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Simple Summary: Clinical oncology urgently needs more specific and helpful new biomarkers to
improve the diagnosis and prognosis of cancer. Research of the last decade proposes extracellular
vesicles, particularly exosomes, as a natural source of new biomarkers; since tumors massively release
them, they circulate through the body and can be detected and characterized in plasma samples
of tumor patients. After a decade of up-and-coming pre-clinical research, the results of the few
clinical studies have provided some exciting data supporting the use of exosomes, at least in the
follow-up of tumor patients. However, the most convincing data have taught us that, on the one hand,
circulating exosomes deliver known tumor markers, such as PSA; on the other hand, the exosome
plasmatic levels in tumor patients consistently exceed those of normal controls. This information will
be extremely useful in the clinical management of tumor patients.

Abstract: Exosomes are extracellular vesicles (EVs) of nanometric size studied for their role in tumor
pathogenesis and progression and as a new source of tumor biomarkers. The clinical studies have
provided encouraging but probably unexpected results, including the exosome plasmatic levels’
clinical relevance and well-known biomarkers’ overexpression on the circulating EVs. The technical
approach to obtaining EVs includes methods to physically purify EVs and characterize EVs, such as
Nanosight Tracking Analysis (NTA), immunocapture-based ELISA, and nano-scale flow cytometry.
Based on the above approaches, some clinical investigations have been performed on patients with
different tumors, providing exciting and promising results. Here we emphasize data showing that
exosome plasmatic levels are consistently higher in tumor patients than in controls and that plasmatic
exosomes express well-known tumor markers (e.g., PSA and CEA), proteins with enzymatic activity,
and nucleic acids. However, we also know that tumor microenvironment acidity is a key factor in
influencing both the amount and the characteristics of the exosome released by tumor cells. In fact,
acidity significantly increases exosome release by tumor cells, which correlates with the number of
exosomes that circulate through the body of a tumor patient.

Keywords: extracellular vesicles; exosomes; tumors; biomarkers; methodology; body fluids; plasma

1. Introduction

Virtually any cell, during its lifespan (from embryonic development to senescence),
releases extracellular vesicles (EVs). EVs range in size from 30 nm to 1 µm, and the size
distinguishes microvesicles (from 200 nm to 1 µm) from exosomes (from 30 nm to 150 nm)
under both physiological and pathological conditions [1–6].

Exosome generation processes include a membrane shedding-like phenomenon (for
microvesicles) and multivesicular body (MVB) formation (for exosomes) [5–8]. Other
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mechanisms cannot be excluded and are currently under investigation worldwide. EVs,
particularly nanovesicles (exosomes), are a natural delivery system for a wide array of
substances. Exosomes travel the body through both hematic and lymphatic circulations.
Between the molecules that may be detected in exosome preparations, there are house-
keeping proteins, including tetraspanins (i.e., CD63, CD9, and CD81), heat shock proteins
(such as HSP-70), members of the Rab family, as well as other proteins, including Tsg101
and Alix. These markers have been used to characterize and quantify exosomes [9,10].
However, exosomes, during their formation, involve internal cell structures and the plasma
membrane; this may lead to the acquisition of markers of the cellular source [5–8].

Overall, exosomes purified from body fluids may contain typical tags that help distin-
guish exosomes from other particles and markers indicating the cellular source and often
the body compartment from which they are released. The above reasons make EVs, particu-
larly exosomes, a potential source of disease biomarkers with possible use as a liquid biopsy
in clinical oncology. In addition, exosomes have been shown to contain a series of nucleic
acids, including DNAs, mRNAs, and miRNAs, that may represent an additional source
of disease biomarkers [5,6,11]. However, exosomes also remove unnecessary molecules
poorly degraded by the lysosomal system [12,13], thus emphasizing the broad and complex
function of these nanovesicles in our body [1,4–6,12–20].

Exosomes can be found in many biological fluids, including blood, urine, saliva, stools,
cerebrospinal, epididymal, amniotic, serous fluids (including pleural, pericardial, and
peritoneal fluids), bronchoalveolar lavage fluid, synovial fluid, and breast milk [6,21–26].
Exosomes are released in a paracrine way within tissues, from where they are spilled into
the bloodstream, often ending in tissues of body compartments far from the production
site. For example, scientific evidence has shown that exosomes containing a reporter gene
are released from a tumor, found in the blood, and end in the germ line of the gonads, with
the potential to transfer the acquired genetic material to the progeny [27]. It is, therefore,
conceivable that exosomes may well participate in the continuous genome remodeling that
occurs in our body. The matter of fact is that exosomes are considered a natural source of
disease biomarkers [5,6,11,25–37]. A series of exciting molecules have been identified in
the plasma of both patients and healthy donors [5–7,11,29,32,38]. Clinical studies, while
still very few as compared to pre-clinical information, are providing exciting information
while often not entirely fitting with the aim of the studies [11,39–41], challenging the use of
these data in clinical settings. The future goal of translational oncology is and will be to
define the molecules’ cargo of body fluid-derived exosomes in tumor patients, also based
on the evidence that tumor-released exosomes are involved in both tumor progression
and metastasis [1,4,11,15]. Some unexpected but interesting findings propose the simple
measurement of exosome plasmatic levels as a key prognostic value [41,42]. The clinical data
show that, independently from the cancer histology (i.e., melanoma, prostate cancer, or oral
cancers) and the technique used in the experimental protocol (e.g., immunocapture ELISA,
nanoparticle tracking analysis (NTA), or nanoscale flow cytometry), patients displayed
higher plasmatic exosome levels as compared to healthy donors [24,41–43]. Other interesting
issues are the expression on plasmatic exosomes from tumor patients of acknowledged
tumor markers (e.g., PSA and CEA) [44,45] and a series of surrogate tumor markers (e.g.,
Cav-1, HSP60, and carbonic anhydrase, such as CA IX) [24,43,46,47]. This review will
introduce and discuss these issues to propose the best use of exosomes in clinical oncology.

2. A Technical Insight

A general discussion is given of the techniques used to purify and characterize exo-
somes from patient samples [5]. Currently, Nanoparticle Tracking Analysis (NTA) allows
the determination of the number and size of the obtained EVs from either cell culture super-
natant or body fluids. NTA acquires the Brownian movement of nanoparticles in a liquid
suspension, analyzing the EVs’ concentration and size distribution in the sample. This is
based on a single particle analysis with a serial correlation with the particle size [47,48].
The NTA analysis covers a broad range of particle sizes, ranging from 30 nm to 400–500 nm,
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thus distinguishing nanovesicles from microvesicles. NTA is, to date, considered the most
reliable technique to analyze a mixed population of submicroscopical vesicles in human
body fluids.

A preliminary analysis that might be performed on an EVS sample is transmission
electron microscopy (TEM). While not allowing a quantitative evaluation, TEM is an integral
approach to verifying whether samples under investigation contain submicroscopical
vesicles and whether a round shape and the typical bilayer membrane are maintained after
repeated centrifugation and ultracentrifugation. Moreover, vesicles may be phenotyped
by immuno-TEM using immuno-gold-labeled antibodies. A disadvantage of TEM is that
the samples undergo sequential rounds of fixing and dehydration before analysis, thus
potentially inducing morphological damage [47,48]. However, it is advisable to evaluate
exosomes by TEM analysis.

A rough evaluation of exosomes may also be performed by measuring the amount and
type of exosomal proteins present in the sample. The last accepted guidelines (MISEV2018)
have agreed on the following points that are required to establish that the sample under
investigation contains exosomes: (i) enrichment in at least one transmembrane protein
associated with the exosomal plasma membrane (e.g., tetraspanins CD9, CD63, CD81);
(ii) enrichment in cytosolic proteins (e.g., TSG101, ALIX) [5,49]. The most commonly used
techniques allowing this analysis are (i) Western blot, which is only a semi-quantitative
approach not valid for the study of clinical samples. Moreover, it is expensive in terms
of both the volumes required for the analysis and the time needed to obtain the results;
it is undeniably a qualitative analysis, allowing the detection of many proteins at the
same time; and (ii) flow cytometry allows simultaneous analysis of phenotyping (through
labeling with fluorescent antibodies) and physical parameters (e.g., size and structure of
particles). However, conventional cytometers could underestimate particles smaller than
300 nm, and a new generation of flow cytometers has been provided with both multi-
angle lasers to improve particle resolution [50–52] and nanoscale equipment to include
analysis of nanosized particles, also called nanoscale-flow cytometry, recently used in
clinical studies [44,53].

A technical approach that allows us to simultaneously provide quantitative and
qualitative data is the immunocapture-based ELISA. It was shown for the first time that
immunocapture-based ELISA exosomes could be quantified and characterized from either
cell culture supernatants or human plasma [24]. This technique was exploited in clinical
investigations, including melanoma, prostate, and oral cancer patients [24,43,44]. This
approach allows the analysis of the whole EV population, including exosomes. Fluorescence
Activated Cell Sorter (FACS), while equipped with nanoscale flow cytometry, does not allow
a broad spectrum of analysis or simultaneous analysis of different samples. Immunocapture-
based ELISA looks ideal for this purpose since it will enable the detection and quantification
of both exosome-specific antigens and tumor antigens on EVs isolated from small quantities
of plasma simultaneously [24,43,44,53]. Recent data support the high level of versatility of
the technique, with the identification of a series of housekeeping proteins, such as Rab5b,
CD81, and CD63, and tumor-specific markers, such as PSA, but also surrogate tumor
markers, such as Cav-1 and carbonic anhydrase [24,43,44,46,47,53].

Furthermore, this approach has been recently reported for characterizing urinary
exosomes [25], thus representing a new approach for the follow-up of patients affected
by urinary tract cancers. However, the goal will be to implement immunocapture-based
ELISA with other methods, such as nanoscale flow cytometry (NFC) and NTA, as pro-
posed in prostate cancer patients [41]. In the above study, statistical analysis of the results
showed that immunocapture-based ELISA allows exosomal PSA detection and discrim-
inates prostate cancer patients from both healthy subjects and benign prostate hypertro-
phy (BPH) patients with significantly higher sensitivity and specificity than serum PSA.
Moreover, immunocapture-based ELISA allows for quantifying and characterizing several
clinical samples simultaneously and in a broader population of EVs compared to nanoscale
flow cytometry [53–55].
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3. A Role of Exosomes in Cancer: From Preclinical to Clinical Data

Scientific evidence is accumulating that exosomes have a crucial role in tumor metas-
tasis, passing through either the generation of a metastatic niche or a tumor-like trans-
formation of mesenchymal stem cells in organs that are targets of metastasis [4,15,56–58].
However, the acidic pH of the tumor microenvironment plays a determinant role in at least
three essential features: (i) the increased exosome release by tumor cells; (ii) determining
the exosome cargo, including some tumor biomarkers [2,46,53]; and (iii) it is associated
with a reduced size as compared to the heterogeneous size of those released at physiolog-
ical pH [2,53]. The increased exosome release in acidic conditions correlates to the high
plasmatic exosome levels compared to controls [44,53]. The reason why tumor cells increase
the release of exosomes in acidic conditions may be related to the attempt to eliminate
toxic molecules that tend to accumulate in the tumor microenvironment; the molecules
to stop include antitumor drugs such as cisplatin [59]. This is further supported by the
observation that antitumor medications contained in the exosomes released by tumors
are in their native/active form, thus potentially being released into the bloodstream and
getting into unaffected organs, contributing to the heavy side effects that sadly often occur
in cancer patients. Between the molecules delivered by tumor exosomes, there are ion
transporters (e.g., CAIX) that, together, are significantly increased in exosomes released in
acidic conditions and conserve their full enzymatic function [46]. The CA has also been
shown in the plasmatic exosomes of cancer patients; the same plasmatic exosomes have
shown increased acidity compared to healthy subjects [47].

Another hurdle was the claim for the specificity of some markers identified on circu-
lating exosomes of tumor patients that turned out not to be so specific for a given tumor.
One example is glypican-1, which has been proposed as a specific marker of pancreatic
cancer but also showed a high expression level in exosome purification from other can-
cers [56]. Too often, the specificity of an exosome-related tumor biomarker was not tested
by comparing different cancer patients [60].

4. Exosomes Deliver Enzymatic Activity

One of the most effective mechanisms by which exosomes may up-load their content
into target cells is the fusion between their membrane and the plasma membrane of a
target cell [61]. Through the above mechanism, exosomes released by a primary tumor
may contribute to the metastatic process once they get to a metastatic organ via the blood-
stream [15,58]. This is further supported by a recent report showing that exosomes obtained
from cancer patients’ plasma deliver proteins and molecules with evident enzymatic activ-
ity and an intraluminal pH suitable for enzyme activation [47]. Notably, it was also shown
that in vitro, the acidic condition increases the expression of exosomes and proteins with
enzymatic activity, such as carbonic anhydrase [46]. This information, on the one hand,
further highlights the importance of exosomes as a natural delivery system for a broad
array of molecules; on the other hand, it suggests that the research of disease biomarkers
should also be directed to functional molecules rather than the mere expression of a protein.

5. Exosomes Deliver Nucleic Acids

At the time, exosomes were considered vesicles released by the cells with a signifi-
cant commitment to scavenging cells from either toxic or unwanted material. Of course,
this remains a function of extracellular vesicles, as witnessed by EVs in the stools and
urine [6]. However, the discovery that EVs deliver nucleic acids has changed how these
vesicles have been considered [19]. It has been shown that EVs, purified from either cell
culture supernatant or human body fluids, contain mRNA, miRNA, long non-coding RNA
(lncRNA), and DNA [11,62,63]. Most clinical studies reporting the nucleic acid cargo of
body fluid-derived exosomes have been performed in tumor patients. The results suggest
significant differences exist between tumor patients and healthy individuals, particularly in
exosomal miRNA composition [32,64–71]. Currently, there is some inconsistency primarily
due to technical and analytical issues, which too often create inhomogeneity between the
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samples, which in turn affects miRNA’s yield, integrity, and purity [5]. One important
issue is the evidence that miRNAs are not always associated with exosomes, often be-
ing associated with either RNA-binding proteins (e.g., Argonaute 2) or lipoproteins (e.g.,
HDL and LDL) [5,65,66]. More recently, a commercially available isolation kit (MACS
Exosome Isolation Kit, Miltenyi Biotec, Germany) is starting to be exploited to obtain a
more purified exosome population, thus providing a more certain exosome-associated
miRNA yield [72]. Comparably to the MACS method, immunocapture-based exosome
purification may greatly help in obtaining exosomes from the ultracentrifuged material
using antibodies directed against the proteins that are overexpressed on the exosome
membrane (e.g., CD9, CD63, CD81, ALIX). The same approach may be exploited using
plastic wells and magnetic beads as primary substrates [73]. This approach allows us to
obtain a highly enriched exosome preparation, thus analyzing only the vesicles captured
by the antibodies in terms of characterization of either miRNAs or RNAs present in the
immunocaptured material. The immunocapture-based methodology has also been de-
scribed and used in clinical trials [53–55]. However, it needs to be extensively exploited
in analyzing the presence of exosome-associated nucleic acids in clinical samples using
different approaches [74]. Another interesting area is related to the analysis of the presence
of genomic DNA mutations in exosomes purified from clinical samples. DNA mutations
are involved in many tumor advantages, most notably resistance to therapies, and represent
a potential tumor biomarker [71]. Detecting exosomal DNA in clinical samples is receiving
a large consensus in cancer patients [75–78] and other diseases, including viral-related
pathological conditions [79]. In addition, recent reports have shown that exosomes purified
and concentrated from body fluids, such as ascites, may express high levels of protein
glycosylation [80]. While the data reporting critical roles of exosome associated RNAs
is becoming bulky, we need more convincing evidence that they may represent helpful
and reliable tumor biomarkers to be diffusely used in oncology laboratories worldwide.
Therefore, it appears mandatory that it should need central management of the available
data to get to a conclusive analysis.

6. Conclusions

To date, we have considerable data supporting the use of exosomes and EVs for the
clinical management of tumor patients (Table 1). However, of course, it needs clinical
validation to be considered an accurate diagnostic/prognostic tool in clinical oncology.
What was an exciting hypothesis for the scientists involved in the field a decade ago is
now scientific evidence that exosomes are a source of new biomarkers. However, while
the discovery of new biomarkers still needs time to be translated into the clinic, some
unexpected findings promise to need a shorter path to clinical use: (1) The evaluation of
the number of circulating exosomes that are proven to be higher in patients with cancer
as compared to healthy controls; (2) Plasmatic exosomes hyperexpress known tumor
biomarkers (e.g., PSA, CEA).

Additional information is that plasmatic exosomes are smaller in tumor patients than
in healthy and diseased controls and more acidic in tumor patients than controls. Thus,
quantifying and characterizing exosomes in human body fluids represents a new tool for
clinical oncologists and a non-invasive diagnostic/prognostic approach.

We have three methods that, when implemented, may offer a solid approach to using
these methods together to quantify and characterize exosomes: Nanoparticle Tracking
Analysis (NTA), immunocapture-based ELISA, and nanoscale flow cytometry (NFC). Using
all these methodologies to describe exosome purification in clinical samples may represent
a real advance in the clinical management of tumor patients. Another interesting approach
is to use immunocapture of exosomes to optimize the detection of tumor biomarkers,
particularly in detecting and validating tumor-specific miRNA. Possible future directions
could be: (i) to identify physical-chemical properties of exosomes associated with some
tumor phenotypes (e.g., intraluminal pH); (ii) to include the expression of active molecules
within exosomes (e.g., carbonic anhydrase). Clinical studies are also needed to validate the
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existing data in a broader range of body fluids, with considerable advantages for patients by
avoiding or limiting unnecessary invasive procedures and hopefully significantly reducing
public health costs. In this sense, the data from studies performed in the urines of patients
look very promising [25,26,64,80–83]. Most of all, we need to tidy up the increasing amount
of clinical and pre-clinical data supporting the use of exosomes as a source of tumor
biomarkers, using too often different technologies and different ways to obtain exosomes
from other body fluids [84–111]. This review asks for a more strategic approach to obtaining
data on exosomes from clinical samples of tumor patients. As challenging news, it has been
recently reported that exosomes may deliver therapeutic antibodies that have been shown
to maintain their full activity when expressed on exosomes [112]. This finding might be of
paramount importance not only for therapeutic use but also for its potential as a new family
of biomarkers for both the diagnosis and prognosis of cancer patients. Table 2 summarizes
the ongoing clinical trials using exosomes as diagnostic/prognostic tumor biomarkers. It
is straightforward from the table that the number of clinical trials is increasing, and the
current number is awe-inspiring, up to 65. This means that in the following years, we
will have more data to reason about the future directions of clinical research on exosomes.
The current clinical research covers a broad panel of exosome-associated potential tumor
biomarkers that will hopefully represent a promising future for clinical oncology.

Table 1. Data from clinical investigations on extracellular vesicles.

Tumor Biomarkers Source References

Breast cancer

Breast cancer resistance
protein (BCRP) Plasma [113]

Her2 Plasma
Serum [114,115]

Glypican-1 Serum [56]

Fibronectin Plasma [116]

Periostin Plasma [117]

Del-1 Plasma [118,119]

miR-101, miR-372, and
miR-373 Serum [84]

miR-1246 and miR-21 Plasma [85]

Colorectal cancer

Hsp60 Plasma [38]

TSAP6/CEA Plasma [86]

Glypican-1 Plasma [28]

CEA Serum [45,87]

CD147
Serum [87]

Plasma [89]

let-7a, miR-1229, miR-1246,
miR-150, miR-21, miR-223,

and miR-23a
Serum [90]

miR-19 Serum [91]

miR-4772-3p Serum [92]

miR-21 Serum [87]

miR-221 Serum [94]

Esophageal squamous
sell sarcinoma miR-21 Serum [95]
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Table 1. Cont.

Tumor Biomarkers Source References

Gastric cancer

GKN1 Serum [96]

TGF-β1 Plasma [97]

RNA Bile [98]

miR-423-5p Serum [99]

Hematological tumors CD9, CD13, CD19, CD30,
CD38, and CD63 Serum [100]

Hepatocellular
carcinoma

miR-18a, miR-221, miR-222,
and miR-224 Serum [101]

miR-718 Serum [102]

Laryngeal squamous
cell carcinoma

miR-21 and HOTAIR
(lncRNA) Serum [103]

Lung cancer

NY-ESO-1 Plasma [104]

miR-125a-5p, miR-145, and
miR-146a Serum [105]

miR-151a-5p, miR-30a-3p,
miR-200b-5p, miR-629,

miR-100, and miR-154-3p
Plasma [106]

Melanoma

Caveolin-1 Plasma [24]

HSP70 and HSP90 Plasma [120]

MIA and S100B Serum [121]

Oral squamous cell
carcinoma CAV-1 Plasma [43]

Ovarian cancer

EpCAM, CD24, and
CA-125 Plasma [122–124]

TGF-beta1 and MAGE3/6, Plasma [125]

miR-21, miR-214, miR-200a,
miR-200b, miR-200c,

miR-203, miR-205, and
miR-141

Serum [126]

miR-21, miR-100, miR-200,
miR-320, and

miR373
Serum [107]

Pancreatic cancer

CD44v6, Tspan 8, EpCAM,
and CD104
miR-1246
miR-3976
miR-4306
miR-4644

Serum
Urine [64]

KRAS
P53 mutations Serum [71]

miR-17-5p and miR-21 Serum [108]

miR-10b, miR-21, miR-30c,
miR-181a, and miR-let7a Serum [127]

Glypican-1 Plasma [109]

miR-191, miR-21, and
miR-451a Serum [110]

miR-451a Plasma [111]
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Table 1. Cont.

Tumor Biomarkers Source References

Prostate cancer (PCa)

PSA
Plasma [44,53]

Urine [25]

CA IX Plasma [47]

Survivin Plasma [128]

Exosome levels Plasma [41]

PTEN Plasma [129]

miR-141 and miR-375 Serum [130]

miR-1290 and miR-375 Plasma [131]

miR-141 Serum [132]

Table 2. Ongoing clinical trials using exosomes in tumor diagnosis.

NCT Number Status Disease Characteristics Ref.

NCT03235687 Active, not reciting Prostate Cancer

Year: 2017
Population: n = 1000; Age: 50 years and
older; Sex: male
Phase: Not applicable

[133]

NCT03974204 Withdrawn Breast Cancer
Leptomeningeal Metastasis

Year: 2019
Population: n = 0; Age: 18 years and
older; Sex:
female
Phase: Not applicable

[134]

NCT05286684 Recruiting Breast Cancer

Year: 2023
Population: n = 30; Age: 18 years and
older; Sex: female
Phase: Not applicable

[135]

NCT04781062 Active, not recruiting Breast Cancer

Year: 2021
Population: n = 367; Age: 18 years and
older; Sex: female
Phase: Not applicable

[136]

NCT02662621 Completed Cancer (Solid Tumors)

Year: 2015
Population: n = 71; Age: 18 years and
older; Sex: all
Phase: Not applicable

[137]

NCT04530890 Recruiting

Breast Cancer
Digestive Cancer
Gynecologic Cancer
Circulating Tumor DNA
Exosomes

Year: 2021
Population: n = 1000; Age: 18 years and
older; Sex: all
Phase: Not applicable

[138]

NCT04258735 Recruiting Metastatic Breast Cancer

Year: 2019
Population: n = 300; Age: 18 years and
older; Sex: all
Phase: Not applicable

[139]

NCT04556916 Recruiting Prostate Cancer

Year: 2021
Population: n = 320; Age: 40 years and
older; Sex: male
Phase: Not applicable

[140]
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Table 2. Cont.

NCT Number Status Disease Characteristics Ref.

NCT03711890 Recruiting

Pancreatic Carcinoma
Pancreatic Intraductal
Papillary Mucinous
Neoplasm,
Pancreatobiliary Type

Year: 2019
Population: n = 75; Age: 18 years and
older; Sex: all
Phase: Not applicable

[141]

NCT02507583 Completed Malignant Glioma
Neoplasms

Year: 2015
Population: n = 33; Age: 18 years and
older; Sex: all
Phase: Phase 1

[142]

NCT05218759 Not yet recruiting Non-Small Cell Lung
Cancer

Year: 2022
Population: n = 30; Age: 18 to 75 years;
Sex: all
Phase: Not applicable

[143]

NCT04427475 Unknown status NSCLC Patients

Year: 2020
Population: n = 200; Age: 18 years and
older; Sex: all
Phase: Not applicable

[144]

NCT04636788 Unknown status Pancreas Adenocarcinoma

Year: 2020
Population: n = 102; Age: 18 years and
older; Sex: all
Phase: Not applicable

[145]

NCT03542253 Unknown status Early Lung Cancer

Year: 2018
Population: n = 80; Age: child, adult, and
older adult; Sex: all
Phase: not reported

[146]

NCT04529915 Active, not recruiting Lung Cancer

Year: 2020
Population: n = 470; Age: 40 years and
older; Sex: all
Phase: not reported

[147]

NCT03821909 Unknown status Pancreatic Cancer

Year: 2018
Population: n = 30; Age: 18 to 80 years;
Sex: all
Phase: not repoted

[148]

NCT03830619 Completed Lung Cancer (Diagnosis)

Year: 2017
Population: n = 1000; Age: 18 to 75 years;
Sex: all
Phase: not reported

[149]

NCT04394572 Completed Colorectal Cancer

Year: 2021
Population: n = 80; Age: 18 years and
older; Sex: all
Phase: not reported

[150]

NCT04155359 Recruiting Bladder Cancer

Year: 2020
Population: n = 3000; Age: 45 to 85 years;
Sex: all
Phase: not reported

[151]

NCT01344109 Withdrawn Breast Neoplasms

Year: 2011
Population: n = 0; Age: 18 years and
older; Sex: female
Phase: not reported

[152]

NCT05587114 Recruiting Lung Cancer
Diagnosis

Year: 2022
Population: n = 150; Age: 40 years and
older; Sex: all
Phase: not reported

[153]
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Table 2. Cont.

NCT Number Status Disease Characteristics Ref.

NCT05270174 Not yet recruiting

Explore Whether
lncRNA-ElNAT1 in Urine
Exosomes Can be Used as
a New Target for
Preoperative
Diagnosis of Lymph Node
Metastasis

Year: 2023
Population: n = 75; Age: 18 years and
older; Sex: all
Phase: not reported

[154]

NCT03032913 Completed Pancreatic Ductal
Adenocarcinoma (PDAC)

Year: 2017
Population: n = 52; Age: 18 years and
older; Sex: all
Phase: not reported

[155]

NCT02702856 Completed Prostate Cancer

Year: 2014
Population: n = 2000; Age: 50 years and
older; Sex: male
Phase: not reported

[156]

NCT04523389 Unknown status Colorectal Cancer

Year: 2020
Population: n = 172; Age: 18 years and
older; Sex: all
Phase: not reported

[157]

NCT03694483 Suspended Prostate Cancer

Year: 2018
Population: n = 600; Age: 18 years and
older; Sex: male
Phase: not reported

[158]

NCT04661176 Active, not recruiting Prostate Cancer

Year: 2020
Population: n = 500; Age: 22 years and
older; Sex: male
Phase: not reported

[159]

NCT02393703 Recruiting Pancreatic Cancer
Benign Pancreatic Disease

Year: 2015
Population: n = 111; Age: 18 years and
older; Sex: all
Phase: not reported

[160]

NCT01779583 Unknown status Gastric Cancer

Year: 2013
Population: n = 80; Age: 18 years and
older; Sex: all
Phase: not reported

[161]

NCT04081194 Unknown status
New Tumor Diagnostics
From Human Plasma
Samples

Year: 2016
Population: n = 15; Age: 50 to 90 years;
Sex: all
Phase: not reported

[162]

NCT03236688 Suspended
Metastatic
Castrate-Resistant Prostate
Cancer

Year: 2016
Population: n = 30; Age: 18 years and
older; Sex: male
Phase: not reported

[163]

NCT04629079 Recruiting Lung Cancer

Year: 2020
Population: n = 800; Age: 18 years and
older; Sex: all
Phase: not reported

[164]

NCT04939324 Active, not recruiting

Lung Cancer
Exosomes
Non-Small Cell Lung
Cancer

Year: 2021
Population: n = 30; Age: 18 years and
older; Sex: all
Phase: Not Applicable

[165]
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NCT04288141 Recruiting HER2-positive Breast
Cancer

Year: 2019
Population: n = 40; Age: 18 years and
older; Sex: all
Phase: not reported

[166]

NCT03874559 Unknown status Rectal Cancer

Year: 2018
Population: n = 30; Age: 18 years and
older; Sex: all
Phase: not reported

[167]

NCT03738319 Unknown status

High-Grade Serous
Carcinoma
Ovarian Cancer
Exosomes
Prognosis
Early Diagnosis

Year: 2018
Population: n = 160; Age: 18 years and
older; Sex: female
Phase: not reported

[168]

NCT04720599 Completed Urologic Cancer

Year: 2020
Population: n = 120; Age: 50 years and
older; Sex: male
Phase: not reported

[169]

NCT05101655 Completed Osteosarcoma
Pulmonary Metastases

Year: 2020
Population: n = 60; Age: 12 to 60 years;
Sex: all
Phase: not reported

[170]

NCT04315753 Unknown status Lung Cancer

Year: 2018
Population: n = 2000; Age: 55 years and
older; Sex: all
Phase: not reported

[171]

NCT03895216 Completed Bone Metastases

Year: 2018
Population: n = 34; Age: 18 years and
older; Sex: all
Phase: not reported

[172]

NCT04960956 Terminated Prostate Cancer
Urothelial Carcinoma

Year: 2016
Population: n = 13; Age: 18 years and
older; Sex: male
Phase: not reported

[173]

NCT03911999 Completed Prostate Cancer

Year: 2018
Population: n = 180; Age: 45 years and
older; Sex: male
Phase: not reported

[174]

NCT05572099 Recruiting Prostate Cancer

Year: 2018
Population: n = 750; Age: 45 years and
older; Sex: male
Phase: not reported

[175]

NCT04323579 Unknown status Lung Cancer

Year: 2018
Population: n = 2000; Age: 55 years and
older; Sex: all
Phase: not reported

[176]

NCT04357717 Terminated Prostate Cancer

Year: 2020
Population: n = 150; Age: 50 years and
older; Sex: male
Phase: not reported

[177]
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NCT04100811 Recruiting Prostate Cancer

Year: 2020
Population: n = 4000; Age: 45 years and
older; Sex: male
Phase: not reported

[178]

NCT05463107 Not yet recruiting Thyroid Cancer
Follicular Thyroid Cancer

Year: 2022
Population: n = 50; Age: 20 to 80 years;
Sex: all
Phase: not reported

[179]

NCT04653740 Recruiting Advanced Breast Cancer

Year: 2020
Population: n = 25; Age: 18 years and
older; Sex: female
Phase: Not applicable

[180]

NCT02147418 Recruiting Oropharyngeal Cancer

Year: 2015
Population: n = 30; Age: 18 years and
older; Sex: all
Phase: Not reported

[181]

NCT03432806 Recruiting Colon Cancer
Liver Tumors

Year: 2017
Population: n = 80; Age: 18 years and
older; Sex: all
Phase: Not reported

[182]

NCT05397548 Recruiting Gastric Cancer

Year: 2022
Population: n = 700; Age: 18 to 80 years;
Sex: all
Phase: Not reported

[183]

NCT03811600 Completed Sleep Apnea Syndromes,
Obstructive Cancer

Year: 2019
Population: n = 90; Age: 18 years and
older; Sex: all
Phase: not reported

[184]

NCT03108677 Active, not recruiting Lung Metastases
Osteosarcoma

Year: 2017
Population: n = 90; Age: 12 to 60 years;
Sex: all
Phase: not reported

[185]

NCT04499794 Recruiting

Untreated Advanced
NSCLC Patients
FISH-Identified ALK
Fusion (Positive or
Negative)

Year: 2020
Population: n = 75; Age: 18 years and
older; Sex: all
Phase: not reported

[186]

NCT04182893 Unknown status Pulmonary Nodules

Year: 2019
Population: n = 400; Age: 18 years and
older; Sex: all
Phase: not reported

[187]

NCT02464930 Unknown status

Barrett’s Esophagus
Gastroesophageal Reflux
Esophageal
Adenocarcinoma

Year: 2015
Population: n = 220; Age: 18 years and
older; Sex: all
Phase: not reported

[188]

NCT05625529 Not yet recruiting

Pancreas Cancer
Exosomes
Extracellular Vesicles
Pancreatic Neoplasms

Year: 2022
Population: n = 1000; Age: 18 years and
older; Sex: all
Phase: not reported

[189]

NCT03581435 Unknown status Proteinosis
Gallbladder Carcinoma

Year: 2018
Population: n = 50; Age: 18 years and
older; Sex: all
Phase: not reported

[190]
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NCT03102268 Unknown status Cholangiocarcinoma
Benign Biliary Stricture

Year: 2017
Population: n = 80; Age: 18 years and
older; Sex: all
Phase: not reported

[191]

NCT05705583 Recruiting Renal Cell Carcinoma

Year: 2023
Population: n = 100; Age: 18 years and
older; Sex: all
Phase: not reported

[192]

NCT03334708 Recruiting

Pancreatic Cancer
Pancreatic Diseases
Pancreatitis
Pancreatic Cyst

Year: 2017
Population: n = 700; Age: 18 years and
older; Sex: all
Phase: not reported

[193]

NCT03800121 Recruiting Sarcoma

Year: 2018
Population: n = 30; Age: 18 years and
older; Sex: all
Phase: not reported

[194]

NCT05744076 Active, not recruiting Melanoma

Year: 2019
Population: n = 150; Age: 18 years and
older; Sex: all
Phase: not reported

[195]

NCT04053855 Recruiting Clear Cell Renal Cell
Carcinoma

Year: 2020
Population: n = 100; Age: 18 years and
older; Sex: all
Phase: not reported

[196]
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