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Simple Summary: Ulcerative colitis, a form of inflammatory bowel disease, is a major risk factor
for developing colorectal cancer. Patients with ulcerative colitis often present with low serum folate
levels due to the adverse effect of maintenance therapies and/or intestinal malabsorption and require
folic acid supplementation. While folic acid supplementation confers protection against sporadic
colorectal cancer when given prior to colon tumor formation, it can promote cancer formation when
administered to mice with early colonic lesions. Few studies have focused on the impact of folic acid
on colorectal cancer risk in patients with ulcerative colitis. In this study, folic acid supplementation
created a hypomethylated field within the inflamed non-neoplastic colonic mucosa of mice with
colitis and promoted the formation of colitis-associated tumors. These data suggest that caution
should be taken when recommending folic acid supplements to patients with ulcerative colitis who
are at high risk of colorectal cancer.

Abstract: Purpose: The purpose of this study was to assess the effect of folic acid (FA) supple-
mentation on colitis-associated colorectal cancer (CRC) using the azoxymethane/dextran sulfate
sodium (AOM/DSS) model. Methods: Mice were fed a chow containing 2 mg/kg FA at baseline and
randomized after the first DSS treatment to receive 0, 2, or 8 mg/kg FA chow for 16 weeks. Colon
tissue was collected for histopathological evaluation, genome-wide methylation analyses (Digital
Restriction Enzyme Assay of Methylation), and gene expression profiling (RNA-Seq). Results: A
dose-dependent increase in the multiplicity of colonic dysplasias was observed, with the multiplicity
of total and polypoid dysplasias higher (64% and 225%, respectively) in the 8 mg FA vs. the 0 mg
FA group (p < 0.001). Polypoid dysplasias were hypomethylated, as compared to the non-neoplastic
colonic mucosa (p < 0.05), irrespective of FA treatment. The colonic mucosa of the 8 mg FA group
was markedly hypomethylated as compared to the 0 mg FA group. Differential methylation of
genes involved in Wnt/β-catenin and MAPK signaling resulted in corresponding alterations in gene
expression within the colonic mucosa. Conclusions: High-dose FA created an altered epigenetic
field effect within the non-neoplastic colonic mucosa. The observed decrease in site-specific DNA
methylation altered oncogenic pathways and promoted colitis-associated CRC.
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1. Introduction

Patients with ulcerative colitis face a cumulative risk of developing colorectal cancer
(CRC) that is significantly higher than that of the general population, 5–10% after 20 years
and 15–20% after 30 years of disease [1]. The association of disease duration, severity, and
extent [2] with colon cancer risk provides strong support for the critical role of inflam-
mation in colitis-associated CRC [3]. Patients with colitis often present with serum folate
levels that are 15–20% lower than those of healthy individuals [4,5]. Explanations for this
deficiency include medications that inhibit FA transport or malabsorption from the loss of
intestinal surface area. Sulfasalazine, a common therapy for the maintenance of patients
with ulcerative colitis, inhibits the absorption of folate in the intestinal mucosa [6]. While
FA supplements are often recommended for colitis patients, the risk vs. benefit of giving
FA remains unclear based on the potential association of FA supplement use with the risk
of sporadic CRC.

Results from several epidemiologic studies have indicated that the risk of developing
CRC is decreased significantly among subjects taking FA supplements [7,8]. In contrast, an
emerging body of evidence suggests that FA supplementation does not confer protection
against colorectal tumorigenesis, especially in individuals with a strong underlying predis-
position for CRC (i.e., history of adenomas) [9–11]. In fact, administration of FA (1 mg/day
for 6–8 years) to subjects with a history of adenomas in a double-blinded, placebo-controlled,
randomized clinical trial increased the risk of developing both advanced tumors (RR 1.67,
p = 0.05) and multiple (≥3) colorectal adenomas (RR 2.32, p = 0.02) [9]. Results from a
prospective cohort study [12] revealed a direct association between plasma folate levels
and risk of CRC in subjects who were followed for longer than the median 4.2 years
(p trend = 0.007). In mice, the ability of FA to promote CRC development is dependent
upon the timing and dose administered [13–16]. Diets supplemented with 8 mg FA/kg
decreased tumor burden when given to Apc+/−/Msh2−/− mice before the establishment
of aberrant crypt foci, a surrogate biomarker of CRC. However, the same diet increased
intestinal tumor burden when administered to mice with existing aberrant crypt foci [14].

Few studies have investigated the impact of FA supplementation on colitis-associated
CRC. Results from two case-control studies [17,18] and one cohort study [19] suggested that
colitis patients who took FA supplements had a lower adjusted relative risk of developing
colitis-associated neoplasia, as compared to colitis patients not taking supplements. How-
ever, this finding did not achieve statistical significance. Compromising characteristics of
these retrospective analyses include the small sample size, lack of information on the dose
of FA employed, length of exposure, and corresponding plasma folate levels. Interestingly,
red blood cell folate levels are reported to be 19% higher in children with untreated inflam-
matory bowel disease, as compared to healthy controls [20]. Based on these inconsistent
observations, further investigation of the relationship between inflammation, folate status,
and CRC is warranted.

The overall goal of the present study was to assess the effect of varying concentrations
of FA on the development of colitis-associated neoplasia in a model that recapitulated the
clinical setting in which patients take a FA supplement following a diagnosis of colitis. In
addition to histopathological enumeration of dysplasias, dose-associated FA alterations in
DNA methylation were assessed and compared to gene expression changes in both the non-
dysplastic inflamed colonic mucosa and colitis-associated neoplastic lesions. The resulting
data demonstrate that FA supplementation promotes colitis-associated CRC by creating
a hypomethylated field within the non-neoplastic colonic mucosa. Pathway analyses of
genes differentially methylated among groups administered varying levels of FA revealed
many genes associated with colorectal carcinogenesis. When combined, these novel data
suggest that FA induces a stress response in the presence of chronic inflammation, leading
to decreased site-specific DNA methylation of genes that promote the development of
colitis-associated tumors.
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2. Materials and Methods
2.1. Diet and Animal Treatment

All animal studies were approved by the Institutional Animal Care and Use Committee
at Fox Chase Cancer Center. Diets were purchased from Bio-Serv (Flemington, NJ, USA).
The control AIN-76A diet contained 2 mg FA/kg chow (2 mg FA) which is equivalent to
a daily intake of 400 µg/day in humans. The deficient diet was a modified AIN-76A diet
containing no FA (0 mg FA), and the supplemented diet was a modified AIN-76A diet
containing 8 mg FA/kg chow (8 mg FA). Mouse chow with 8 mg/kg FA is equivalent
to a daily intake of 1.6 mg FA by humans and comparable to the level consumed by
clinical trial participants who take a FA supplement (1 mg/day) and continue to ingest
FA-fortified foods.

The AOM/DSS model of colitis-associated colorectal carcinogenesis was employed in
this study according to Figure 1. At 6 weeks of age, female Swiss Webster mice (Taconic
Farms, Germantown, NY, USA) (17–19/group) were fed the AIN-76A control diet (2 mg
FA). Mice were injected with AOM (7.4 mg/kg i.p.; Sigma-Aldrich, St Louis, MO, USA) at
7 weeks of age. Mice without DSS served as non-colitic controls (n = 8/group). At 9 weeks
of age, colitis was induced by administering DSS (MW 40,000; Alfa Aesar, Tewksbury,
MA) for 4 cycles, with each cycle consisting of 7 days of 2% DSS in the drinking solution
followed by 14 days of untreated water. At 11 weeks of age and immediately after the first
DSS treatment (acute colitis phase), mice were randomized to receive FA at 0 (deficient),
2, or 8 (high dose) mg/kg of chow for 16 weeks. Body weights were recorded weekly. At
27 weeks of age, the mice were euthanized and their colons collected, fixed in 10% formalin,
cross-sectioned at 2 mm intervals, and processed in their entirety for histopathological
evaluation.
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Figure 1. Experimental design of the study. Mice were injected with azoxymethane (AOM, 7.4 mg/kg
i.p.) at 7 weeks of age. Colitis was induced with DSS, starting at 9 weeks of age. Mice were randomly
assigned to receive different amounts of folic acid (FA) in an AIN-76A diet at 11 weeks of age and
euthanized at 27 weeks of age (17–19/group).

2.2. Histopathology

Sections stained with hematoxylin and eosin (H&E) were evaluated in a blinded man-
ner as described previously [21]. Tissue specimens were classified as negative or positive
for dysplasia or carcinoma based on the standardized morphology and nomenclature
for the human pathology of colitis-associated CRC [22]. A diagnosis of carcinoma was
assigned when neoplastic glands had invaded beyond the muscularis mucosa and into the
submucosa. Carcinomas and dysplasias were classified as polypoid (elevated growth pat-
tern) or flat (no elevated growth component and less than twice the height of the adjacent
non-dysplastic mucosa) (Figure 2).

2.3. Isolation of DNA and RNA from Laser Microdissected (LMD) Colonic Epithelial Cells

Cells were microdissected from the paraffin-embedded non-dysplastic colon and dys-
plasia on PEN membrane slides (Life Technologies, Waltham, MA, USA) using a Leica
LMD6500 system (Leica Microsystems, Deerfield, IL, USA). DNA and RNA were isolated
from LMD samples using RecoverAll™ Total Nucleic Acid Isolation for FFPE (Life Tech-
nologies), according to the manufacturer’s protocol. RNA concentration was determined
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and quality assessed on an Agilent 2100 Bioanalyzer using RNA 6000 Pico chips (Agilent
Technologies, Santa Clara, CA, USA).
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2.4. Genome-Wide CpG island Methylation Analysis

Genome-wide DNA methylation analyses were performed on LMD colonic epithelial
cells or mucosa using the Digital Restriction Enzyme Analysis of Methylation (DREAM) [23]
assay. Briefly, the DREAM assay utilizes a combination of methylation-sensitive (SmaI)
and methylation-insensitive (XmaI) restriction endonucleases that recognize the CCCGGG
sequence, but cleave at different locations within this target sequence. Methylated and
unmethylated sites are distinguished by virtue of the distinct 5′-/3′-end sequence. Quanti-
tation is achieved by deep sequencing on the Illumina HiSeq® instrument and mapping the
reads back to the human genome using a custom script [23]. DNA (approximately 500 ng)
was isolated from LMD material, as described above, and analyzed.

2.5. RNA-Seq Analysis

RNA-Seq analyses were performed on LMD colonic epithelial cells. RNA-Seq libraries
were generated using a SMARTer®Stranded RNA-Seq Kit V2 Pico Input Mammalian
(TakaRa Bio USA, Inc. Mountain View, CA, USA) with 40 ng total RNA. Libraries were
quantified using a QubitTM dsDNA HS Kit (Thermo Fisher Scientific, Waltham, MA, USA)
and size distribution validated on an Agilent 2100 Bioanalyzer using the Agilent High
Sensitivity DNA Kit (Agilent Technologies). Validated libraries were sequenced on an
Illumina HiSeq 2500 platform and analyzed. The resulting sequence reads were analyzed
to identify differentially expressed genes, using two methods, and genes found in common
were overlayed with methylation changes as a secondary step. The first method involved
aligning RNA-Seq data using Bowtie [24] to a bowtie-indexed mouse mm10 genome. The
number of raw counts in each known gene from the RefSeq database was enumerated
using htseq-count from the HTSeq package [25]. Differential expression between sam-
ples and across different conditions were assessed for statistical significance using the
R/Bioconductor package DESeq2 [26]. Genes with a false discovery rate (FDR) ≤0.05,
calculated using the Benjamini–Hochberg FDR method [27], and a fold-change ≥2 were
considered significant. In the second method, Tophat2 [28] was used to align reads to
the mouse mm10 genome. The Cufflinks [29] algorithm was implemented to assemble
transcripts and estimate their abundance. Cuffdiff [30] was employed to statistically assess
expression changes in quantified genes under different conditions. Genes with a false
discovery rate of ≤5% and a fold change ≥1.5 were considered differentially expressed.

2.6. Immunohistochemistry (IHC) of β-Catenin

Expression of β-catenin was detected in formalin-fixed paraffin-embedded sections of
colon tissue. Rabbit anti-β-catenin antibody was purchased from Sigma-Aldrich (St. Louis,
MO, USA) and diluted to 1:2000 prior to use. Tissue sections were stained using a Roche
Ventana Discovery XT automated staining instrument (Ventana Medical Systems, Tucson,
AZ, USA) and Ventana reagents according to the manufacturer’s instructions. The primary
antibody was replaced with normal rabbit IgG to serve as a negative control.
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2.7. Real-Time Quantitative PCR (RT-qPCR)

Expression of select genes associated with colitis was evaluated in an independent
set of LMD colonic mucosa samples from mice treated with different levels of FA using
TaqMan assays (Thermo Fisher Scientific) and TaqManTM Gene Expression Master Mix
(Thermo Fisher Scientific). The IDs for these TaqMan assays were the following: IL-1β
Mm00434228_m1; IL-6 Mm00446190_m1; IL-10 Mm01288386_m1; IL-17α Mm00439618_m1;
IL-23α Mm00518984_m1; Ikbkb Mm01222247_m1; Mmp9 Mm00442991_m1;
Ptgs-2 Mm00478374_m1; and Actb (β-actin) Mm00607939_s1. β-actin was used as an endoge-
nous control. Amplification products were monitored using a ABI7900 Sequence Detection
System (Thermo Fisher Scientific). The resulting data were analyzed and expressed as
the target gene expression relative to the endogenous control, using the comparative Ct
method and the 2−∆∆Ct formula. Results were expressed as the fold change in relative
levels of each gene transcript for mice receiving different levels of FA.

2.8. Biostatistical Analyses

A generalized linear model approach (Poisson regression with log link) was used to de-
termine the association between the FA dose and multiplicity of colonic dysplasias. Adjust-
ment for multiple testing was performed using the Benjamini–Hochberg FDR method [27]
and computations were performed using the R language [31]. Statistical comparisons of
site-specific DNA methylation levels between FA treatment groups (with and without
DSS) were performed using t-tests. Sites with p values less than 0.05 and a more than 5%
methylation difference were considered significantly different between groups.

3. Results
3.1. Treatment Tolerance

Body weights were monitored weekly throughout the experiment. No significant
differences in mean body weight were observed among the treatment groups (p > 0.05)
(Figure 3). The highest study completion rate was observed in the 0 mg FA group (89.5%,
17/19), followed by the 8 mg FA group (77.8%, 14/18), with the lowest rate in the 2 mg FA
group (64.7%, 11/17). All mice receiving only AOM (no DSS) completed the experiment.
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Figure 3. Weekly body weights of Swiss Webster mice with AOM/DSS-induced colitis. Mice were
maintained on an AIN-76A diet supplemented with an either 0, 2, or 8 mg FA/kg diet (17–19/group).

3.2. Effect of FA on the Development of Colitis-Associated Dysplasia and Cancer

A dose-dependent increase in the multiplicity of total colitis-associated dysplasia was
as observed with increasing levels of dietary FA (p < 0.0001) (Figure 4). The total number of
dysplasias per mouse was 24% and 65.6% higher in the 2 and 8 mg FA groups, respectively,
as compared to the 0 mg FA group. The multiplicity of polypoid dysplasias was 53% and
225% higher in the 2 mg FA and 8 mg FA groups, respectively, as compared to that of the
0 mg FA group (p < 0.001). However, only mice fed the 8 mg FA diet had an increased
number of flat dysplasias (47.7% higher; p = 0.035). Only one carcinoma was observed in
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the entire study, and this mouse was treated with 8 mg FA. No dysplasias/cancers were
found in AOM-treated (no DSS) mice.
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Figure 4. Effects of various doses of FA on the multiplicity of colitis-associated dysplasia. The total
number of dysplasias is the sum of polypoid and flat dysplasias. Poisson regression with log link
was used to determine the association between FA dose and tumor multiplicity (n = 17–19/group).

3.3. Effect of FA on Genome-Wide DNA Methylation at CCCGGG Sites

Genome-wide DNA methylation analyses were performed using two types of LMD
samples: (1) non-dysplastic epithelial cells from animals treated with AOM/DSS or only
AOM and (2) the epithelium plus the lamina propria from AOM/DSS-treated mice. The
latter was used due to a greater yield of DNA. Both types of samples gave equivalent
results (see below).

DNA methylation in non-dysplastic colonic epithelial cells. A dose-dependent, genome-
wide effect of FA on DNA methylation was observed in LMD non-dysplastic colonic
epithelial cells (Figure 5). With respect to repeat sequences of DNA, the 8 mg FA and 2 mg
FA groups had more CpG sites with significant methylation changes (22.6% and 14.1%,
respectively) than the 0 mg FA group; over 99% of these changes were hypomethylation
(Figure 5A,B). In addition, the hypomethylating effect of FA on non-dysplastic colonic
epithelial cells was dose-dependent. In unique sequences, the number of significant methy-
lation changes in CpGs was only slightly higher in the 8 mg FA and 2 mg FA groups (2.7%
and 1.5%, respectively) than in the 0 mg FA group (Figure 5C,D). Although fewer CpGs
were modified by FA in unique vs. repeat sequences, hypomethylation remained the main
outcome. Following supplementation, hypomethylation of CpG sites in unique sequences
was elevated 80.7% and 61.5% in the 8 mg FA and 2 mg FA groups, respectively, over that
of the 0 mg FA group (Figure 5C,D). This hypomethylating effect of FA on both repeat and
unique sequences in LMD non-dysplastic epithelial cells was confirmed using the LMD
epithelium plus the lamina propria (Figure 6; 8 mg FA vs. 0 mg FA results shown). Of note,
the hypomethylating effect of FA was limited to mice with AOM/DSS-induced colitis. No
substantial hypomethylating effect of FA was observed in mice treated with only AOM
(no DSS) (Figure 7), indicating that the DNA methylation differences in the non-dysplastic
colonic epithelium occur only in the context of inflammation.

DNA methylation in dysplastic tissues. Although both polypoid and flat dysplasia were
observed in all treatment groups (Figure 4), further analyses were restricted to polypoid
dysplasia from the 8 mg FA and 0 mg FA groups, as these lesions exhibited the largest and
most statistically significant inter-group difference in the mean multiplicity of dysplasia.
For repeat sequences, there were 16.2% more CpGs with significant methylation changes in
polypoid lesions treated with 8 mg FA (8P), as compared to the non-dysplastic epithelium
exposed to 8 mg FA (8ND) (Figure 8A). Likewise, the methylation changes in polypoid
dysplasia from the 0 mg FA (0P) group were 9.7% higher than in the 0 mg FA non-dysplastic
colonic mucosa (0ND) (Figure 8B). More than 93% of the identified CpGs with significant
methylation changes in repeat sequences (96.3% for 8 mg FA and 93.9% for 0 mg FA)
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were hypomethylated (Figure 8A,B). Unlike the repeat sequences, a lower percentage of
CpGs with significant methylation changes, specifically hypomethylation, was observed
in the unique sequences. In the unique sequences, there were 6.5% more CpGs with
significant methylation changes in 8P lesions, as compared to the non-neoplastic mucosa
(8ND) (Figure 8C). The methylation changes in 0P lesions were 7.3% higher than in the
corresponding non-neoplastic mucosa (0ND) (Figure 8D). Less than 80% of the identified
CpGs with significant methylation changes in unique sequences were hypomethylated
(Figure 8C,D). The CpG methylation changes in lesions in the 8P and 0P groups were also
compared (Figure 8E,F). The percentage of CpGs with significant methylation changes
in 8P lesions was slightly higher than that of 0P lesions for both repeat (Figure 8E) and
unique (Figure 8F) sequences. These data indicate that (1) 8P had the most changes in
CpG methylation (hypomethylation specifically) in repeat sequences as compared to those
in the 8ND and (2) fewer significant differences in DNA methylation were found when
comparing 8P vs. 0P. These observations suggest that many of the epigenetic changes
that accompany the development of polypoid dysplasia occur irrespective of the colonic
mucosal environment in which they arise.
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Figure 5. Volcano plots of DNA methylation profiles for LMD non-dysplastic colonic epithelium
from AOM/DSS-treated mice receiving varying amounts of FA. Repeat sequences were compared
in the (A) 8 mg FA- vs. 0 mg FA-treated epithelium (8ND vs. 0ND) and (B) 2 mg FA- vs. 0 mg
FA-treated epithelium (2ND vs. 0ND). Unique sequences were compared in the (C) 8 mg FA- vs.
0 mg FA-treated epithelium (8ND vs. 0ND) and (D) 2 mg FA- vs. 0 mg FA-treated epithelium (2ND
vs. 0ND). The t-test was used to compare site-specific DNA methylation levels between FA treatment
groups (n = 8 per group). Sites with p values less than 0.05 (*) and more than a 5% methylation
difference were considered significantly different between groups. δ = significant hypermethylated
CpGs expressed as a percentage of the total sum of significant CpGs; ε = significant hypomethylated
CpGs expressed as a percentage of the total sum of significant CpGs; ⊕ = sum of significant CpGs
(hypomethylated and hypermethylated) expressed as a percentage of total CpGs.
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Figure 6. Volcano plots of DNA methylation profiles for LMD non-dysplastic colonic epithelium
plus the lamina propria from AOM/DSS-treated mice receiving varying amounts of FA. (A) Repeat
and (B) unique sequences of non-dysplastic colonic epithelium plus the lamina propria from mice in
the 8 mg vs. 0 mg FA group (8ND vs. 0ND) were compared. The t-test was used to identify significant
alterations in site-specific DNA methylation levels between FA treatment groups (n = 12 per group).
Sites with p values less than 0.05 (*) and more than a 5% methylation difference were considered
significantly different. δ = significant hypermethylated CpGs expressed as a percentage of the total
sum of significant CpGs; ε = significant hypomethylated CpGs expressed as a percentage of the
total sum of significant CpGs; ⊕ = sum of significant CpGs (hypomethylated and hypermethylated)
expressed as a percentage of total CpGs.
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Figure 7. Volcano plots of DNA methylation profiles for LMD non-dysplastic colonic epithelium
from AOM-treated (non-colitis) mice receiving varying amounts of FA. (A) Repeat and (B) unique
sequences of non-dysplastic and non-inflamed colonic epithelium from the 8 mg vs. 0 mg FA group
(8ND vs. 0ND) were compared. The t-test was used to identify significant alterations in site-specific
DNA methylation levels between FA treatment groups (n = 7–8 per group). Sites with p values
less than 0.05 (*) and more than a 5% methylation difference were considered significantly different.
δ = significant hypermethylated CpGs expressed as a percentage of the total sum of significant CpGs;
ε = significant hypomethylated CpGs expressed as a percentage of the total sum of significant CpGs;
⊕ = sum of significant CpGs (hypomethylated and hypermethylated) expressed as a percentage of
total CpGs.

To gain insight into the FA-induced methylation changes that accompany cellular
transformation, the DNA methylation profile of 0P lesions was compared to that of 8ND ep-
ithelium (Figure 9A,B). Relatively few significant differences in methylation were detected
in both repeat (3.9%) and unique (3.8%) sequences in the 0P vs. 8ND comparison, and
no strong bias towards hypomethylation (64.8% in repeat sequences and 48.6% in unique
sequences) was observed (Figure 9A,B). This suggests that supplementation with 8 mg FA
modifies the methylation status of the background colonic mucosa to become more “tumor-
like”. In contrast, the highest percentage of CpGs with significant methylation changes
was observed when comparing 8P lesions vs. 0ND epithelium; a 40.3% increase in repeat
sequences (Figure 9C) and a 12% increase in unique sequences (Figure 9D) was observed.
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In addition, 8P lesions were strongly hypomethylated, 81.2% in repeat and 78.1% in unique
sequences, as compared to the 0ND epithelium (Figure 9C,D). These data, when compared
with the DNA methylation profile of 0P lesions vs. 0ND epithelium (Figure 8B,D), indicate
that the 0ND epithelium exhibits the fewest changes in DNA methylation of all the groups
evaluated.
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Figure 8. Volcano plots of DNA methylation profiles for polypoid dysplasia from AOM/DSS-treated
mice receiving 0 or 8 mg of FA. (A) Repeat sequences: 8 mg FA-treated polypoid dysplasia vs. non-
dysplastic epithelium (8P vs. 8ND); (B) repeat sequences: 0 mg FA-treated polypoid dysplasia vs.
non-dysplastic epithelium (0P vs. 0ND); (C) unique sequences: 8 mg FA-treated polypoid dysplasia
vs. non-dysplastic epithelium (8P vs. 8ND); (D) unique sequences: 0 mg FA-treated polypoid
dysplasia vs. non-dysplastic epithelium (0P vs. 0ND); (E) repeat sequences: 8 mg FA vs. 0 mg
FA-treated polypoid dysplasia (8P vs. 0P); and (F) unique sequences: 8 mg FA vs. 0 mg FA-treated
polypoid dysplasia (8P vs. 0P). The t-test was used to compare site-specific DNA methylation levels
between FA treatment groups (n = 12 per group for non-dysplastic epithelium and n = 8 per group
for polypoid dysplasia). Sites with p values less than 0.05 (*) and more than a 5% methylation
difference were considered significantly different between groups. δ = significant hypermethylated
CpGs expressed as a percentage of the total sum of significant CpGs; ε = significant hypomethylated
CpGs expressed as a percentage of the total sum of significant CpGs; ⊕ = sum of significant CpGs
(hypomethylated and hypermethylated) expressed as a percentage of total CpGs.
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Figure 9. DNA methylation status is impacted by an interaction between FA dose and colon tissue
type. Volcano plots summarizing the methylation profiles of (A) repeat and (B) unique sequences in
0 mg FA-treated polypoid dysplasia vs. 8 mg FA-treated non-dysplastic epithelium (0P vs. 8ND), and
(C) repeat and (D) unique sequences in 8 mg FA-treated polypoid dysplasia vs. 0 mg FA-treated non-
dysplastic epithelium (8P vs. 0ND). The t-test was used to compare site-specific DNA methylation
levels between FA treatment groups (n = 12 per group for non-dysplastic epithelium and n = 8 per
group for polypoid dysplasia). Sites with p values less than 0.05 (*) and more than a 5% methylation
difference were considered significantly different between groups. δ = significant hypermethylated
CpGs expressed as a percentage of the total sum of significant CpGs; ε = significant hypomethylated
CpGs expressed as a percentage of the total sum of significant CpGs; ⊕ = sum of significant CpGs
(hypomethylated and hypermethylated) expressed as a percentage of total CpGs.

3.4. Expression of Genes whose Methylation Status was Modified by FA Treatment

Based on the dose-dependent effect of FA on the formation of colitis-associated dys-
plasia and genome-wide DNA methylation, gene expression analyses were performed
using tissues from only the 0 mg FA and 8 mg FA groups. Both non-dysplastic colonic
epithelial cells (8ND and 0ND) and neoplastic cells from polypoid dysplasia (8P and 0P)
were LMD and processed for RNA-Seq analyses. To enrich for gene expression differences
associated with FA supplementation, analyses were restricted to expression changes in
genes whose DNA methylation levels differed in 8ND vs. 0ND epithelial cells. Of the 411
genes whose methylation levels differed significantly between these two groups (Supple-
mentary Table S1), only 15 genes were identified as differentially expressed by RNA-Seq
(Table 1). Similar changes in the transcript levels of these 15 genes were not observed when
comparing 8P vs. 0P lesions (Table 1). The 15 genes differentially expressed following FA
supplementation were categorized into three major signaling pathways: Wnt/β-catenin
(Tbxt, Zfp703, Enc1, Tns4, and Neu1), MAPK (Dusp4 and Epha2), and cell proliferation and
differentiation (Spink4, Thbs1, Lzts1, and Fut9). Among these genes, Dusp4, Epha2, Atp11a,
and Tns4 are reported to be overexpressed in human CRC, while the expression of Thbs1 is
increased in patients with inflammatory bowel disease (see Table 1). Interestingly, 12 of
the 15 genes (except Enc1, Atp11a, and Lzts1) differentially expressed in the 8ND vs. 0ND
groups (Table 1, Column B) also exhibited a similar trend of change in polypoid dysplasia
vs. non-dysplastic mucosa (Table 1, Columns D–E). Considering their known oncogenic
functions, early DNA alterations in these genes may create a pro-tumorigenic environment
in the non-dysplastic mucosa and be essential for colitis-associated tumorigenesis in the
AOM-DSS model.
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Table 1. Genes Both Differentially Expressed * and Differentially Methylated Following FA Supple-
mentation (8 mg/kg vs. 0 mg/kg diet).

A B C D E F

Gene ND **
FA 8 mg/0 mg

Polyp ζ

FA 8 mg/0 mg
8 mg FA

Polyp/ND
0 mg FA

Polyp/ND
Signaling pathways and/or cellular

function

Tbxt
(T, Brachyury) 11.8 0.9 4.7 61.4 Wnt target gene [32,33]

Slc4a11 3.1 1.0 3.2 10.5
H+(OH×) and NH3-H+ transporter

protein; [34] necessary for cell
survival [35]

Dusp4
(Mkp-2) 2.1 1.4 4.7 7.0 Negative regulator of MAPK,

overexpressed in CRC [36,37]

Spink4 2.1 1.1 0.5 0.9 Marker for intestinal goblet cells,
downregulated in CRC [38,39]

Thbs1
(Tsp1) 1.7 1.1 2.9 4.6

Negative regulator of angiogenesis;
[40] increased expression in

inflammatory bowel disease [41]

Epha2 1.8 0.9 2.1 4.1 Effector of MAPK signaling and
overexpressed in CRC [42,43]

Zfp703 1.7 1.3 1.5 2.0 Wnt target gene [44]

Enc1 1.4 1.2 2.1 2.4 Wnt target gene [45]

Atp11a 1.3 1.3 2.8 2.6 ATPase with higher expression in
CRC [46]

Lzts1
(Fez1) 0.8 0.8 2.0 2.1 Tumor suppressor gene; regulates

M phase during cell cycle [47,48]

Tns4
(Cten) 0.6 1.2 2.6 1.2 Interacts with β-catenin;

overexpressed in CRC [49]

Neu1 0.6 1.1 0.8 0.4 Inhibits β-catenin
expression [50]

Rab11fip4 0.6 0.9 0.5 0.3 HIF-1α target gene and effector of
RAB11 [39]

Rims4 0.5 0.3 0.2 0.1 Maintains Ca2+ influx [51]

Fut9 0.3 1.1 0.8 0.3
Essential in tumor-initiating cells;

switched off to enhance the
aggressiveness of tumor cells [52]

* Values represent fold-change, as determined using both the Cuffdiff and DESeq2 methods. All values in bold
are statistically significant (p ≤ 0.05). The remainder did not reach statistical significance using either method.
n = 4–5 per tissue type per treatment group. ** ND = non-dysplastic mucosa; ζ Polyp = polypoid dysplasia.

Based on the strong representation of genes involved in β-catenin and MAPK signaling
in Table 1, RNA-Seq data were further analyzed enriching for gene expression changes
associated with these two pathways. The resulting heatmaps demonstrate the upregulation
of a broader network of genes involved in β-catenin and MAPK signaling in 8P vs. 0P
lesions (Figure 10). Because FA had the greatest effect on β-catenin signaling, these data
were confirmed by comparing the cellular localization of β-catenin in non-dysplastic vs.
dysplastic colon tissue, in the presence and absence of FA by immunohistochemical staining
(Figure 11). As expected, β-catenin was located primarily at the cellular membrane of
non-dysplastic colonic cells. In contrast, tumors exhibited both nuclear localization and
overexpression. Interestingly, β-catenin was expressed in the majority of tumor cells of
8P lesions (average 197/281 = 70.1%), but to a lesser extent in those of 0P lesions (average
117/275 = 42.5%). These observations confirm the elevated expression of genes associated
with the β-catenin network in 8P lesions, as compared to 0P lesions.
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Figure 10. Heatmaps of the expression level of genes in the β-catenin and MAPK pathways. Mice
with AOM/DSS-induced colitis were administered 0 mg or 8 mg FA. Epithelial cells from the non-
neoplastic colonic mucosa or polypoid lesions were LMD and analyzed by RNA-Seq. The expression
of genes associated with (A) β-catenin and (B) MAPK signaling were profiled for several treatment
groups: 0 mg FA-treated non-dysplastic epithelium (0 mg FA ND), 0 mg FA-treated polypoid (0 mg
FA Polyp), 8 mg FA-treated non-dysplastic epithelium (8 mg FA ND), and 8 mg FA-treated polypoid
(8 mg FA Polyp).
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Figure 11. Immunohistochemical staining of β-catenin in the murine colon. Representative images
(200×) show (A) membrane staining ofβ-catenin in the non-dysplastic colon and (B,C) overexpression
and nuclear localization of β-catenin in polypoid lesions. Unlike polypoid lesions from mice treated
with FA 0 mg, the majority of tumor cells in polypoid lesions from mice treated with FA 8 mg
exhibited overexpression or nuclear localization of β-catenin.
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3.5. Effect of FA on Inflammatory Markers

The impact of FA supplementation on the expression of genes associated with colitis
was assessed by RT-qPCR. Non-neoplastic regions of the colonic mucosa and submucosa
of AOM/DSS-treated mice fed diets containing 0, 2, or 8 mg FA (8 per group), confirmed
histopathologically to be free of dysplasia, were microdissected for analysis. Genes evalu-
ated included IL-1β, IL-6, IL-10, IL-17α, IL-23α, Ikbkb, Mmp9, Ptgs2 (Cox-2), and the refer-
ence gene β-actin. Of all markers evaluated, IL-6 was most affected by FA concentration
(Figure 12). Expression of IL-6 in animals administered 2 and 8 mg FA was ≥2-fold higher
than that of those in the FA-deficient (0 mg FA) group (2 mg vs. 0 mg: p = 0.05; 8 mg vs.
0 mg: p = 0.046). Treatment with 8 mg FA caused a 75% increase in Ikbkb expression, a
surrogate of NFκB/Rela signaling, over that of animals maintained on a diet containing
2 mg FA (p = 0.006). No significant difference in Ikbkb RNA expression was observed
among animals receiving 2 mg and 0 mg FA. Expression of Ptgs2 was elevated 2-fold in
mice fed 8 mg vs. 0 mg FA (p = 0.098). Expression of IL-10, IL-17α, or IL-23α mRNA in
the non-neoplastic colonic epithelium was not impacted significantly by changes in the
level of FA (p > 0.05). These data indicate the ability of FA supplementation to induce the
expression of specific genes associated with inflammation in the non-neoplastic colonic
mucosa.
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Figure 12. Effects of FA on the expression of inflammatory mediators. The expression level of
inflammatory genes was evaluated using LMD non-dysplastic colonic mucosa (ND) from AOM/DSS-
treated mice fed 0, 2, or 8 mg FA. Results are expressed as the fold-change in relative levels of each
gene transcript for mice receiving varying levels of FA. Statistical analyses were performed using the
t-test. n = 8 per group.

4. Discussion

The present study represents the first demonstration of a link between FA-induced
colon DNA hypomethylation and the promotion of colitis-associated tumorigenesis. No-
tably, depletion or supplementation of dietary FA was initiated immediately after the
induction of acute colitis to mimic clinical treatment. FA supplementation induced not
only a dose-dependent increase in colitis-associated dysplasia, but also global DNA hy-
pomethylation of both the non-dysplastic mucosa and dysplastic lesions. Importantly,
FA-induced DNA hypomethylation was not observed in colonic epithelial cells of non-
colitic controls. Based on the reported association between colonic DNA hypomethylation
in the non-dysplastic mucosa and increased risk for CRC [53], these novel observations
suggest that high-dose FA supplementation creates a global hypomethylated environment
within the non-dysplastic colonic mucosa. This epigenetic change could lead to a further
decrease in the site-specific DNA methylation of genes that promote the development of
colitis-associated dysplasia. In the present study, supplementation with 8 mg FA during
acute colitis led to an increased multiplicity of colonic dysplasias. This result is alarming
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based on the routine FA supplementation of colitis patients who present with low levels of
plasma folate.

The impact of FA on colonic DNA methylation and its association with sporadic
CRC remains controversial [54,55]. In general, FA supplementation can have either a
protective or promotional effect on sporadic colon tumorigenesis [56,57]. Initiation of
FA supplementation prior to the establishment of dysplasia inhibited the formation of
sporadic CRC, with increased DNA methylation suggested as a possible mechanism.
In contrast, FA supplementation failed to confer protection in the presence of a strong
underlying predisposition for sporadic CRC. To our knowledge, no randomized clinical
trials have examined the effect of FA supplementation on DNA methylation in the context
of colitis-associated CRC, and few animal studies have evaluated the impact of FA on
colitis-associated CRC. MacFarlane and colleagues [58] reported that administration of
FA (0, 2, and 8 mg) to AOM/DSS-treated mice failed to alter the total number of colon
tumors significantly but increased the incidence of adenocarcinomas and multiplicity of
distal colon tumors. Unlike the present study, animals received FA supplementation prior
to the induction of colitis and DNA methylation was not assessed. The ability of FA
supplementation to promote global DNA hypomethylation has been observed in other
organs (e.g., brain, liver, and kidney) following treatment with 8 mg FA [59]. These data,
although limited, support the hypothesis that FA supplementation increases the risk of
colitis-associated CRC by reducing DNA methylation and provide strong justification for
further investigating the safety of using FA supplements in colitis patients.

The nonspecific effect of FA supplementation on the epigenome may cause loss of
DNA methylation at many sites and hypermethylation at relatively few sites (Figures 5
and 9). Genes with CpG sites that are differentially methylated in the non-neoplastic
epithelium, in response to varying levels of FA, include several genes known to promote
CRC (Table 1). One explanation for the greater number of colonic dysplasias in animals fed
8 mg vs. 0 mg FA is that a much larger fraction of colonic epithelial cells undergoes CRC-
associated gene hypomethylation in mice exposed to high-dose FA. Our proposed model
(Figure 13) suggests that the number of epigenetic changes required for the non-dysplastic
mucosa to become a polypoid dysplasia is relatively large, while the same transition in
animals fed the 8 mg FA diet requires fewer epigenetic modifications. Consistent with
this view, relatively few significant differences were identified when the global DNA
methylation profile of 0P lesions vs. 8ND epithelium was compared (Figure 9A,B). In
contrast, the greatest number of significant methylation differences was detected when
comparing 8P lesions vs. 0ND epithelium (Figure 9C,D). In addition, tumors exhibited
substantial hypomethylation as compared to the non-dysplastic mucosa under conditions of
folate deficiency and high-dose supplementation, suggesting the hypomethylating effects
were stronger in the dysplastic lesions. The only exception was the unique sequences
in the 8 mg FA group, in which the dysplasia contained nearly equivalent numbers of
hyper- and hypomethylated sites. One explanation for this discrepancy is that the 8ND
epithelium is already hypomethylated (compared to the 0ND epithelium); hence, further
hypomethylation of dysplasia may be difficult to discern. The hypomethylating effect of FA
supplementation was greater in repeat sequences vs. unique sequences. Repeat sequences
also showed a clear trend of hypomethylation in all dysplasias, irrespective of FA dose. It
is noteworthy that hypomethylation in repetitive elements has been linked to increased
mortality from cancer [60].

Effort was invested to uncover the FA-induced epigenetic changes responsible for the
relative increase in polypoid dysplasia. If the genes identified as being hypomethylated
are involved in the formation of polypoid tumors, one would expect them to also be
differentially expressed in the polypoid dysplasia of 8 mg FA-treated animals, as well as in
colon lesions from animals treated with 0 mg FA. In fact, 12 out of the 15 genes in Table 1
were found to be differentially expressed when the mRNA expression profile of polypoid
dysplasia vs. non-dysplastic colon mucosa from animals in the 0 mg and 8 mg groups
was compared. These data suggest that the genes modified by FA supplementation in
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the non-dysplastic mucosa are also associated with colon tumorigenesis. As is evident
from the heatmaps and immunohistochemical staining of β-catenin (Figures 10 and 11),
a dose-dependent increase in β-catenin signaling was observed in polypoid dysplasia
following FA supplementation. Although not all the genes in Table 1 have been studied in
colitis-associated CRC, the pathways in which they participate, primarily Wnt/β-catenin
signaling, cell proliferation, and differentiation, represent known critical events in CRC
formation. Enhanced expression of Dusp4 and Epha2, members of MAPK signaling,
following FA supplementation, is consistent with the results of case-control studies which
demonstrate that FA can interact with multiple members of the MAPK pathway [61].
These data suggest that the impact of FA supplementation on DNA methylation and gene
expression occurs early and persists throughout the development of polypoid dysplasia.
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tumorigenesis.

In addition to modulating DNA methylation, FA supplementation increased the
expression of inflammatory mediators. Results from a FA supplementation trial (1 mg
FA daily for 8 weeks) of 10 high-risk subjects, with either a personal history of sporadic
colorectal adenoma or a first-degree relative with sporadic CRC, suggested that high FA
intake may promote the progression of CRC by enhancing inflammation and immune
responses [62]. The concentration of folate in serum and colon tissues increased 50–80%
over the course of the study, as compared to the baseline. Corresponding elevations in the
expression of 642 genes associated with immune and inflammatory processes/responses
(e.g., IL6, IL17F, TNF) were also observed following 4 and 8 weeks of FA treatment. Together,
these data suggest that FA supplementation may enhance tumorigenesis by upregulating
proinflammatory cytokines.

5. Conclusions

The results from the present study indicate that FA promotes colitis-associated CRC by
hypomethylating genes involved in key oncogenic pathways. Additional studies, including
clinical trials, are warranted to further evaluate the potential for FA supplementation to
increase CRC risk when administered to cancer-free patients with ulcerative colitis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15112949/s1, Table S1: Genes were significantly methylated
between 8 mg FA vs. 0 mg FA treated epithelium.
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