphase-to-anaphase transition during the cell cycle. A high expression of
PIMREG was evidenced in ccRCC by means of qRT-PCR. Moreover, its levels are positively
correlated with tumor stage and grade, and thus, with a poor prognosis. In addition,
knockdown experiments were performed, which demonstrated a significant inhibition of
cell proliferation, migration and invasion and a slowing down of the cell cycle. PIMREG
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could therefore be used as a prognostic biomarker, and it could become a new potential
therapeutic target [153].

Among the conceivable therapeutic targets in ccRCC, the enzyme nicotinamide N-
methyltransferase (NNMT) has been shown to display a good potential as biomarker and
therapeutic target. NNMT is a phase II drug metabolizing enzyme which methylates the
nicotinamide to N1-methylnicotinamide [154]. Due to its role in nicotinamide homeostasis,
its activity has a great impact on NAD+ homeostasis, NAD+-related enzymes and epige-
netic regulation [63,155,156]. An overexpression of the enzyme has been observed in a
number of solid malignancies, including gastric cancer, head and neck cancer, skin cancers,
breast cancer, glioma and prostate cancer [157–163]. Remarkably, a NNMT overexpression
has been reported in ccRCC compared to other renal cancers, and enzyme levels were
significantly higher in small samples rather than large size tumors [164]. Furthermore, in
another study, enzyme levels were associated with a poor prognosis of ccRCC patients [165].
Notably, due to enhanced differential expression between RCC subtypes and healthy tissue
detected through several techniques such as immunohistochemistry, ELISA and proteomic
analysis, NNMT has been proposed as a biomarker for the diagnosis of the main RCC sub-
types, in combination with other markers [166–168]. Furthermore, several in vitro studies
reported that NNMT downregulation was associated with a decreased proliferation and
invasiveness in ccRCC cells [166,169–172]. In the light of these observations, the enzyme
seems to be a promising diagnostic and prognostic biomarker, which could be also utilized
as a therapeutic target due to the large number of NNMT inhibitors available and currently
tested for cancer treatment [173–178].

Two other new molecules studied in the last period were found to be 2 potential
immunotherapeutic targets: guanylate-binding protein 2 (GBP2) and B7-H3. GBP2 belongs
to the family of interferon-induced GTPases and it was found to be highly expressed in
several types of cancer with poor prognostic outcome. It has been shown in several studies
that GBP2 models the immune microenvironment of the tumor and that its degree of ex-
pression is correlated with the rate of immune infiltration. In ccRCC, immunosuppressive
cell infiltration represents a marker of altered therapeutic efficacy. Since not all patients
respond to immune checkpoint blockade, the identification of reliable biomarkers of re-
sponse to checkpoint block is vital to facilitate the improvement of the clinical efficacy of
these therapies. In sarcomas, breast cancer and colorectal cancer, GBP2 shapes the immune
microenvironment, and an elevated GBP2 expression is related to a favorable response to
anti-PD1 therapy and to tumor-infiltrating T cells. Through the regulation of the tumor
immune microenvironment, GBP2 can influence the prognosis of various malignancies.
GBP2 expression is induced by interferon-γ (IFN-γ), which increases the expression of
the PD-L1 ligand through the signal transducer and activator of transduction pathway 1
(STAT1), thus promoting tumor immune escape. By regulating PD-L1 expression through
the STAT1 pathway, GBP2 promotes immune evasion, and it therefore indicates a worse
prognosis for ccRCC patients. In addition to being a negative prognostic marker, GBP2
can be considered a potential immunotherapy target in ccRCC [179]. B7-H3 is instead a
member of the B7 family of proteins and is an immune checkpoint molecule expressed in
the immune microenvironment, in both cancer and immune cells. As concerns the tumor
context, B7-H3 has been associated with tumor cell proliferation, metastasization and resis-
tance to therapy. Normal and tumor tissues have shown a substantial difference in protein
expression levels, thus suggesting the suitability of B7-H3 as a therapeutic target. In the
cited study, no correlation was found between the expression levels of CTLA-4 and B7-H3,
which was instead associated with PD-L1 expression. Moreover, immunohistochemistry
showed a poor correlation between B7-H3 and PFS. B7-H3 could be important for the devel-
opment of new immunotherapy treatments, as immunotherapy using the B7-H3 pathway
is effective with the simultaneous use of both chemotherapy and radiotherapy [180].

The high frequency of occurrence of ccRCC in male patients compared to females
could in part be explained by the mounting evidence that androgen-receptors function as an
oncogene in ccRCC, fostering progression and hematogenous metastasis. This observation
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led to the hypothesis that the use of anti-androgen receptors could represent a possible
therapeutic strategy to be explored [181–183].

8. Conclusions

ccRCC is characterized by high aggressiveness, invasiveness and metastatic poten-
tial, features that are associated with chemoresistance and radioresistance and which are
responsible for the poor prognosis and high mortality rate of this malignancy. In this
review, we highlighted the most novel biomarkers that could contribute to better prognosis
assessment, as well as promising molecular markers which could be exploited for targeted
therapies. Nonetheless, it is important to pursue the identification of new biomarkers with
high precision and sensitivity in order to improve the outcome of ccRCC patients.
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