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Simple Summary: Accurate prediction of lymph node metastasis (LNM) status in patients with
muscle-invasive bladder cancer (MIBC) before radical cystectomy can guide the use of neoadjuvant
chemotherapy and the extent of pelvic lymph node dissection. However, there are no reliable tools
available for achieving this goal. Data-driven deep-learning techniques have been widely used in
disease diagnosis, prognosis assessment, and treatment response prediction by identifying subtle
patterns in digitized histopathological images. In this study, we developed a weakly-supervised
model based on multiple instance learning and attention mechanism for predicting LNM status in
MIBC patients, demonstrating decent performance in three independent cohorts. The visualization
technique revealed that the stroma surrounding the tumor with lymphocytic inflammation seemed
to be the critical feature for predicting LNM. This deep learning-based study provides a non-invasive
and low-cost preoperative prediction tool for identifying MIBC patients with a high risk of LNM.

Abstract: Background: Accurate prediction of lymph node metastasis (LNM) status in patients with
muscle-invasive bladder cancer (MIBC) before radical cystectomy can guide the use of neoadjuvant
chemotherapy and the extent of pelvic lymph node dissection. We aimed to develop and validate
a weakly-supervised deep learning model to predict LNM status from digitized histopathological
slides in MIBC. Methods: We trained a multiple instance learning model with an attention mecha-
nism (namely SBLNP) from a cohort of 323 patients in the TCGA cohort. In parallel, we collected
corresponding clinical information to construct a logistic regression model. Subsequently, the score
predicted by the SBLNP was incorporated into the logistic regression model. In total, 417 WSIs from
139 patients in the RHWU cohort and 230 WSIs from 78 patients in the PHHC cohort were used as
independent external validation sets. Results: In the TCGA cohort, the SBLNP achieved an AUROC
of 0.811 (95% confidence interval [CI], 0.771–0.855), the clinical classifier achieved an AUROC of
0.697 (95% CI, 0.661–0.728) and the combined classifier yielded an improvement to 0.864 (95% CI,
0.827–0.906). Encouragingly, the SBLNP still maintained high performance in the RHWU cohort
and PHHC cohort, with an AUROC of 0.762 (95% CI, 0.725–0.801) and 0.746 (95% CI, 0.687–0.799),
respectively. Moreover, the interpretability of SBLNP identified stroma with lymphocytic inflamma-
tion as a key feature of predicting LNM presence. Conclusions: Our proposed weakly-supervised
deep learning model can predict the LNM status of MIBC patients from routine WSIs, demonstrating
decent generalization performance and holding promise for clinical implementation.
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1. Introduction

Bladder cancer is the most commonly diagnosed urological malignancy worldwide,
with approximately 573,278 new cases and 212,536 deaths in 2020 [1]. Based on the depth
of invasion, bladder cancer can be classified into non-muscle invasive bladder cancer
and muscle-invasive bladder cancer (MIBC) [2]. Generally, MIBC has a poorer progno-
sis and a higher recurrence rate, requiring more aggressive diagnosis and treatment [3].
Transurethral resection of bladder tumor (TURBT) with histopathological examination is
the gold standard for diagnosis and staging in clinical practice [4]. For patients diagnosed
with localized MIBC, guidelines recommend radical cystectomy (RC) and pelvic lymph
node dissection (PLND) as the standard treatment [5]. Although RC achieves negative
surgical margins in the vast majority of patients, the disease recurrence rate remains high
at approximately 50%, suggesting the presence of extravesical tumor deposits at the time
of surgical resection [6,7]. To reduce postoperative recurrence and decrease the burden of
micrometastases, cisplatin-based neoadjuvant chemotherapy (NAC) regimens have been
used for management, but the resulting systemic toxicity reactions and potentially fatal
surgical delays associated with NAC cannot be ignored [8]. Therefore, it is necessary
to identify MIBC patients who may benefit from NAC while turning to other treatment
strategies for non-responsive patients [9]. Unfortunately, there are still no reliable tools
available to achieve this goal and avoid the risks of under- or overtreatment [10].

Accurately predicting the risk of tumor spread to regional lymph nodes in MIBC is
crucial for making effective treatment decisions, such as determining the extent of PLND
and the use of NAC, as the presence of LNM is associated with disease recurrence and
significantly higher cancer-related mortality [11]. The possibility of positive lymph nodes
is typically assessed through preoperative imaging, with contrast-enhanced CT being the
mainstay of preoperative lymph node staging. However, a large proportion of patients may
have lymph node involvement that is not apparent on imaging, with a sensitivity of only
33–46% [12,13]. Traditional histopathological evaluation [14] and biomarkers [15,16] are
currently suboptimal in predicting LNM status, limited by high intra- and inter-observer
variability, and have yet to be applied in clinical practice. Thus, there is an urgent need
to find a new approach that can accurately and objectively determine the LNM status to
optimize treatment decisions for MIBC patients.

Deep learning, a technique in the field of artificial intelligence (AI) that can identify
subtle patterns in complex pathological images, has broad applications in computational
pathology [17]. In bladder cancer, AI-based methods can be used to detect histological
patterns such as malignant tumor potential [18], tumor stroma ratio [19], and tumor-
infiltrating lymphocytes [20], and have been used to predict molecular subtypes [21]
and overall survival [22,23]. In breast cancer [24], colorectal cancer [25–27], and prostate
cancer [28], deep learning has successfully predicted the LNM status from primary tumor
specimens. To our knowledge, only one study [29] has shown the potential of deep learning
to predict LNM status from digital hematoxylin and eosin (H&E)-stained slides in primary
bladder cancer. However, this study used only a single public dataset, which is susceptible
to bias and may not be applicable to clinical practice. In addition to being a potentially
clinically useful tool, interpretable deep learning should also provide quantitative evidence
for the association of histopathological features. For example, in previous studies, deep
learning has been used to identify tumor heterogeneity and vascular infiltration as negative
prognostic features for MIBC [22]. Furthermore, the time-consuming and labor-intensive
high-quality pixel-level image annotation is also a major challenge for current AI, which
seriously hinders the development of AI in pathology [30].
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Hence, in this study, we developed a weakly-supervised deep learning model to
predict LNM status from routine H&E-stained slides of primary MIBC and attempted to
identify new histopathological features. We validated the effectiveness and robustness of
the deep learning model in three independent cohorts and compared it with the logistic
regression model constructed from clinical data. Finally, we evaluated the combined
classifier consisting of deep learning and clinical data.

2. Materials and Methods
2.1. Patient Cohorts

In this multicenter study, we retrospectively collected three independent cohorts to
improve the generalization of the model for achieving clinical utility. We utilized the
publicly available cohort of patients from The Cancer Genome Atlas (TCGA), a large
international multicenter study that included patients with stage I–IV bladder cancer
from 1999 to 2013 and consisted of 457 whole slide images (WSIs) from 386 cases. In the
Renmin Hospital of Wuhan University (RHWU; Wuhan, China) cohort, we continuously
collected 548 candidate patients from 2017 to 2023 with corresponding formalin-fixed and
paraffin-embedded tumor tissue blocks (resected by surgery). Additionally, tumor tissue
blocks and clinical data from 364 candidate patients were collected from 2014 and 2022
at People’s Hospital of Hanchuan City (PHHC; Hanchuan, China). Only cases with a
definitive pathological diagnosis of MIBC, available pathological images or blocks, known
LNM status, and clinical data regarding age, gender, T stage, lymphovascular invasion,
histologic grade, and without NAC were included in all cohorts. The patient recruitment
pathway is shown in Figure 1.
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Figure 1. Description of pathways to recruit patients from the TCGA, RHWU, and PHHC cohorts.
LNM, lymph node metastasis; TCGA, The Cancer Genome Atlas; RHWU, Renmin Hospital of Wuhan
University; PHHC, People’s Hospital of Hanchuan City.

2.2. Image Preprocessing

For the RHWU and PHHC cohorts, we obtained formalin-fixed and paraffin-embedded
tumor tissue blocks from each patient and then prepared H&E-stained slides. Subsequently,
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all slides were scanned into WSIs at 20× magnification (0.5 µm per pixel) using a digital
scanner (KF-PRO-020, KFBIO Co., Ltd., Ningbo, China) and carefully reviewed by a pathol-
ogist. In principle, each patient in the RHWU and PHHC cohorts had 1 to 4 representative
WSIs, while each patient in the TCGA cohort had 1 to 9 representative WSIs. The labels for
multiple WSIs of the same patient were consistent.

Considering that the WSIs from the three cohorts have different magnifications, we uni-
formly loaded the images at 20× magnification and automatically detected the foreground
using the Otsu-based method (maximal variance between-class) to segment the tissue re-
gions. After segmentation, we used the openslide-python toolkit (https://openslide.org/,
accessed on 7 January 2023) to crop patches with a size of 448 × 448 pixels for each WSI
from within the segmented foreground while recording the coordinates of each patch and
the corresponding WSI-level information. A color thresholding method was employed
to exclude potentially mixed blank images (background pixels exceeding 80%) from all
patches. Since the WSIs from the three cohorts exhibited staining differences, we used
the structure-preserving color normalization method proposed by Vahadane [31] and
Anand [32] to reduce image heterogeneity.

2.3. Feature Extraction and Reduction

Feature extraction is an important component of recognition tasks and can be used to
predict performance and reduce computational requirements by utilizing feature selection.
We extracted 2048 relevant features for each patch using a ResNet-50 neural network [33]
with ImageNet pre-trained weights. With the emergence of novel feature selection meth-
ods, it is possible to alleviate the impact of the curse of dimensionality and facilitate the
understanding of data [34,35]. To avoid the potential overfitting, long computation time,
and heavy memory usage, we used an adaptive encoder for dimensionality reduction,
reducing the 2048 dimensions extracted from ResNet-50 to 512 dimensions. This adaptive
encoder consisted of a hidden layer architecture with 512 neurons, trained on a total of
64,600 patches (200 patches randomly selected from each WSI) over 100 epochs. After
100 epochs, the mean-squared error loss converged to 0.003.

2.4. Slide-Based Lymph Node Predictor (SBLNP)

SBLNP is an end-to-end weakly-supervised deep learning model, an advanced binary
classification network based on multiple instance learning (MIL) and attention mechanism
derived from our previously developed diagnostic and prognostic models [22].

Each WSI from three cohorts can be regarded as a bag composed of a large number
of instances, which are patches segmented from the WSI. For a positive bag, there must
be at least one instance classified as positive by MIL. In contrast, for the negative bag, all
instances must be classified as negative. Given a bag, each instance is assigned a probability
of being positive and ranked accordingly. If the bag is positive, the instances with a high
probability of being positive should be close to 1, whereas if the bag is negative, all instances
should be close to 0.

Unlike previous average- or max-pooling aggregation functions, SBLNP uses an
attention-based pooling function [36] to construct a WSI-level representation by aggregat-
ing patch-level attention scores assigned during training and inference while providing
interpretability. We adopted the binary smooth top-1 SVM loss [37] as the loss function for
SBLNP, which proved to be more robust to noise and overfitting issues than the widely
used cross-entropy classification loss. To train SBLNP, we used a five-fold cross-validation
strategy for repeated validation to prevent overfitting. The Adam optimizer with an initial
learning rate of 1 × 10−4 and `2 weight decay of 1× 10−5 was used to update the training
weights and parameters of SBLNP. The remaining hyperparameters were set to β1 of 0.9
and β2 of 0.999. We set the maximum epoch during training to 200, and when the loss of
SBLNP did not change for 20 consecutive epochs, we used early stopping to stop training
and saved the best model for internal and external validation. A simplified layout of the
SBLNP is shown in Figure 2.

https://openslide.org/
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2.5. Interpreting Predictions via Attention Heatmap

To explain the degree of attention of the SBLNP in different regions of WSI, we saved
the attention scores of all patches. These scores represented their importance to the entire
WSI and were converted to percentages, normalized, and scaled between 0 and 1. Scores
closer to 1 indicated a greater contribution to prediction, while scores closer to 0 indicated
a smaller contribution. We then used diverging colormap to convert the normalized
scores into RGB colors and mapped them to the original WSI based on the saved spatial
position information to generate an attention heatmap, with a transparency value set to
0.6 to facilitate simultaneous visualization of the underlying histological features. Red
represented the areas with high attention by the SBLNP (positive evidence), while blue
represented low attention (negative evidence).

2.6. Quantification of Histopathological Features

In addition to gaining deeper insights into the histopathological features identified
by SBLNP as predictive of LNM status through heatmap visualization, we performed
a blinded observer study with a pathologist. We randomly extracted 100 WSIs (LNM-
positive:LNM-negative = 1:1) and then selected the 15 top-scoring patches from each WSI
and aggregated them together. A total of 1500 patches were obtained from LNM-positive
and -negative cases and were reviewed by a pathologist in a blinded manner, with recorded
histological features for quantitative comparison.

2.7. Clinical Classifier and Combined Classifier (Clinical Classifier + SBLNP)

For the clinical classifier, we performed logistic regression analyses based on clinical
data of patients regarding age, gender, T stage, Lymphovascular invasion (LVI), and
histologic grade, which were available in all three cohorts. In addition, we constructed
a combined classifier encompassing the above variables and integrating SBLNP scores.
The T stage used in this study was the pathological T stage (pT stage) rather than the
clinical T stage. The datasets used for both classifiers were consistent with the training
and internal/external validation datasets of SBLNP for analysis and comparison, and a
five-fold cross-validation strategy was also carried out.

2.8. Statistical Analysis

The performance of three classifiers (Clinical classifier, SBLNP and SBLNP + Clinical
classifier) was evaluated by calculating the area under the receiver operating characteristic
(AUROC) on internal and external validation sets. The 95% confidence interval (CI) of
the internal validation set was obtained by five-fold cross-validation, while the 95% CIs
of the external validation sets were calculated from five repeated experiments. Statistical
significance was assessed using DeLong’s test [38] among the three classifiers. Categorical
variables were described as number (percentage), and continuous values were described as
the median (extremum). A two-sided p-value less than 0.05 was considered statistically
significant.

3. Results
3.1. Patient Characteristics

After the screening, we included 358 WSIs from 323 MIBC patients in the TCGA
cohort, 417 WSIs from 139 MIBC patients in the RHWU cohort, and 230 WSIs from 78
MIBC patients in the PHHC cohort. Among these, 80% of the WSIs (n = 286) from the
TCGA cohort were used as a training set for model development, and the remaining 20%
(n = 72) were used as an internal validation set. The RHWU and PHHC cohorts were
used as external validation sets to test the generalization performance of the SBLNP. The
detailed data distribution is shown in Supplementary Tables S1 and S2. Table 1 displays
the characteristics of the included patients in the three cohorts.
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Table 1. Clinical, biological, and pathological characteristics of MIBC patients included in the TCGA,
RHWU, and PHHC cohorts.

TCGA (n = 323) RHWU (n = 139) PHHC (n = 78)

Age (years) 69 (34, 90) 66 (26, 87) 70 (45, 90)
Gender

Female 88 (27.24%) 21 (15.11%) 17 (21.79%)
Male 235 (72.76%) 118 (84.89%) 61 (78.21%)

pT stage
pT2 98 (30.34%) 67 (48.20%) 30 (38.46%)
pT3 175 (54.18%) 44 (31.65%) 28 (35.90%)
pT4 50 (15.48%) 28 (20.14%) 20 (25.64%)

pM stage
pM0 146 (45.20%) 104 (74.82%) 57 (73.08%)
pM1 7 (2.17%) 35 (35.18%) 21 (26.92%)
pMx 170 (52.63%) 0 (0%) 0 (0%)

pTNM stage
Stage II 83 (25.70%) 58 (41.73%) 74 (32.18%)
Stage III 122 (37.77%) 45 (32.37%) 78 (33.91%)
Stage IV 118 (36.53%) 36 (25.90%) 78 (33.91%)

Histologic grade
High grade 303 (93.81%) 129 (92.81%) 74 (94.87%)
Low grade 18 (5.57%) 10 (7.19%) 4 (5.13%)
Missing 2 (0.62%) 0 (0%) 0 (0%)

LVI
No 104 (32.20%) 81 (58.27%) 47 (60.26%)
Yes 127 (39.32%) 58 (41.73%) 31 (39.74%)
Missing 92 (28.48%) 0 (0%) 0 (0%)

LN status
Negative (pN0) 207 (64.09%) 102 (73.38%) 53 (67.95%)
Positive (pN1-3) 116 (35.91%) 37 (26.62%) 25 (32.05%)
LNs examined number 18 (1, 170) 21 (1, 64) 16 (1, 47)
Positive LNs number 2 (1, 97) 2 (1, 20) 3 (1, 31)
Survival status

Alive 178 (55.11%) - -
Dead 145 (44.89%) - -

OS time (months) 17.4 (0, 165.6) - -
MIBC, Muscle-invasive Bladder Cancer; TCGA, The Cancer Genome Atlas; RHWU, Renmin Hospital of Wuhan
University; PHHC, People’s Hospital of Hanchuan City; LVI, Lymphovascular Invasion; LN, Lymph Node; OS,
overall survival.

3.2. Performance of the SBLNP

The SBLNP achieved an AUROC of 0.811 (95% CI, 0.771–0.855; Table 2, Figure 3) on
the internal validation set (TCGA cohort). On the external validation sets (RHWU cohort
and PHHC cohort), its predictive performance was robust as it achieved decent AUROCs
of 0.762 (95% CI, 0.725–0.801) and 0.746 (95% CI, 0.687–0.799), respectively.

Table 2. The AUROCs of clinical classifier, SBLNP, and combined classifier (Clinical + SBLNP) in
internal and external validation sets.

Model
TCGA Cohort RHWU Cohort PHHC Cohort

AUROC (95% CI) AUROC (95% CI) AUROC (95% CI)

Clinical 0.697 (0.661, 0.728) 0.657 (0.595, 0.713) 0.683 (0.537, 0.829)
SBLNP 0.811 (0.771, 0.855) 0.762 (0.725, 0.801) 0.746 (0.687, 0.799)

Clinical + SBLNP 0.864 (0.827, 0.906) 0.810 (0.780, 0.844) 0.824 (0.788, 0.861)
CI, Confidence Interval; TCGA, The Cancer Genome Atlas; RHWU, Renmin Hospital of Wuhan University;
PHHC, People’s Hospital of Hanchuan City; SBLNP, Slide-Based Lymph Node Predictor.
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3.3. Performance of the Clinical Classifier

The clinical classifier purely based on patient information yielded an AUROC of 0.811
(95% CI, 0.661–0.728; Table 2, Figure 3) on the internal validation set (TCGA cohort). In the
RHWU cohort and the PHHC cohort, the AUROCs were 0.657 (95% CI, 0.595–0.713) and
0.683 (95% CI, 0.537–0.829), respectively, and their performance was lower than that of the
SBLNP.

3.4. Performance of the Combined Classifier (Clinical Classifier + SBLNP)

We achieved the best predictive performance when we incorporated the prediction
scores from SBLNP into the logistic regression model. We calculated coefficients and
odds ratios (ORs) for each input variable in the logistic regression model to roughly
quantify the strength of the association with LNM status (Table 3). The results showed
that LVI (ORs = 1.379; p < 0.001), pT stage (ORs = 1.113; p = 0.005), and SBLNP-based
score (ORs = 2.072; p < 0.001) were significantly associated with LNM status, among which
the SBLNP achieved highest coefficient. The combined classifier yielded an AUROC of
0.864 (95% CI, 0.827–0.906; Table 2, Figure 3) on the internal validation set (TCGA cohort).
In the RHWU cohort and the PHHC cohort, the AUROCs of the combined classifier
were 0.810 (95% CI, 0.780–0.844) and 0.824 (95% CI, 0.788–0.861), which outperformed
the clinical classifier significantly (Delong’s test, p = 0.004 and p = 0.021, respectively;
Table 4). Together, the SBLNP is a strong predictor of LNM status in addition to established
clinicopathological features.

Table 3. Coefficients, p values, and odds ratios with 95% CIs for all variables of the logistic regression
model of the combined classifier (Clinical + SBLNP) in the TCGA cohort.

Characteristic Coefficient p Value Odds Ratio (95% CI)

Age 0.0034 0.120 1.003 (0.999–1.008)
Gender 0.0591 0.256 1.061 (0.958–1.175)

LVI 0.3211 <0.001 1.379 (1.252–1.518)
pT stage 0.1072 0.005 1.113 (1.033–1.199)

Histologic grade −0.0808 0.474 0.922 (0.739–1.151)
SBLNP 0.7285 <0.001 2.072 (1.694–2.535)

CI, Confidence Interval; TCGA, The Cancer Genome Atlas; LVI, Lymphovascular Invasion; SBLNP, Slide-Based
Lymph Node Predictor.
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Table 4. Performance comparisons (DeLong’s test) between clinical classifier, SBLNP, and combined
classifier (Clinical + SBLNP) in internal and external validation sets.

Comparisons TCGA Cohort RHWU Cohort PHHC Cohort

Clinical vs. SBLNP p = 0.028 p = 0.632 p = 0.703
Clinical vs. Clinical + SBLNP p = 0.001 p = 0.004 p = 0.021
SBLNP vs. Clinical + SBLNP p = 0.093 p = 0.014 p = 0.005

TCGA, The Cancer Genome Atlas; RHWU, Renmin Hospital of Wuhan University; PHHC, People’s Hospital of
Hanchuan City; SBLNP, Slide-Based Lymph Node Predictor.

3.5. Visualizing Deep Learning-Based Predictions

Next, we intended to use visualization techniques to understand how the deep
learning-based model predicted, thereby guiding pathologists to discover potentially rele-
vant recognition patterns. To achieve this goal, the SBLNP with an attention mechanism
assigned each patch an attention score, which is used to represent its contribution to the pre-
diction. We then converted the scores into a heatmap to intuitively understand the region
of interest of the model. This visualization method allowed us to identify the pathological
patterns most associated with LNM-positive or -negative status. As shown in Figure 4, for
LNM-positive WSIs, the model visually paid more attention to the stromal region around
the tumor; on the contrary, for LNM-negative WSIs, the model focused more on bladder
cancer itself. In addition, Figure 5 presented the five top-scoring patches for each of the five
LNM-positive and five LNM-negative WSIs in the TCGA cohort. Regarding LNM-positive
patches, we observed that the tissue regions yielding high prediction scores were predomi-
nantly located in the surrounding non-neoplastic tissue rather than the bladder cancer itself.
Some patches contained inflammatory cell infiltration, mainly composed of lymphocytes.
Conversely, tumor cells were dominant in patches with high LNM-negative prediction.
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3.6. Quantitative Assessment of Histopathological Features

To further confirm the above findings, we performed a quantitative study of 100 WSIs
from LNM-positive and -negative patients. The 15 top-scoring patches were obtained from
each WSI, for a total of 1500 patches, and were reviewed by a pathologist blinded to the
LNM status in advance. We found that ‘immune cells’ and ‘stroma’ were the most abundant
tissue classes in LNM-positive patients. Conversely, ‘tumor cells’ was the most abundant
tissue class in LNM-negative patients (Table 5). Surprisingly, most of the LNM-positive
patches were predominantly located in the stromal region rather than the tumor region
(ratio LNM-positive patches in stroma = 336/750), which was in complete contrast to
the LNM-negative results (ratio LNM-negative patches in stroma = 16/750, Chi-squared
test, p < 0.001). In the LNM-negative group, tumor tissue-related patches accounted
for the largest proportion (ratio LNM-negative patches in tumor = 654/750), which also
produced the contrary result to the LNM-positive group (ratio LNM-positive patches in
tumor = 45/750, Chi-squared test, p < 0.001). More precisely, features of the tumor tissue
itself do not seem to be too important in the process of predicting LNM-positive status,
while the microenvironment around the tumor may need more attention. Finally, we
performed a more fine-grained analysis of the “stroma” patches and found that in the
LNM-positive group, stroma with lymphocytic inflammation (241/336) outnumbered
those without inflammation (95/336) by more than 150%. Conversely, in the LNM-negative
group, only 16/750 patches belonged to the stroma, and these patches did not show any
inflammatory infiltration.
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Table 5. Histopathological quantitative analysis of the 1500 top-scoring patches.

Positive LNM Status Negative LNM Status

Histological Features n Patches % Patches n Patches % Patches

Tumor cells 45 6 654 87.2
Normal transitional epithelium 23 3.07 27 3.6

Muscle tissue 82 10.93 24 3.2
Adipose tissue 8 1.07 1 0.13
Immune cells 218 29.06 3 0.4

Necrotic tissue 29 3.87 18 2.4
Stroma 336 44.8 16 2.13

Out of focus 9 1.2 7 0.94

4. Discussion

The presence of LNM in MIBC patients has been shown to be associated with a poorer
prognosis, and the 5-year overall survival of LNM-positive patients is significantly lower
than that of LNM-negative patients [39–41]. Therefore, predicting the LNM status before
RC is crucial for clinical decision-making in MIBC, particularly regarding the extent of
PLND and the use of NAC [42,43]. However, the existing tools for predicting LNM status
are not satisfactory in terms of accuracy and reliability, with some patients being under
or over-staged [13,44,45]. Hence, there is an urgent need to find more tools to accurately
predict the LNM status before RC. In this study, we developed a weakly-supervised deep
learning model (SBLNP) that can predict the LNM status from digital H&E-stained images
of the primary MIBC. Our results demonstrated that SBLNP performed well with AUROC
values between 0.7 and 0.8 in three independent cohorts, showing excellent generalization
ability. In addition, the results of the clinical classifier confirmed that the LVI and pT stage
were strongly associated with the LNM status [46,47], and the combined classifier based on
SBLNP and clinicopathologic variables demonstrated satisfactory performance.

Previous studies have shown that cisplatin-based NAC can serve as first-line adjuvant
therapy for MIBC and prolong survival, with an absolute increase of 8% in the 5-year
survival [48] and from 30% to 36% in the 10-year survival [49]. In addition, the European
Association of Urology guidelines recommend NAC for MIBC patients with T2-T4a and
cN0M0 before RC [10]. However, NAC has not been widely used in clinical practice, with
only 19% of patients receiving NAC before RC [50], mainly due to a lack of response to
treatment, the potential for surgical delays, and the risks of over-staging and over-treatment.
Moreover, MIBC patients with LNM-positive may benefit from NAC, as the goal of NAC is
to target distant metastases (including LNM) rather than control the local region [49,51].

Currently, RC and bilateral PLND are the standard treatment for MIBC patients, but
the optimal extent of PLND remains controversial. Previous studies have shown that the
extent of LNM in some patients exceeds the region of the standard PLND template [52,53],
and a larger dissection area is needed to achieve better regional control and more accurate
lymph node staging [4]. Another systematic review indicated that extended PLND may
provide more therapeutic benefits than standard PLND [54]. However, the use of extended
PLND in clinical practice is limited by the increased surgical difficulty, potential surgical
risks, and complications.

In clinical practice, the identification of MIBC patients with a high risk of LNM before
RC will aid in determining an appropriate population for NAC and extended PLND. Thus,
there is an urgent need for the development of new tools for accurate prediction of LNM
status before RC to optimize clinical treatment decisions.

The use of radiomics and genomics to predict the LNM status [55–57] has been shown
to achieve good performance. However, the cohort used by these methods is single, the
amount of data is small, and the generalization performance of the model still needs to be
verified. Despite similar studies based on deep learning in breast cancer [24], colorectal
cancer [25–27], and prostate cancer [28], the small training data size, poor interpretability,
and time-consuming and labor-intensive manual annotation remain obstacles to their
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clinical application. Therefore, developing a weakly-supervised or unsupervised model
with high interpretability and generalization ability is the starting point of this study. In
this study, the integration of clinicopathologic information and SBLNP contributes to the
improvement of predictive model performance, indicating that they are not redundant
with each other. Our SBLNP model requires only H&E-stained pathology slides as input to
obtain predictions related to LNM status, which is cost-effective since such slides are readily
available in the surgical setting. Interestingly, based on the interpretability of our model,
we found that the stromal region around the tumor may contain histological information
related to the LNM status. This also reflects that previous studies may have lost important
predictive information by only training the model on the annotated tumor region. Through
quantitative analysis and blind evaluation of the 1500 top-scoring patches, we validated
the above observations. Specifically, a key predictive feature appears to be the stroma with
lymphocytic inflammation around the tumor.

To our knowledge, this is the first study that links inflammatory infiltrate in the
stroma of MIBC to the LNM status. Improved tumor microenvironment assessment and
intervention are critical to the development of effective therapies for bladder cancer [58].
Further mechanistic studies are needed to validate the predictive patterns of deep learning.
Previous studies have shown that tumor-associated inflammation in the tumor microenvi-
ronment may be related to the tumor’s biological behavior and prognosis and may serve as
a potential predictor for LNM [59,60]. Lymphocytes and monocyte-differentiated tumor-
associated macrophages are involved in the composition of the tumor microenvironment,
and their interaction can promote tumor angiogenesis and invasion [61]. In addition, a
large number of cancer-associated fibroblasts (CAFs) in the stroma affect the occurrence of
LNM. Recently, in cervical squamous cell carcinoma, CAFs were observed to promote LNM
through the destruction of the lymphatic endothelial barrier in cell-level experiments [62].
In gastric cancer, the relationship between interleukin-8, CAFs, and lymphocytes was
revealed through cell and animal experiments, explaining the possible mechanism of LNM
occurrence [63]. Therefore, further elucidation of these mechanisms may improve our
understanding of the ability of deep learning to predict LNM in MIBC.

Despite the advantages of our study, limitations exist. First, our study is retrospective
and requires larger multicenter prospective studies to further confirm its clinical value.
Second, the variables included in our clinical classifier are not comprehensive enough,
and clinical information, including tumor size, location, and tumor budding, needs to be
collected. Our combined classifier achieved the best performance; integrating pathological
features with clinical key information is another important direction. In addition, the
inclusion of LNM-positive and -negative categories in this study is unbalanced, as data
with better class balance can help improve performance. Finally, we found that a few
artifacts and out-of-focus tissues are still mixed in the training data, and future research
needs to further control the quality of the data to exclude possible interfering factors.

5. Conclusions

We developed a weakly-supervised deep learning model for predicting LNM status in
MIBC patients. In three independent cohorts, the SBLNP demonstrated decent predictive
performance. Interestingly, the SBLNP generated a new biological hypothesis, defining the
lymphocytic inflammatory stroma as a key factor for prediction, but further experimental
validation is needed. Future efforts are needed to improve SBLNP for early clinical imple-
mentation, providing precise guidance for the use of NAC and the extent of PLND in MIBC
patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15113000/s1, Table S1: Dataset distribution of patients
and corresponding images in the predictor (SBLNP). Table S2: Dataset distribution of images in the
training, internal validation, and external validation sets.
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