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Simple Summary: Multispectral, multiplex immunofluorescence (mIF) microscopy is an emerg-
ing technology for characterization of the tumour microenvironment. Achieving high-throughput
collection and analysis of mIF microscopy images often requires the use of multiple microscopes,
but it is not guaranteed that data from one microscope can be compared to data from another. We
used a set of eight melanoma tissue samples to measure and correct for data differences between
three microscopes. We scanned the samples twice on each microscope and measured the average
tissue flux densities in the resulting sets of images. By applying a relatively simple calibration model
accounting for sample- and microscope-specific effects, we were able to reduce the variations in
raw image brightness and immune marker expression measurements by 79% and 72%, respectively.
This shows that simple procedures can be used to effectively standardize mIF data from multiple
microscopes for potential use in both research and clinical diagnostic settings.

Abstract: Multispectral, multiplex immunofluorescence (mIF) microscopy has been used to great
effect in research to identify cellular co-expression profiles and spatial relationships within tissue,
providing a myriad of diagnostic advantages. As these technologies mature, it is essential that
image data from mIF microscopes is reproducible and standardizable across devices. We sought to
characterize and correct differences in illumination intensity and spectral sensitivity between three
multispectral microscopes. We scanned eight melanoma tissue samples twice on each microscope and
calculated their average tissue region flux intensities. We found a baseline average standard deviation
of 29.9% across all microscopes, scans, and samples, which was reduced to 13.9% after applying
sample-specific corrections accounting for differences in the tissue shown on each slide. We used a
basic calibration model to correct sample- and microscope-specific effects on overall brightness and
relative brightness as a function of the image layer. We tested the generalizability of the calibration
procedure and found that applying corrections to independent validation subsets of the samples
reduced the variation to 2.91± 0.03%. Variations in the unmixed marker expressions were reduced
from 15.8% to 4.4% by correcting the raw images to a single reference microscope. Our findings show
that mIF microscopes can be standardized for use in clinical pathology laboratories using a relatively
simple correction model.
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1. Introduction

Multispectral, multiplex immunofluorescence (mIF) assays are emerging tools for
biomarker discovery. They facilitate not only the study of basic cell population densities in
a tissue-sparing manner, but also co-expression analyses, quantification of marker inten-
sities, and spatial relationships. Multiple studies performed in numerous tumour types
have demonstrated the predictive and prognostic benefit of being able to spatially resolve
immunoactive cell populations within the tumour microenvironment (TME) and relate
these findings to clinical outcomes [1–13]. In a meta-analysis of different biomarker modali-
ties, mIF assays have been shown to have higher predictive value than tumour mutational
burden, IFN-γ gene signatures, and PD-L1 immunohistochemistry for predicting response
to anti-PD-1-based therapies [14].

In the research setting, performing high-throughput processing and analysis of mIF
samples could lead to faster biomarker discovery. In the clinical setting, rigorously validated
mIF assays could enable individualized treatments with immune checkpoint inhibitors
(ICI) for patients. Given the potential for mIF assays to be used in both research and clinical
settings, it is imperative to ensure these assays are reproducible.

Currently, proof-of-principle studies [15] and guidelines [16] exist around demon-
strating the reproducibility of the staining portion of mIF assays. There is still an unmet
need for standardizing the microscopes themselves [17–19]. Here, we looked to extend
reproducibility assessments to the multispectral microscopes necessary for scanning the
mIF-stained tissue samples. Through the use of three different microscopes housed at a
single academic institution, we were able to develop a relatively simple and deployable
correction model capable of adjusting these multispectral microscopes to a single reference
microscope.

2. Materials and Methods

Eight advanced formalin-fixed paraffin-embedded (FFPE) melanoma pathology spec-
imens were obtained from the Johns Hopkins archives. Samples were de-identified and
a 4 µm section was cut from each block. Automated mIF was performed as previously
described [9], but the mIF panel was expanded to include CD3 and a pan-membrane stain
(Table S1).

Briefly, samples were baked offline for 3 h at 65 ◦C, then loaded onto the Leica BOND
RX automated research stainer (Leica Biosystems, Buffalo Grove, IL, USA). Samples were
then baked online at 60 ◦C for 30 min, and residual paraffin was removed (Dewax, Leica,
Deer Park, IL, USA). Initial antigen retrieval was performed using a pH9 EDTA buffer (ER2,
Leica) for 40 min at 100 ◦C. After initial blocking for endogenous peroxidases (BLOXALL,
Vector Labs, Newark, CA, USA), non-specific antibody binding was blocked (Protein
Block, Agilent, Santa Clara, CA, USA). Primary antibodies, polymers, and opals were
applied for Position 1 (Table S1), then antibody stripping was performed using a pH6
sodium citrate buffer (ER1, Leica) for 20 min at 95 ◦C. This process was repeated for
each position, after which slides were counterstained (Spectral DAPI, Akoya Biosciences,
Marlborough, MA, USA) and wet mount coverslipped (Prolong Diamond, Invitrogen,
Waltham, MA, USA). Prior to staining, the mIF panel was optimized to reduce cross-talk
and/or bleed-through by performing primary, secondary, and fluorophore titrations to
balance fluorophore intensities, as previously described [9,15]. All slides used were stained
in the same batch so that batch-to-batch variations would not introduce additional artefacts.

The mIF-stained slides were scanned using PhenoImager HT (formerly known as
Vectra Polaris) microscopes (Akoya Biosciences, Marlborough, MA, USA), which are auto-
mated multispectral microscopes capable of capturing fluorescent signals with wavelengths
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between 440 nm and 780 nm. These microscopes imaged samples by first passing light
emitted from a multiband LED array through one of seven excitation filter cubes. This
light illuminated areas of the tissue samples, stimulating the fluorophores and causing
them to fluoresce. Fluorescence light was received by filter systems composed of seven
static broadband filter cubes and 43 liquid crystal tunable narrowband filters. Light passing
through each of the narrowband filters was captured by a CCD camera, forming a set
of 43 monochromatic image planes. The 43-layer “raw” images were spectrally unmixed
using the inForm software [20] (inForm® v2.4.8, Akoya Biosciences, Marlborough, MA,
USA), depending on libraries comprised of pure spectra for each fluorophore also captured
on the PhenoImager HT microscopes. The spectral unmixing process transformed the raw
images into 10 layers: one layer for each fluorophore, and an additional layer for autoflu-
orescence. The 10 layers of the resulting “unmixed” images were analysed separately as
measurements of individual marker expressions within the tissue samples [9,15].

Each slide was scanned twice on three different PhenoImager HT microscopes, for
a total of six independent scans as summarized in Table S2. An independent scanning
protocol was created for each microscope by auto-exposing on the brightest pixels for
each broadband filter across the set of eight tissue samples. The broadband filters used to
excite each fluorophore are listed in Table S1. Emission spectra for each fluorophore were
captured across several broadband and narrowband filters, as shown in Figure S1. The
microscope-dependent corrections discussed below were derived from, and applied to,
the raw 43-layer multispectral images, so that a common library could be used to perform
spectral unmixing on all data coming from different microscopes.

Tiling of the entire sample was achieved by acquiring 20% overlapping “high-power
field” (HPF) image tiles, which were assembled into seamless whole-slide images as
previously described [9]. On average, 5700 HPFs were acquired per round of scanning,
totalling 34,725 HPFs across the entire dataset (Table S3). Each raw HPF image was stored
as an array of unsigned 16-bit integers, with dimensions of 1872× 1404 pixels and 43 layers.
Each image layer contained the total brightness of each pixel in a specific, narrow range
of light wavelengths. Image layers were grouped by the static broadband filters used to
initially select wider ranges of wavelengths of light. The mIF narrow-band wavelengths
contributing to each image layer and their corresponding broadband filters are plotted in
Figure S1.

A binary image mask Bh was generated for each raw HPF h, in which areas containing
empty background or oversaturated pixels were set to 0 and areas showing well-imaged tis-
sue were set to 1. Background pixels were determined using Otsu’s thresholding algorithm
implemented in OpenCV [21]; oversaturated pixels were masked out using hand-tuned
layer-dependent thresholds.

The raw HPFs were normalized by their exposure times in each image layer to produce
the images Ih, with units of counts/ms. The “mean image” M for each scan of each sample
was then calculated as

M =
∑h Bh Ih

∑h Bh
, (1)

describing the average flux of the tissue at each pixel in counts/ms.
These mean images were averaged over the two-dimensional pixel indices i and j in

each image layer k to produce the set of X̄n
mrk spectra,

X̄n
mrk =

1
HW ∑

i,j
Mn

mrk, (2)

describing the average flux of the tissue in each image layer k observed for scan r of sample
n on microscope m, where H and W are the height and width of each image.

The X̄n
mrk spectra were then normalized so that they impacted measurements relatively

equally regardless of their individual brightnesses. First, the new spectra X̃n
mrk were
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calculated by multiplying each X̄n
mrk by the fraction of the total sample coming from its

own HPFs,

X̃n
mrk = X̄n

mrk

(
hn

mr

∑n,m,r hn
mr

)
, (3)

and then the X̃n
mrk spectra were divided by their average over the N = 8 samples,

M = 3 microscopes, R = 2 scans, and K = 43 raw image layers to produce the
Xn

mrk spectra,

Xn
mrk =

X̃n
mrk

1
NMRK ∑n,m,r,k X̃n

mrk

, (4)

which represent the relative tissue flux variations about one for each microscope, scan, and
sample as a function of multispectral image layer.

3. Results

The Xn
mrk spectra are pictured in Figure 1, showing an initial variation in overall illu-

mination and relative spectral intensity characterized by a standard deviation of 29.85% on
average over all image layers. We used these spectra to develop a method of accounting
for those differences, independently modelling contributions from the individual tissue
samples themselves and from the three different microscopes.

Figure 1. Xn
mrk spectra showing average tissue flux relative to the overall mean for each scan of

each sample on each microscope. Data from different microscopes are plotted in different colours.
Solid and dashed lines show data from scans 1 and 2, respectively. Individual tissue samples are
distinguished with different marker styles, as shown in the legend.

To simplify calculations, a final set of factors an
mr were calculated, representing the

normalized average relative intensities of the samples per microscope per scan without any
wavelength dependence:

an
mr =

1
K ∑k Xn

mrk
1

NMRK ∑n,m,r,k Xn
mrk

. (5)

We first used a simple calibration model applied to the entire set of samples, which
showed the reduction in variation that was possible to achieve overall. From this form of
the calibrations, we propose a source of the observed differences between the individual
multispectral microscopes. We then modified the model slightly to factor out the contri-
butions coming only from the differences in the microscopes, and used a bootstrapping
procedure to show that those microscope correction factors could be expected to generalize
to additional samples. Finally, we performed three different spectral unmixings on the raw
image data to evaluate how standardizing images to a single microscope affects marker
intensity measurements, rather than raw image fluxes.
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3.1. Correcting the Entire Dataset

Our goal in correcting the entire dataset overall was to effect the greatest possible re-
duction in the variance shown in Figure 1. We first removed tissue sample- and microscope-
dependent differences in the overall brightnesses of each set of images, and then accounted
for differences in the relative spectral sensitivities exhibited by each tissue sample and each
microscope. An overview of the method is shown in Figure 2.

Correcting the Entire Dataset

 
spectra

Xn
mrk

 
factors

an
mr

normalized average 
over image layers

 
factors

Bn

 
factors

Cm

amplitude 
correction  

spectra
xn

mrk

 
profiles

bnk

average/normalize 
over  

microscopes+scans

tissue 
profile 

correction
 

spectra
yn

mrk

 
profiles

wmk

average/normalize 
over tissue  

samples+scans

microscope 
profile 

correction
 

spectra
zn

mrk

average over 
microscopes

average over 
tissue samples

Figure 2. A diagram of the procedure used to correct the entire dataset. Overall amplitude corrections
are applied first, then wavelength-dependent profile corrections. Contributions from the tissue
samples on the slides and from the microscopes used are treated independently.

We began by applying two corrections to the overall brightnesses as functions of the
tissue samples, Bn, and microscopes, Cm, calculated as

Bn =
1

MR ∑
m,r

an
mr and Cm =

1
NR ∑

n,r
an

mr. (6)

Applying these amplitude corrections resulted in the set of xn
mrk = Xn

mrk/(Bn · Cm)
spectra pictured in Figure 3. These amplitude corrections alone reduced the variance
observed from 29.85% to 14.83% on average over all image layers.

Figure 3. The xn
mrk spectra, after application of the Bn and Cm amplitude correction factors. Samples,

microscopes, and scans are distinguished using the same conventions as in Figure 1.

We next modelled the effect of varying spectral sensitivities in the specific tissues
mounted on each slide. The relative variations in the sample dimension as a function of
image layer, Tnk, were calculated by averaging the xn

mrk spectra over all microscopes and
scans and used to determine wavelength-dependent bnk factors,

bnk =
Tnk

1
NMR ∑n,m,r xn

mrk

where Tnk =
1

MR ∑
m,r

xn
mrk. (7)
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The Tnk variations and bnk correction factors are pictured in Figure S2.
Applying the bnk tissue profile corrections to xn

mrk gave the set of yn
mrk = xn

mrk/bnk
spectra, pictured in Figure 4. The standard deviation of the yn

mrk spectra was 10.56% on
average over all image layers.

Figure 4. The yn
mrk spectra, after application of the bnk tissue profile correction factors. Samples,

microscopes, and scans are distinguished using the same conventions as in Figure 1.

The variations remaining in the yn
mrk spectra corresponded to the wavelength-dependent

relative differences between the three microscopes. The microscope-relative variations
Pmk and correction factors wmk were calculated similarly to the tissue variation spectra
and corrections,

wmk =
Pmk

1
NMR ∑n,m,r yn

mrk

where Pmk =
1

NR ∑
n,r

yn
mrk. (8)

The Pmk variations and wmk correction factors are shown in Figure S3.
Applying the wmk factors resulted in the set of zn

mrk = yn
mrk/wmk spectra, pictured in

Figure 5. The zn
mrk spectra exhibited a 2.70% standard deviation variation on average over

all image layers.

Figure 5. The zn
mrk spectra, after application of the wmk microscope profile correction factors. Samples,

microscopes, and scans are distinguished using the same conventions as in Figure 1.

The reduction in overall variation between all samples, microscopes, and scans is
shown in Figure 6. The upper plot shows the standard deviation over all samples, mi-
croscopes, and scans as a function of the image layer at each stage of correction, and the
lower plot shows the averages of these standard deviations over all image layers. An initial
standard deviation of 29.85% was reduced to 2.70% after applying corrections accounting
for differences between tissue samples and microscopes.
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A

B

Figure 6. The standard deviation across all samples, microscopes, and scans as a function of image
layer (A) and averaged over all image layers (B) for the Xn

mrk (normalization only), xn
mrk (after

amplitude corrections), yn
mrk (after correction with tissue profiles), and zn

mrk (after correction with
microscope profiles) spectra.

3.2. Contributions to Microscope-Specific Correction Factors

The wmk factors can be averaged over all layers to calculate will
m = 1

K ∑k wmk, which
should be approximately equal to 1 since the Cm amplitude corrections were already applied
in yn

mrk. Dividing out these overall scales and averaging over the layers k† belonging to
each broadband filter group produced the set of wBB

mk factors,

wBB
mk =

1
K† ∑

k†

wmk

will
m

, (9)

which quantify the differences between microscopes that are attributable to inhomogeneities
in those microscopes’ specific broadband filters. Lastly, the differences specific to the
piezoelectrically tuned narrow-band filters (wNB

mk ) were quantified by dividing out both the
overall illumination and broadband filter contributions:

wNB
mk =

wmk

will
m · wBB

mk
. (10)

The will
m , wBB

mk, and wNB
mk contributions to the total wmk correction factors are pictured in

Figure S4. It is clear that most of the differences in relative spectral sensitivities between
microscopes can be attributed to inhomogeneities in the microscopes’ broadband filter
cubes. Each microscope was manufactured with its own static set of broadband filter
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cubes, and it is expected that the materials used for those filter cubes may differ between
instruments from the time of manufacture. Our data indicate that those differences can be
as large as 20% with respect to the means of all three microscopes for any given broadband
filter group.

This same effect is also visible when calculating the overall covariance matrices of the
Xn

mrk, xn
mrk, yn

mrk and zn
mrk spectra in the image layer dimension. The image layer-projected

covariance matrix of Xn
mrk, for example, Σk1k2(X), can be calculated as

Σk1k2(X) =
1

NMR ∑
n,m,r

dn
mrk1

dn
mrk2

, (11)

where

dn
mrk(X) = Xn

mrk − µmk(X) and µmk(X) =
1

NR ∑
n,r

Xn
mrk. (12)

These image layer-projected covariance matrices at each stage of correction Σk1k2(X),
Σk1k2(x), Σk1k2(y), and Σk1k2(z) are shown in Figure S5. They show an overall reduction in
the scale of the variance as successive corrections are applied, as well as a strong correlation
between groups of layers imaged with the same broadband filter, and between image layers
corresponding to similar narrow-band wavelengths, as pictured in Figure S1.

3.3. Generalizing Microscope Correction Factors

Having determined a model for using a group of multiple-imaged tissue samples to
measure microscope-dependent correction factors, we next investigated how generalizable
the procedure would be if applied to additional data that were not used to measure
the corrections. To this end, we used a bootstrapping procedure to repeatedly calculate
microscope-dependent correction factors using particular subsets of the eight tissue samples
and then applying those corrections to orthogonal subsets of the tissue samples. This
procedure is displayed in Figure 7.Generalizing Microscope Correction Factors
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Figure 7. A flowchart outlining the bootstrapping method used to investigate how the microscope-
specific corrections would generalize to new data. Tissue-specific normalization and profile correc-
tions were first applied to the entire dataset. Random subsets of samples were then chosen at each
bootstrapping iteration, and microscope-specific corrections were calculated using them.
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The data used in this procedure were normalized as before (Xn
mrk) and divided by the

same tissue sample-dependent amplitude corrections Bn to produce the set of χn
mrk spectra,

χn
mrk =

Xn
mrk
Bn

. (13)

These spectra defined new βnk factors,

βnk =
1

MR ∑m,r χn
mrk

1
NMR ∑n,m,r χn

mrk

, (14)

analogous to the bnk factors, to account for spectral variations attributable to differences
between the tissue samples on each slide. Dividing by these factors produced the set of
ψn

mrk spectra,

ψn
mrk =

χn
mrk

βnk
, (15)

in which any remaining variations were attributable to the different microscopes.
At each iteration s of the bootstrapping procedure, N′ = 5 “fit” samples ns were

randomly chosen from the full set of eight, and the microscope-dependent correction
factors Cs

m and ωs
mk were calculated using just those five samples:

Cs
m =

1
N′R ∑

ns ,r
ans

mr and ωs
mk =

1
N′R ∑ns ,r ψns

mrk
1

N′MR ∑ns ,m,r ψns
mrk

(16)

The correction factors were then applied back onto these five samples to produce the
zns

mrk spectra,

zns
mrk =

ψns
mrk

Cs
mωs

mk
, (17)

and also to the three orthogonal “test” tissue samples. The post-correction standard
deviations across the fit and test samples, plus all microscopes and scans, were calcu-
lated. This procedure was repeated 56 times, once for each independent choice of the five
fit samples.

Figure S6 shows the distribution of the Cs
mωs

mk factors calculated for each iteration; the
microscope-dependent correction factors were all very similar regardless of the subset of
samples used to calculate them. Figure 8 shows the standard deviations across all samples,
microscopes, and scans of the original Xn

mrk data, the tissue-homogenized ψn
mrk spectra,

and the fully-corrected zns
mrk spectra for all fit/test sample subsets. The zns

mrk data points
shown are the averages over all bootstrapping iterations, with error bars equal to the
standard deviation.

Applying microscope-dependent corrections calculated using orthogonal subsets of
samples reduced the standard deviation from 13.87% to 2.91 ± 0.03% on average over all
image layers, comparable to the final standard deviation of 2.66 ± 0.01% observed when
applying corrections back onto the subsets of samples used to calculate them. This shows
that normalizing and homogenizing a set of tissue samples using Bn and βnk correction
factors reliably leaves only microscope-dependent variations present, and that corrections
for those microscope variations can be reliably applied to new tissue samples from the
same microscopes.
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A

B

Figure 8. The standard deviation across all samples, microscopes, and scans as a function of the
image layer (A) and averaged over all image layers (B) for the Xn

mrk (normalization only), ψn
mrk (after

corrections for tissue-specific differences), and zns
mrk, fit and zns

mrk, test spectra. The zn
mrk, fit data points

shown are the mean over all bootstrap iterations of applying the calculated corrections back onto the
samples used to calculate them, whereas the zn

mrk, test data points correspond to corrections applied
to subsets of samples orthogonal to those used to calculate the corrections at each iteration.

3.4. Impact to Measurements of Marker Expressions

Immunofluorescence microscopy is often used to measure the expressions of multi-
ple biomarkers simultaneously. The PD1/PDL1 immunofluorescence panel used to stain
the tissue samples described in Section 2 contained stains targeting CD3, PDL1, FoxP3,
CD8, PD1, CD163, and Sox10/S100 proteins, as well as a DAPI stain targeting cellular
nuclear DNA, and a lab-developed combination (“pan-membrane”) stain targeting cel-
lular membranes. The inForm Automated Image Analysis Software (inForm® v2.4.8,
Akoya Biosciences, Marlborough, MA, USA) [20] from Akoya Biosciences was used to
“unmix” the raw, 43-layer images into new, 10-layer images depicting the normalized ex-
pressions of each marker plus a layer for autofluorescence. We then quantified the effects
of applying corrections for differences between microscopes on those measurements of
marker expressions.

The spectral unmixing process depends on “library” slides as input, which provide
measurements of individual marker responses and autofluorescence at different wavelength
ranges. We investigated three different unmixing scenarios, depicted in Figure 9.
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Figure 9. Flowcharts describing the three unmixing methods used to evaluate the impact of mi-
croscope standardization on measurements of marker expressions: (A) unmixing raw images with
the reference microscope library, (B) unmixing raw images with microscope-specific libraries, and
(C) unmixing corrected images with the reference microscope library.

First, we unmixed the raw data using a single library whose slides were imaged on
microscope 2. Then we performed a second unmixing using three different libraries whose
slides were imaged on each of the three microscopes, where raw data were unmixed using
the library from the microscope on which they were scanned. In the final scenario, we first
applied factors to standardize all images to measurements from microscope 2, and then
unmixed all of the corrected images using the single library from microscope 2.

The standardization factors applied were the means of the Cs
m and ωs

mk factors shown
in Figure S6, divided by the factors for microscope 2, so that microscope 2 data were left
unaltered and data from microscopes 1 and 3 were standardized to that single reference.
The standardization was performed by dividing each raw image by the product of the C′m
and ω′mk factors, as in Equation (17).

The three sets of unmixed images were multiplied by their binary image masks and their
average brightnesses in each layer were calculated and normalized as in Equations (1)–(4)
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above, except that the number of image layers was K′ = 10 instead of K = 43. Tissue sample-
specific normalization factors B′n and β′nk′ were calculated as in Equations (6) and (14),
respectively, and applied as in Equation (15). The resulting three sets of ψ′nmrk′ spectra, one
for each unmixing method, are shown in Figure S7 (the autofluorescence layer is omitted).
The standard deviations across all samples, microscopes, and scans of these spectra are
shown in Figure 10, along with their averages over all but the autofluorescence layer.

A

B

Figure 10. The standard deviation across all samples, microscopes, and scans as a function of the
image layer (A) and averaged over all image layers (B) for the ψ′nmrk spectra derived from uncorrected
images unmixed with the single set of microscope 2 libraries (dotted line), uncorrected images
unmixed using microscope-specific libraries (dashed line), and corrected images unmixed using
the microscope 2 libraries (solid line). The autofluorescence layer is omitted in (A) and not used to
calculate the values in (B).

The uncorrected images unmixed with the microscope 2 library showed a remaining
variation characterized by an average standard deviation of 15.84%, slightly larger than
that observed in the tissue sample-corrected yn

mrk and ψn
mrk spectra in Figures 6 and 8,

respectively. The uncorrected images unmixed with the individual microscope libraries had
an average standard deviation of 8.49%, showing that using microscope-specific libraries in
unmixing does compensate for some, but not all, systematic differences between samples
imaged on different microscopes. The microscope-corrected images unmixed using the
microscope 2 library showed an average standard deviation of 4.39%, slightly larger than
the fully corrected zn

mrk spectra in Figures 6 and 8.
The greatest reduction in the unmixed images’ microscope-specific differences was

therefore observed by standardizing the fluxes of the raw images to a single reference
microscope, and then unmixing all images using a library from that single reference
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microscope. The variations remaining in the unmixed images were slightly larger than
those remaining in the raw images; likely due to the dimension reduction from 43 to
10 image layers that is inherent to the unmixing process.

4. Discussion

The use of immune checkpoint inhibitors (ICI), has completely changed the land-
scape of treatment for patients with advanced melanoma and other tumour types [22].
Two recently published clinical trials treating naïve patients with advanced melanoma
showed a five-year overall survival (OS) > 40% in patients treated with anti-PD-1 [23,24].
Additionally, patients treated with a combination of anti-PD-1 and anti-CTLA-4 showed an
even higher median 6.5-year OS compared to patients treated with anti-PD-1 alone [25].
A pre-treatment biomarker to help predict which patients are more likely to respond to
therapy is of great interest. Currently, there are no FDA-approved companion diagnostics
to determine if patients with advanced melanoma should receive ICI [26]. Initially, a PD-L1
immunohistochemistry assay was approved as a complementary diagnostic, but this was
ultimately rescinded after levels of PD-L1 expression did not correlate with OS [27]. More
recently, a 6-plex mIF assay for predicting objective response, progression-free survival, and
OS for patients with advanced melanoma receiving anti-PD-1-based ICI was developed [9].

There are many steps involved with creating a companion diagnostic assay including,
but not limited to, demonstrating high intra- and inter-observer reproducibility of the
assay [28–30]. This includes demonstrating little variability between multiple reagent lots,
validating all instruments involved with performing the assay, and potentially creating a
“locked-down” analysis algorithm for those assays requiring image analysis. In collabo-
ration with several other groups, we have performed the initial steps for validating and
determining the reproducibility of a mIF 6-plex assay by showing a strong inter- and intra-
site concordance of both cell population densities and marker intensity measurements [15].
Some limitations of this study were that only the reproducibility of the mIF staining itself
was tested, and that only regions of interest within the mIF-stained slides were scanned and
analysed. Here, we expanded the scanned image to include the whole slide and standardize
the multispectral microscopes used to acquire the imagery.

Through the serial scanning of eight advanced melanoma FFPE mIF-stained sections
we were able to characterize systematic differences between three PhenoImager HT mi-
croscopes and showed that these differences are due to inhomogeneities in the broadband
filter cubes built into each microscope. We developed a simple correction model that shows
measurements of microscopes-specific correction factors are relatively agnostic to the spe-
cific samples used to measure them. Additional work may be needed to determine if these
factors remain agnostic when scanning is performed on tissue from other tumour types, as
there can be significant differences in staining patterns and background autofluorescence
between tumour types. The proposed correction model factors out differences in tissue area
across samples and differences between microscopes, making it possible to standardize im-
age data from multiple microscopes to the mean of all microscopes or to a single reference
microscope. By standardizing these data to a single reference microscope, we were able to
reduce microscope-dependent flux variation in raw images by 79%, and in marker expres-
sions measured in the spectrally unmixed images by 72%. Microscope-specific corrections
of this form could allow for the harmonization of mIF assay results across institutions. With
such harmonization, it may be possible to use a single set of software phenotyping projects
across all samples, which is a pre-requisite for the development of “locked-down” analysis
algorithms. More work will be needed to measure and test corrections of this form for
microscopes housed at different institutions, and any microscope-specific standardization
procedures must remain independent of other standardization steps performed to ensure
reproducibility of marker panels or other aspects of imaging. Our group is also developing
a method to standardize image data from slides stained in multiple batches, which will be
the subject of a forthcoming publication.
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These investigations imply a procedure to allow high-throughput mIF imaging using
more than one PhenoImager HT microscope. For example, if a large number of slides are
obtained all at once for imaging, several slides can be reserved for imaging on all available
microscopes to determine microscope-dependent correction factors, and the rest can be
imaged on only one microscope. HPFs from microscopes other than the chosen reference
microscope can be corrected by the measured standardization factors, and then unmixed
using only one library imaged on the reference microscope. The results presented here are
only applicable to the specific PhenoImager HT microscopes at a single academic institution.
It is expected that other PhenoImager HT systems would exhibit comparable differences
due to their own static broadband filter cubes, and that the same method of measuring and
applying corrections before spectral unmixing using multiple-imaged samples of a single
tissue type would be a reasonable method for quantifying those differences as realized
within that tissue type. Additional factors would need to be considered in developing
correction models for multispectral image data from other systems.

5. Conclusions

We have characterized the differences in tissue fluxes observed in mIF microscopy data
collected using three different multispectral microscopes at JHU. We used a basic sequential
calibration model to measure and apply sample- and microscope-specific effects on the
overall brightness and relative brightness as a function of image layer/narrow-band wave-
length. We investigated the effects of generalizing the calibration procedure to additional
data using a bootstrapping method. It was observed that an initial standard deviation in
the average tissue fluxes across all microscopes, scans, and samples of 29.85% on average
over all image layers was reduced to 13.87% after applying sample-specific corrections
accounting for differences in the tissue shown on each slide. Applying microscope-specific
corrections to orthogonal sample subsets further reduced the variation to 2.91 ± 0.03%.
Variation in marker expressions observed in corresponding spectrally unmixed images
was reduced from 15.8% to 4.4% by correcting raw images to a single reference micro-
scope before unmixing. Our findings show that mIF microscopes can be standardized
for use in clinical pathology laboratories using a relatively simple correction model that
can reduce variation between microscopes by 79% in raw images and 72% in spectrally
unmixed images.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15123109/s1, Table S1: Antibodies and staining conditions
for automated mIF assay; Table S2: Dates that each sample was scanned on the three microscopes;
Table S3: Number of HPFs generated for every scan of each sample used; Figure S1: Narrow-band
filter wavelengths contributing to each HPF image layer; Figure S2: Tnk spectra and bnk correction
factors; Figure S3: Pmk spectra and wmk correction factors; Figure S4: will

m , wBB
mk, and wNB

mk contributions
to wmk correction factors; Figure S5: Covariance matrices at each stage of correction; Figure S6: Cs

mωs
mk

bootstrapping correction factors; Figure S7: unmixing results.
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