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Simple Summary: FLT3 gene mutations are among the most common genetic aberrations detected
in AML and occur with a frequency of approximately 30%, mainly as internal tandem duplications
(FLT3-ITD). As a novel finding, it has been reported that the specific insertion sites (IS) of FLT3-ITD
exhibit marked heterogeneity in both biological and clinical features. Thus, the so-called non-
juxtamembrane domain (non-JMD) FLT3-ITD insertions have been shown to be associated with
worse clinical outcomes and resistance to both chemotherapy and tyrosine kinase inhibition. This
present review summarizes our current knowledge of the biological and clinical impact of FLT3-ITD
inserting at the non-JMD level. Recent evidence suggests that conformational changes depending on
FLT3-ITD localization affect downstream signaling networks and the oncogenic potential. We propose
that refined risk stratification guidelines integrating the negative prognostic impact of non-JMD
FLT3-ITD are warranted. Overcoming therapy resistance in non-JMD-inserting FLT3-ITD-mutated
AML may lead to promising treatment approaches.

Abstract: Mutations of the FLT3 gene are among the most common genetic aberrations detected in
AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of
FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical
features. In contrast to the common assumption that ITD insertion sites (IS) are restricted to the
juxtamembrane domain (JMD) of FLT3, 30% of FLT3-ITD mutations insert at the non-JMD level,
thereby integrating into various segments of the tyrosine kinase subdomain 1 (TKD1). ITDs inserted
within TKD1 have been shown to be associated with inferior complete remission rates as well as
shorter relapse-free and overall survival. Furthermore, resistance to chemotherapy and tyrosine
kinase inhibition (TKI) is linked to non-JMD IS. Although FLT3-ITD mutations in general are already
recognized as a negative prognostic marker in currently used risk stratification guidelines, the even
worse prognostic impact of non-JMD-inserting FLT3-ITD has not yet been particularly considered.
Recently, the molecular and biological assessment of TKI resistance highlighted the pivotal role of
activated WEE1 kinase in non-JMD-inserting ITDs. Overcoming therapy resistance in non-JMD FLT3-
ITD-mutated AML may lead to more effective genotype- and patient-specific treatment approaches.

Keywords: acute myeloid leukemia (AML); FLT3 mutation; internal tandem duplications (FLT3-ITD);
non-juxtamembrane domain (non-JMD) insertion site; tyrosine kinase inhibition (TKI); chemotherapy
resistance
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1. Introduction

In recent decades, research on acute myeloid leukemia (AML) has increasingly focused
on genetic aberrations to identify and monitor molecular markers and their prognostic
significance [1]. These findings became an integral part of the classification and risk
assessment of myeloid neoplasms and are of indispensable importance to current strategies
for the diagnosis and treatment of AML patients. Among the first molecular markers
identified were internal tandem duplications (ITDs) in the gene encoding fms-like tyrosine
kinase-3 (FLT3). The receptor tyrosine kinase FLT3 is composed of an extracellular module
with five immunoglobulin-like domains, a transmembrane domain, and an intracellular
module consisting of a juxtamembrane domain (JMD) and two tyrosine kinase subdomains
(TKD1 and TKD2) connected by a kinase insert domain (Figure 1) [2]. In 1996, Nakao
et al. detected in-frame ITDs of varying lengths in the JMD of the FLT3 gene in a small
cohort of AML patients [3]. ITDs were shown to vary in length from three base pairs
(bp) to more than 400 bp, expected to result in a functional protein due to their in-frame
nature [4]. Furthermore, a more C-terminal-located insertion site (IS) has been shown
to be associated with higher ITD lengths [5–7]. Different FLT3-ITD mutations may be
present in one patient or may arise or change during the disease process [8,9]. FLT3 gene
mutations occur with a frequency of about 25–30% in AML [10,11], the vast majority as ITDs
with varying IS (FLT3-ITD) or as tyrosine kinase domain (TKD) point mutations in about
5% (FLT3-TKD). FLT3-TKD point mutations most commonly result in the substitution of
aspartic acid at amino acid position 835, referred to as D835 mutation, at the TKD2 level [12].
Thus, mutations affecting FLT3 are among the most common genetic aberrations detected
in AML.
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Re-examining the common assumption that ITDs exclusively occur in the JMD of
FLT3, Breitenbuecher et al. detected ITDs inserted at the non-JMD level in approximately
30% of FLT3-ITD-mutated AML patients [13]. Non-JMD FLT3-ITD has been shown to be
associated with inferior rates of complete remission (CR), shorter relapse-free survival
(RFS), and shorter overall survival (OS) [5,14,15]. Moreover, non-JMD-inserting FLT3-ITD
is also associated with resistance to chemotherapy and tyrosine kinase inhibitors (TKI). This
present review addresses the biological and clinical impact of FLT3-ITD with non-JMD IS.
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Furthermore, we illustrate their high-risk phenotype, the heterogeneity of clinical response,
and the current knowledge of the underlying biology. This review aims to highlight the
pivotal role of non-JMD FLT3-ITD as an independent adverse prognostic factor and to
emphasize its diagnostic and therapeutic importance. Queries performed for the selection
of references in accordance with the corresponding sections are listed in Table 1.

Table 1. Overview of queries performed for the selection of references in accordance with the
corresponding sections.

Query Section

AML and FLT3-ITD (PubMed, last 5 years)
Introduction (Section 1)

Signaling of FLT3 and FLT3-ITD (Section 2)
FLT3 Tyrosine Kinase Inhibition (Section 3)

AML, FLT3-ITD, and Risk-Stratification (PubMed, last 5 years);
AML, FLT3-ITD, and Prognostic Impact (PubMed, last 5 years)

Prognostic Impact of FLT3-ITD Mutations and Current Risk
Stratification (Section 4)

AML, FLT3-ITD, and Insertion Site (PubMed);
AML, FLT3-ITD, and TKD1 Mutation (PubMed)

Non-JMD ITDs Confer a High-Risk Phenotype in
FLT3-ITD-Mutated AML (Section 5.1)

AML, FLT3-ITD, and RATIFY trial (PubMed);
AML, FLT3-ITD, and TKD1 Mutation (PubMed)

Heterogeneity of TKI Response Depending on FLT3-ITD
Insertion Sites—Preclinical and Clinical Studies (Section 5.2)

AML, FLT3-ITD, Signaling, and Domain (PubMed, last 5 years) Characterizing the Molecular Basis of Chemotherapy and TKI
Resistance in Non-JMD FLT3-ITD Insertion Sites (Section 5.3)

AML, FLT3-ITD, Chemotherapy Resistance, and Cytarabine
(PubMed)

Heterogeneity of Chemotherapy Response Depending on
FLT3-ITD Insertion Sites (Section 5.4)

2. Signaling of FLT3 and FLT3-ITD

FLT3 is a membrane-bound, ligand-activated class III receptor tyrosine kinase that
is physiologically expressed on hematopoietic stem and progenitor cells of both the lym-
phoid and myeloid lineage [16]. Conformational changes following FLT3 ligand (FLT3L)
binding result in receptor dimerization, autophosphorylation, and activation of down-
stream signaling pathways, including signal transducer and activator of transcription 5
(STAT5), phosphatidylinositol 3-kinase (PI3K)/AKT, and mitogen-activated protein ki-
nase/extracellular signal-regulated kinase (MAPK/ERK) [17–20]. In the absence of external
ligands, FLT3 assumes an inactive and autoinhibited conformation that is maintained by the
JMD. In AML, the presence of ITDs structurally interferes with the JMD-mediated autoinhi-
bition, allowing FLT3 to maintain or switch to its active conformation even in the absence of
FLT3L binding [21]. Consistent with the physiological functions of FLT3 in cell proliferation,
differentiation, and survival [16], FLT3-ITD mutations result in constitutive activation that
provides biological advantages in AML [22]. Compared with FLT3-ITD, FLT3 wild-type and
FLT3-TKD point mutations show only weak phosphorylation of STAT5 and thus weak acti-
vation of STAT5-dependent target genes [23,24]. FLT3-ITD-associated activation of STAT5
leads to growth-factor-independent proliferation, upregulation of reactive oxygen species
(ROS)-formation, and ROS-dependent DNA damage [25–28]. Stronger phosphorylation sig-
nals were found in FLT3-ITD-mutated AML patients with higher ITD lengths [29]. Aberrant
cell-death signaling through receptor-interacting serine/threonine-protein kinase 1 (RIPK1)
and upregulation of anti-apoptotic myeloid cell leukemia-1 (MCL-1), aberrant cell-cycle
regulation, among others through CDC25A and CDC25C, and aberrant oncogenic signal-
ing through phosphorylation of cytokine receptor common subunit beta (CSF2RB) were
detected in FLT3-ITD-mutated cells [30–35]. Furthermore, FLT3-ITD mediates metabolic
effects leading to the upregulation of aerobic glycolysis and cell-extrinsic effects by affecting
dendritic cells and T cells [36,37].

3. FLT3 Tyrosine Kinase Inhibition

Following the detection of FLT3 and especially FLT3-ITD as a molecular marker in
AML, larger cohorts of AML patients were studied to determine its prognostic value, and
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first efforts were made to establish a specific and targeted therapy against FLT3. In accor-
dance with these studies, the occurrence of FLT3-ITD is associated with leukocytosis, a high
percentage of peripheral blood and bone marrow blast cells, an increased relapse risk (RR)
along with reduced RFS, and worse OS [9,10,38–42]. To date, the United States Food and
Drug Administration (FDA) approved two tyrosine kinase inhibitors (TKIs): Midostaurin
as first-line treatment in combination with cytarabine and daunorubicin in FLT3-mutated
AML [43–45], and gilteritinib as single-agent therapy in relapsed or refractory AML with
FLT3 gene mutations [46,47]. Although studies have also shown survival benefits for
sorafenib [48] and quizartinib [49,50], these TKIs have not yet been approved for use in
FLT3-mutated AML patients. Midostaurin and gilteritinib bind to the adenosine triphos-
phate (ATP)-binding site of FLT3 in an activated conformational state and are designated
as type I inhibitors along with others, including sunitinib and crenolanib. Type II inhibitors
such as sorafenib, ponatinib, and quizartinib bind to the ATP-binding site and to a region
adjacent to it and only in an inactivated conformational state of FLT3 [51–53]. In addition
to these different mechanisms of interaction with the FLT3 receptor, first-generation (in-
cluding midostaurin and sorafenib) and next-generation TKIs (including gilteritinib and
quizartinib) are distinguished depending on the specificity of FLT3 bind-ing and off-target
effects. Besides binding to FLT3, first-generation TKIs also bind to other kinases result-
ing in higher off-target effects and toxicity, whereas next-generation TKIs inhibit FLT3
more specifically and more potently. Response to TKI may be compromised by primary
inherent or secondary acquired resistance mechanisms, up to and including treatment
failure [54,55]. For the latter, incomplete elimination of FLT3-mutated cells after first-line
treatment may be of particular importance. In vitro, Ba/F3 cells retrovirally transduced
with different FLT3 mutations showed differential sensitivity to the TKI tandutinib [56].
Furthermore, clonal heterogeneity, compensatory survival signaling pathways, acquisition
of additional genetic alterations within the FLT3 gene, as well as increased stimulation
from overexpression of FLT3L and FLT3 itself contribute to resistance and subsequently
decreased TKI impact or chemotherapy susceptibility [55,57–63]. Cytokine-mediated effects
by granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and
others also contribute to therapy resistance of FLT3-ITD-mutated AML [64].

4. Prognostic Impact of FLT3-ITD Mutations and Current Risk Stratification

ITDs were shown to vary in length from 3 bp to more than 400 bp [5]. The prognostic
impact of ITD length in FLT3-ITD-mutated AML has been controversial, with studies
showing either significantly worse CR rates and OS with increasing ITD lengths [65],
better outcomes with increasing ITD lengths [66], or even no differences [10,67]. Recently,
a systematic review and meta-analysis showed that longer ITD lengths are associated
with a moderately but significantly increased hazard ratio for death [68]. The negative
prognostic value of FLT3-ITD mutations was already recognized in the early 2000s and
described by Abu-Duhier et al. and Kottaridis et al., among others [39,69]. In 2002, Thiede
et al. identified a high FLT3-ITD mutant-to-wild-type ratio > 0.78 to be associated with a
shorter OS as an independent prognostic factor in AML [40]. Another study of 579 FLT3-
ITD-mutated AML patients revealed that an FLT3-ITD allelic ratio > 0.5 was associated
with worse CR rates and shorter OS, and an FLT3-ITD allelic ratio > 0.8 related to worse
RFS [70]. In a small cohort of 118 patients with FLT3-ITD-mutated AML studied by
Jentzsch et al., a high FLT3-ITD allelic ratio was consistent with a higher proportion of
blast cells in the bone marrow and peripheral blood at diagnosis [71]. Beyond inferior RR
and OS with increasing FLT3-ITD mutant burden, Gale et al. highlighted the beneficial
impact of a concomitant NPM1 mutation [10]. In the 2017 European LeukemiaNet (ELN)
assessment of molecular cytogenetic risk groups in AML, FLT3-ITD was implicated in
risk stratification depending on its allelic ratio and the NPM1 mutation status [72–74].
A high FLT3-ITD mutant-to-wild-type ratio > 0.5 with a concomitant NPM1 mutation
was associated with an intermediate risk, and the co-occurrence with wild-type NPM1
was related to unfavorable risk. Currently, the updated 2022 ELN risk classification no
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longer considers the FLT3-ITD allelic ratio [75,76]. In the absence of adverse-risk genetic
lesions listed in Table 2, the presence of FLT3-ITD is associated with intermediate risk
irrespective of a concurrent NPM1 mutation. Mutated NPM1 is considered a favorable risk
only in the absence of an FLT3-ITD mutation. The differences in the 2017 and 2022 ELN risk
classifications are depicted in Table 2, highlighting the genetic markers used, including FLT3
gene mutations. According to the meanwhile revised 2017 National Comprehensive Cancer
Network (NCCN) guidelines, FLT3-ITD-mutated AML, even with normal cytogenetics,
is linked with a poor risk [53,77]. Thus, both the ELN and NCCN guidelines emphasize
FLT3-ITD as a negative prognostic marker and the importance of analyzing FLT3 mutations
within AML diagnostics. A Japanese multicentric prospective observational cohort study
(Hokkaido Leukemia Net) recently demonstrated the inferior OS of FLT3-ITD-mutated
AML patients compared to FLT3-mutation negative patients and highlighted FLT3-ITD as
an independent poor prognostic factor [42]. In addition to its diagnostic significance, the
determination of the FLT3 mutation status and the assessment of the genetic landscape
beyond are crucial for subsequent therapeutic decisions [78,79].

Table 2. Acute myeloid leukemia (AML) 2017 European LeukemiaNet (ELN) and 2022 ELN risk
classification by genetics at initial diagnosis (shortened version) [72,75]. Genetic markers, including
FLT3, are highlighted with bold.

Risk Category 2017 ELN [72], Genetic Abnormality 2022 ELN [75], Genetic Abnormality

Favorable

- t(8;21)(q22;q22.1)/RUNX1-RUNX1T1
- inv(16)(p13.1;q22) or

t(16;16)(p13.1;q22)/CBFB-MYH1
- Mutated NPM1 without FLT3-ITD or with

FLT3-ITDlow (<0.5)
- Biallelic mutated CEBPA

- t(8;21)(q22;q22.1)/RUNX1::RUNX1T1
- inv(16)(p13.1;q22) or

t(16;16)(p13.1;q22)/CBFB::MYH1
- Mutated NPM1 without FLT3-ITD
- bZIP in-frame mutated CEBPA

Intermediate

- Mutated NPM1 and FLT3-ITDhigh (≥0.5)
- Wild-type NPM1 without FLT3-ITD or with

FLT3-ITDlow (<0.5) (without ad verse-risk
genetic lesions)

- t(9;11)(p21.3;q23.3);MLLT3-KMT2A
- Cytogenetic abnormalities not classified as

favorable or adverse

- Mutated NPM1 with FLT3-ITD
- Wild-type NPM1 with FLT3-ITD (without

adverse-risk genetic lesions)
- t(9;11)(p21.3;q23.3)/MLLT3::KMT2A
- Cytogenetic and/or molecular abnormalties

not classified as favorable or adverse

Adverse

- t(6;9)(p23;q34.1)/DEK-NUP214
- t(v;11q23.3)/KMT2A-rearranged
- t(9;22)(q34.1;q11.2)/BCR-ABL1
- inv(3)(q21.3;q26.2) or

t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1)
- −5 or del(5q); −7; −17/abn(17p)
- Complex karyotype, monosomal karyotype
- Wild-type NPM1 and FLT3-ITDhigh (≥0.5)
- Mutated RUNX1
- Mutated ASXL1
- Mutated TP53

- t(6;9)(p23.3;q34.1)/DEK::NUP214
- t(v;11q23.3)/KMT2A-rearranged
- t(9;22)(q34.1;q11.2)/BCR::ABL1
- t(8;16)(p11.2;p13.3)/ KAT6A::CREBBP
- inv(3)(q21.3;q26.2) or

t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1)
- t(3q26.2;v)/MECOM(EVI1)-rearranged
- −5 or del(5q); −7; −17/abn(17p)
- Complex karyotype, monosomal karyotype
- Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1,

SRSF2, STAG2, U2AF1, and/or ZRSR2
- Mutated TP53

5. Biological and Clinical Consequences of FLT3-ITD Insertion Site Heterogeneity
5.1. Non-JMD ITDs Confer a High-Risk Phenotype in FLT3-ITD-Mutated AML

Unexpectedly, the investigation of ITD IS in 753 patients with unselected FLT3-ITD-
positive AML showed that about 30% of ITDs display IS at the non-JMD level of FLT3,
particularly within the β1-sheet of TKD1 [8,13]. ITDs were rarely identified within the
nucleotide binding loop or the β2-sheet. This observation was confirmed by subsequent
studies of ITD IS in large cohorts of AML patients [5,8]. The location of ITD IS with respect
to the structural domains of the FLT3 receptor is highlighted in Figure 1.
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Later on, additional independent studies confirmed that about 30% of FLT3-ITD
mutations insert at non-JMD sites [5,7,14,80]. Schnittger et al. described a less favorable
outcome in AML patients harboring FLT3-ITD mutations with more C-terminally located
mutational start or end sites, thus including TKD1 [8]. Independent of the karyotype, a
poorer median OS was observed in patients with more C-terminally located FLT3-ITD
mutational start points [8]. In a multivariable analysis of a cohort of 241 younger adult
patients aged 18–60 years with FLT3-ITD-mutated AML, a non-JMD FLT3-ITD located in
the β1-sheet of the TKD1 was shown to be an unfavorable prognostic factor for achieving
CR after induction therapy as well as for RFS and OS after allogeneic hematopoietic stem
cell transplantation (HSCT) [5]. In a Chinese study from Liu et al. of 154 adult patients aged
18–65 years with FLT3-ITD-mutated AML, non-JMD ITDs, particularly within the β1-sheet
of the TKD1, were associated with overall worse RFS at six months and OS at three years.
All patients received standard induction and consolidation treatment; however, the impact
of different postinduction therapies was not taken into account [7]. According to Schlenk
et al., the unfavorable prognostic impact of non-JMD-inserting ITDs is independent of
postinduction treatment after the first CR [14]. In 231 FLT3-ITD-mutated AML patients
receiving postinduction therapy with either chemotherapy and autologous or allogeneic
HSCT, a trend toward a higher cumulative incidence of relapse (CIR) for ITDs at the TKD1
level was described. Besides a high FLT3-ITD mutant-to-wild-type ratio > 0.51, FLT3-ITD
IS at the TKD1 level was overall associated with worse CR rates, RFS, and OS. Interestingly,
prognostic favorable effects of a concomitant NPM1 mutation on achieving CR were related
only to JMD-inserting ITDs [14].

In summary, a large body of evidence highlighted the negative prognostic impact
of FLT3-ITD mutations inserted at non-JMD sites in various AML patient cohorts and
at different times of treatment. Thus, in addition to the negative prognostic impact of
an FLT3-ITD mutation on CR rates, OS, and RFS already acknowledged within current
risk stratifications, ITDs inserted at the non-JMD level are associated with an even worse
high-risk prognostic phenotype in FLT3-ITD-mutated AML.

5.2. Heterogeneity of TKI Response Depending on FLT3-ITD Insertion Sites—Preclinical and
Clinical Studies

Interestingly, in vitro and in vivo preclinical models showed heterogeneous effects
on TKI treatment depending on the particular localization of FLT3-ITD IS [26]. Arreba-
Tutusaus et al. analyzed the in vitro response to midostaurin and quizartinib treatment
of 32D and Ba/F3 cells transduced with constructs of FLT3-ITD exhibiting different IS.
Compared to JMD ITDs, non-JMD ITDs inserted at the TKD1 level displayed lower sensi-
tivity to midostaurin and quizartinib [26]. Similar results were obtained by Massacci et al.:
Ba/F3 cells carrying FLT3-ITD with non-JMD IS were less susceptible to TKI treatment
with midostaurin, quizartinib, and gilteritinib [15]. Furthermore, Arreba-Tutusaus et al. de-
veloped a retroviral transduction model in which two FLT3-ITD-mutated cell populations
with ITD IS at the JMD and TKD1 level, respectively, were transplanted into irradiated
recipient mice. In response to midostaurin as single-agent therapy for 10 days, a significant
reduction of FLT3-ITD-mutated cells was observed only in the cell population exhibiting a
JMD FLT3-ITD mutation, whereas non-JMD TKD1 inserting FLT3-ITD-mutated 32D cells
remained largely unaffected [26]. Analyzing leukemic blast cells of an AML patient with
an FLT3-ITD mutation and primary resistance to midostaurin, Breitenbuecher et al. identi-
fied the non-JMD-inserting FLT3-ITD variant A627E. TKI resistance to midostaurin was
also demonstrated in vitro using hematopoietic 32D cells transfected with the FLT3-ITD
A627E variant. In a syngeneic mouse model, injection of 32D cells with ITDs integrating
between codons 598 and 599 or within a non-JMD IS (A627E) induced a lethal hematopoi-
etic disease [81]. In summary, various preclinical in vitro and in vivo models showed TKI
resistance in FLT3-ITD-mutated AML displaying non-JMD ITD IS.

The prospective randomized, placebo-controlled phase III CALGB 10603/RATIFY
trial (NCT00651261) investigated the therapeutic benefit of midostaurin as a multi-targeted
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kinase inhibitor in combination with standard chemotherapy with cytarabine and daunoru-
bicin in patients with newly diagnosed FLT3-mutated AML [44]. A previously conducted
phase Ib study on a small number of overall 69 AML patients showed an improvement in CR
rates in FLT3-ITD-mutated AML when midostaurin was added to standard chemotherapy,
indicating promising therapeutic effects of TKI [82]. A total of 717 patients were random-
ized in the phase III CALGB 10603/RATIFY trial, which evaluated midostaurin treatment
(360 patients) versus placebo (357 patients). In the group of midostaurin treatment, OS
and event-free survival were significantly longer [43]. Thus, in 2017, the FDA approved
midostaurin for the treatment of FLT3-mutated AML. A study by the German–Austrian
AML Study Group showed improved event-free survival with midostaurin treatment in
FLT3-ITD-positive AML patients aged 18–70 years [83]. In 2021, Rücker et al. performed
an exploratory post hoc analysis of the CALGB 10603/RATIFY trial aiming to assess the
molecular landscape of FLT3-ITD-mutated AML and to determine the prognostic impact
of ITD IS in a total of 555 AML patients carrying FLT3-ITD [84]. Depending on ITD lo-
calization at either JMD or TKD1 level alone or with IS in both domains, three molecular
subgroups were distinguished. In line with previous findings, non-JMD ITDs occurred in
about 30% of FLT3-ITD-mutated AML patients [5,7,13,14,80]. By means of Cox regression,
a multivariate analysis of OS revealed ITDs at the TKD1-sole level as a negative prognostic
factor. Thus, FLT3-ITD-mutated AML patients with ITD IS in TKD1-sole had a significantly
inferior 4-year OS compared with JMD-sole or JMD/TKD1 (p = 0.032). The 4-year OS rates
were 29%, 44%, and 50%, respectively. In addition, there was a higher 4-year CIR in patients
with ITD insertions in TKD1-sole compared to JMD-sole (60% vs. 45%). The rate of CR
achievement was independent of FLT3-ITD IS [84]. Multivariate analysis for OS identified
TKD1-sole IS, higher leukocyte counts, and older age as significant unfavorable factors [84].
The second most important clinical finding was that the beneficial effect of midostaurin
on OS and CIR was restricted to the JMD-sole subgroup only. Thus, the 4-year rates for
OS of patients on midostaurin or placebo were 48% vs. 40% (p = 0.047) for JMD-sole. The
negative prognostic impact of FLT3-ITD inserting at the TKD1 level was not reversible via
midostaurin treatment [84]. This finding is in line with the above-mentioned preclinical
data showing resistance to midostaurin and other FLT3-TKIs in cells exhibiting ITDs with
TKD1 IS [15,26]. Next-generation sequencing (NGS-cAR) was performed in the study by
Rücker et al. to investigate the relationship between ITD IS and patient outcomes. NGS
has been shown to be able to resolve clonal heterogeneity and sequence variability in the
assessment of FLT3-ITD-mutated AML [85–88]; however, the ELN recommends using
capillary electrophoresis for better determination of longer ITDs [75]. Another analysis of a
small cohort of 54 FLT3-ITD-mutated AML patients treated with midostaurin revealed a
comparable distribution of JMD and non-JMD ITDs at diagnosis and disease progression.
Furthermore, the distribution of FLT3-ITD IS was similar regardless of the persistence or
loss of FLT3-ITD at progression [89].

5.3. Characterizing the Molecular Basis of Chemotherapy and TKI Resistance in Non-JMD
FLT3-ITD Insertion Sites

Regarding FLT3-ITD-mediated oncogenic signaling pathways, Fleischmann et al.
investigated the susceptibility of various ITD IS at either the JMD or TKD1 level to inhibition
of N-glycosylation using tunicamycin, heat shock protein 90 (HSP90) using 17-AAG, or
histone deacetylation using valproic acid. After treatment with tunicamycin and incubation
with 17-AAG, Annexin V-negative cells were significantly decreased regardless of ITD IS.
However, Ba/F3 cells that harbor the FLT3-ITD variant G613E inserted at the TKD1 level
showed higher sensitivity to 17-AAG. Within the Ba/F3 G613E variant, expression of ERK
and STAT5 was decreased upon valproic acid treatment [90]. Various FLT3-ITD-mutated
Ba/F3 cell lines transfected with concurrent point mutations of the TKD (F691L, Y842C,
and D835V) have been shown to be resistant to quizartinib but more susceptible to HSP90
inhibition compared to quizartinib-sensitive cells [91]. Similar results were obtained in a
32D cell transfection model: Inhibition of HSP90 resulted in the degradation of FLT3-ITD
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mutated 32D cells with concurrent TKD point mutations associated with secondary drug
resistance to FLT3-TKIs [92].

Upregulation of MCL-1 has been shown in different cell lines with varying FLT3-
ITD IS at the JMD (MOLM-13, MV4-11) or TKD1 level (32D, A627E variant) compared to
FLT3 wildtype (RS4-11) [33]. Upregulated MCL-1 at the protein level was also detected
in a cytarabine-resistant cell line MV4-11-R harboring the FLT3-ITD mutation at the JMD
level [93]. In the FLT3-ITD variant A627E inserting at the TKD1 level, Breitenbuecher
et al. described upregulation of anti-apoptotic MCL-1 and showed sustained activation of
ERK1/2 despite midostaurin-mediated inhibition of FLT3. However, inhibition of ERK1/2
in addition to midostaurin resulted only in a small increase in apoptosis in cells with TKD1-
inserting ITDs without suppressing the MCL-1 level. Interestingly, decreasing the MCL-1
level using MCL-1-specific small interfering ribonucleic acid (siRNA) restored susceptibility
to midostaurin [81]. Suppression of MCL-1 with flavopiridol induced apoptosis in a non-
JMD FLT3-ITD expressing 32D cell line with an A627E mutation [33]. Thus, MCL-1 may
serve as a promising target protein to overcome chemotherapy resistance [94]. Current
preclinical studies of MCL-1 inhibition or downregulation of MCL-1 via inhibiting B-cell
lymphoma 2 (Bcl-2) in FLT3-ITD-mutated AML are promising. However, due to the
sole use of cell lines with a JMD-inserting FLT3-ITD mutation (MOLM-13, MV4-11), the
discrimination of different ITD IS is lacking [95,96].

Massacci et al. examined mechanisms of TKI resistance in FLT3-ITD-mutated AML
by combining high-sensitive transcriptome, phosphoproteome, and proteome analysis
with literature-derived signaling networks using the SignalingProfiler computational mod-
ule [15]. For this purpose, Ba/F3 cell lines reliably expressing FLT3-ITD with IS either at
JMD or TKD1 level were treated using a panel of FLT3-TKIs. Phosphoproteome profiles
enabled a clear stratification between FLT3 activation status and ITDs IS. The SignalingPro-
filer computational module predicted the active state of the WEE1 kinase and its opposite
regulation in the Ba/F3 cell line with TKD1-ITDs. Cyclin-dependent kinase (CDK) 1 has
been shown to be regulated by FLT3 involving WEE1 and to be a key upstream regulator
of pro- and anti-apoptotic proteins. Activation of pro-survival proteins such as MCL-1
and Bcl-2 as well as an inhibitory interaction between WEE1 and CDK1 were specifically
associated with ITD IS at the TKD1 level. Only in the Ba/F3 cells expressing JMD-ITDs,
midostaurin-mediated cell-cycle arrest in the G1 phase resulted in a significant decrease in
proliferation with a higher sensitivity to induce apoptosis. However, only in the Ba/F3 cell
line harboring JMD-inserting ITDs, proteins involved in apoptosis were hyperphosphory-
lated after quizartinib treatment. WEE1-mediated protection against midostaurin-mediated
cell-cycle arrest in cells expressing TKD1-ITDs could be overcome in the Ba/F3 cell line
model and blast cells isolated from AML patients by selectively inhibiting WEE1. In un-
treated Ba/F3 cells harboring FLT3-ITD exhibiting a TKD1 IS, Pugliese et al. detected
increased ROS accumulation and increased extent of deoxyribonucleic acid (DNA) damage
as assessed by γ-H2AX compared with JMD ITDs [97]. The histone protein γ-H2AX is a
sensitive marker for DNA double-strand breaks. Following irradiation with overall 3 Gray
(Gy), 32D cells with TKD1-ITDs revealed fewer foci of γ-H2AX compared to JMD-inserting
ITDs, indicating more effective DNA damage repair in these cells [26].

In conclusion, the current body of evidence supports the view that distinct conforma-
tional changes in the FLT3 receptor mediated by JMD- versus TKD1-inserting ITDs lead to
differences in phosphorylation patterns of FLT3 downstream signaling molecules, which in
turn alter the response to therapeutic agents [15,97,98]. It has been recently suggested that
the ITD-induced conformational change of the FLT3 receptor favors atypical interaction
with CSF2RB resulting in phosphorylation and activation of CSF2RB in FLT3-ITD-mutated
cells [30]. Subsequent conformational and protein structure changes mediated by FLT3-
ITD possibly alter the interaction between FLT3 and TKIs, leading to TKI resistance. For
various FLT3-TKD point mutations (D835), it was demonstrated how major changes in
FLT3 geometry alter the binding of TKIs [99,100]. Structural alterations may then lead to
ineffective inhibition of FLT3 autophosphorylation by TKIs [101]. Furthermore, differences
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in phosphorylation of FLT3 downstream signaling molecules possibly alter their oncogenic
potential. In Figure 2, oncogenic signaling networks in FLT3-ITD-mutated AML within
ITDs inserted at non-JMD sites are illustrated.
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5.4. Heterogeneity of Chemotherapy Response Depending on FLT3-ITD Insertion Sites

In first-line therapy, cytarabine is the backbone in the induction and consolidation
therapy of AML patients, except in acute promyelocytic leukemia (APL) [75,102,103].
Following its approval, the combination of midostaurin with induction or consolidation
chemotherapy became the standard of care in FLT3-ITD-mutated AML. Prior to the era of
TKIs, Kayser et al. investigated the impact of ITD IS on chemotherapy response and survival.
FLT3-ITD inserting at the TKD1 level, more specifically within the β1-sheet of TKD1,
was associated with a worse CR rate after induction therapy, indicating chemotherapy
resistance [5].

Pugliese et al. comprehensively examined the response to cytarabine depending
on the ITD IS in vitro. The Ba/F3 and 32D cell lines, harboring FLT3-ITD either at the
JMD or TKD1 level, were treated with cytarabine [97]. Cell lines harboring FLT3-ITD IS
within TKD1 showed equally reduced sensitivity to cytarabine compared to ITDs inserted
at the JMD level. In vitro cytarabine treatment resulted in less accumulation of DNA
damage in FLT3-ITD-mutated Ba/F3 cells with ITDs within the TKD1. The levels of
DNA damage response and DNA repair following cytarabine treatment were shown to be
similarly independent of ITD IS. Cytarabine had a positive effect on cell-cycle and mitosis
processes leading to the upregulation of cell-cycle kinases in Ba/F3 cells with FLT3-ITD
inserted at the TKD1. When the SignalingProfiler computational module was applied to
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mass spectrometry (MS)-based phosphoproteomics performed in FLT3-ITD-mutated Ba/F3
cells, the authors found that cytarabine responsiveness is associated with the deregulation
of the CDK2-CDK7 pathway and the subsequent accumulation of cells in the S phase.
Deregulation of the CDK2-CDK7 pathway was in line with increased expression of CDK2
and cyclin H, as well as cell-cycle progression by activating CDK7/cyclin H. Furthermore,
pharmacological suppression of CDK7 synergistically acted with cytarabine, restoring the
sensitivity of Ba/F3 cells exhibiting FLT3-ITD IS at the TKD1 level [97]. Along this line, blast
cells isolated from FLT3-ITD-mutated AML patients with TKD1 IS were less susceptible to
cytarabine. Interestingly, AML blast cells expressing FLT3-ITD insertions both at JMD and
TKD1 appeared more sensitive to cytarabine treatment, suggesting a dominant effect of
the JMD IS of FLT3-ITD in chemotherapy response [97]. In Table 3, promising targets and
compounds of therapeutic approaches to overcome resistance to chemotherapy and TKIs
in non-JMD-inserting FLT3-ITD are illustrated.

Table 3. Overview of promising targets and compounds of therapeutic approaches to overcome
resistance to chemotherapy and tyrosine kinase inhibitors in non-JMD-inserting FLT3-ITD. The list
makes no claim of completeness.

Target Compound Combination Model Reference

CDK7 THZ1 Cytarabine Preclinical (Ba/F3 cells,
patient-derived blast cells) Pugliese et al. [97]

HSP90 17-AAG Tunicamycin Preclinical (Ba/F3 cells) Fleischmann et al. [90]

MCL-1
MCL-1-specific siRNA Midostaurin Preclinical (32D cells) Breitenbuecher et al. [81]

Flavopiridol ABT-737 Preclinical (32D cells) Kasper et al. [33]

WEE-1 Adavosertib (MK1775) Midostaurin Preclinical (Ba/F3 cells,
patient-derived blast cells) Massacci et al. [15]

6. Conclusions

Following the discovery of FLT3-ITD mutations as molecular markers in AML patients,
their prognostic value was recognized and integrated into risk stratification guidelines for
AML used to date. Non-JMD-inserting FLT3-ITD are associated with inferior CR rates, PFS,
and OS. In vitro and in vivo analyses revealed inferior susceptibility to TKI treatment and
chemotherapy in AML expressing FLT3-ITD with IS at the TKD1 level. However, despite
marked differences in survival and therapy resistance depending on ITD IS, previous risk
stratifications do not consider the crucial role of non-JMD ITDs. Furthermore, current
studies often do not distinguish between JMD- and non-JMD-inserting FLT3-ITD, limiting
data density. To our knowledge, the expression of FLT3-ITD in relation to different ITD IS
has also not been examined in pediatric cohorts. We propose recognizing non-JMD ITDs
as an independent adverse prognostic factor. Thus, refined risk stratification guidelines
highlighting the prognostic differences between JMD and non-JMD IS in FLT3-ITD-mutated
AML are needed. Due to its considerable prognostic and therapeutic importance, the
determination of FLT3-ITD IS should be a mandatory part of the daily diagnostic routine in
AML. Overcoming TKI and chemotherapy resistance in FLT3-ITD-mutated AML, especially
associated with ITDs inserted at the non-JMD level, could lead to promising genotype- and
patient-specific treatment approaches.
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