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Simple Summary: Improving the response of breast cancer patients by designing and applying the
most appropriate treatment for each case is a major scientific challenge. Given the role of intracellular
calcium in cell proliferation, apoptosis evasion and cell resistance, in this review, we discuss its
potential for the development of new pharmacological treatments to treat the disease.

Abstract: Cancer is one of the main health problems worldwide. Only in 2020, this disease caused
more than 19 million new cases and almost 10 million deaths, with breast cancer being the most diag-
nosed worldwide. Today, despite recent advances in breast cancer treatment, a significant percentage
of patients will either not respond to therapy or will eventually experience lethal progressive disease.
Recent studies highlighted the involvement of calcium in the proliferation or evasion of apoptosis in
breast carcinoma cells. In this review, we provide an overview of intracellular calcium signaling and
breast cancer biology. We also discuss the existing knowledge on how altered calcium homeostasis is
implicated in breast cancer development, highlighting the potential utility of Ca2+ as a predictive and
prognostic biomarker, as well as its potential for the development of new pharmacological treatments
to treat the disease.
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1. Introduction
1.1. Epidemiology and Risk Factors for Breast Cancer

Cancer is a major public health problem worldwide, as the World Health Organization
(WHO) estimates that by 2040, there will be 28.9 million new cases that will cause more than
16.2 million deaths annually. Although breast cancer mainly affects women, it has become
the most diagnosed malignancy in the general population, precisely because of the number
of cases diagnosed in women, surpassing lung cancer, causing more than 2.2 million new
cases (11.7%) and more than 680,000 deaths in 2020 alone, corresponding to one in six
cancer deaths in women [1]. The burden of breast cancer is expected to increase year after
year, despite having a high remission rate once the disease is identified and treated prior to
progression to metastatic disease [2–4].

The risk factors associated with this disease include both intrinsic and extrinsic factors.
The intrinsic factors are not avoidable and are associated with genetic and epigenetic
characteristics [5], including mutations in autosomal dominant genes, such as breast cancer
1 (BRCA1) and breast cancer 2 (BRCA2) [6]; mutations in moderate-risk genes, such as the
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CHK2 serine/threonine protein kinase gene (CHEK2), the ataxia telangiectasia gene (ATM),
and the partner and localize of BRCA2 gene (PALB2); or low-frequency variations, such
as single-nucleotide polymorphisms (SNPs). The extrinsic factors are avoidable factors,
such as sedentary lifestyles, obesity, alcohol, tobacco or drug use, use of birth control pills
or hormone replacement therapies, and breast density [7,8]. In addition, it was observed
that parity and age at menarche are implicated in the risk of breast cancer [9,10] and that
different sociodemographic characteristics, such as lack of education, presence of anxiety or
depression, or above-average comorbidities, cause a delay in the treatment of patients [11].

1.2. Heterogeneity of Breast Cancer: Progression of the Disease and Histological and
Molecular Classifications

Generally, tumors develop following a sequence of initial lesions or alterations, hyper-
plasia, dysplasia, carcinoma in situ and invasive carcinoma. Traditionally, the histological
classification scheme for breast cancer has been divided into (1) carcinoma in situ, which
comprise noninvasive tumors with potentially malignant intraductal cells confined to the
ducts (ductal carcinoma in situ) or lobules (lobular carcinoma in situ) from which cells
can evolve uncontrollably to invasive, or (2) infiltrative carcinoma, in which neoplastic
cells have penetrated stroma [12]. Although current consensus recognizes invasive ductal
and lobular carcinomas, it was reported that most of these tumors arise in terminal ductal–
lobular units (TDLUs) regardless of the histologic type [13]. Ductal carcinoma is the most
commonly diagnosed invasive breast cancer, accounting for 50–75% of cases, followed by
lobular carcinoma (5–15%) and mixed ductal/lobular carcinomas [14].

As for the progression of the disease, the traditional TNM staging system, which is
based on tumor (T) anatomic features, regional lymph nodes (N) involvement, and the pres-
ence or absence of metastases (M) (Figure 1), has been the gold standard for determining
patient prognosis over the last 70 years [15]. Although it was reported that breast cancers
diagnosed at stages I and II have an overall survival of over 95%, up to 72% when diag-
nosed at stage III and reduced to 22% when diagnosed at stage IV [16], this anatomically
based system is not enough to address the tumor biology and guide decision-making and
treatment planning for all breast cancers, e.g., the triple-negative subtype is difficult to
manage [17]. The eighth edition of the American Joint Committee on Cancer, announced in
2017 and globally adopted on 1 January 2018, also integrated biomarkers such as tumor
grade, hormone receptor status, expression of the human epidermal growth factor recep-
tor (EGFR) family member HER2 (Human Epidermal Growth Factor Receptor 2/ErbB2
receptor tyrosine kinase 2) or multigene panel status for certain sub-groups, resulting in
different prognostic stages for tumors with virtually identical histologic types [18]. These
have highlighted the important role of breast cancer heterogeneity in the correct clinical
management of the disease.

With respect to hormone receptors (estrogen receptor (ER∝) and progesterone receptor
(PR)) and human epidermal growth factor receptor 2 (HER2):

• Hormone-receptor-positive breast tumors, which account for 75% of breast carcinomas,
are classified into luminal A breast tumors (50–60% of diagnosed cases)—which are ER-
positive and/or PR-positive, HER2-negative and Ki67 < 14% [19] with low histological
grade, and have a low mitosis proportion number and good prognosis—and luminal
B tumors (15–20% of diagnosed cases)—which are defined as ER-positive and/or
PR-positive (PR < 20% + Ki67 ≥ 14%), HER2-negative or ER-positive and/or PR
positive/negative (any PR-positive and any Ki67) and HER2-positive. Luminal B
tumors usually have a more aggressive phenotype, both by histologic grade and
proliferative Ki67 index, and worse prognosis than luminal A tumors [20].

• HER2-enriched tumors, which account for approximately 15–20% of breast tumors,
present HER2 overexpression [21]. These tumors do not express estrogen or proges-
terone receptors and are characterized by the overactivation of signaling pathways
involved in increased cell proliferation (Ras/MAPK mitogen-activated protein kinases
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and PI3K/AKT phosphoinositide 4-kinase/protein kinase B), with increased risk of
metastasis and a more aggressive phenotype than luminal tumors [22].

• Basal-like tumors are characterized by a lack of HER2 overexpression and the absence
or low levels of ER/PR expression. Among basal-like tumors, the triple-negative
subtype, which constitutes approximately 80% of basal-like tumors and 10–15% of
breast carcinomas, is defined by the lack of hormone receptors (ER-, PR-), the lack of
HER overexpression (HER2-) and being cytokeratin-5/6-positive (CK5/6+) and/or
Epidermal-Growth-Factor-Receptor-positive (EGFR+) [23].
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Figure 1. Progression of breast cancer in the different stages according to the traditional TNM staging
system. Images were created using Biorender.com.

The molecular classification of breast cancer has allowed for the development of
personalized therapeutic options, which have greatly improved patient response and
prognosis. Since estrogen receptors are steroid hormone receptors that induce the pro-
duction of growth factors, such as Epidermal Growth Factor (EGF), Insulin-like Growth
Factor-1 (IGF) or Transforming growth factor alpha (TGFα), which stimulate tumor cell
proliferation, competitive estrogen–estrogen receptor inhibitors have shown their utility to
decrease tumor cell proliferation [24–26]. In such a manner, targeted treatments based on
the use of monoclonal antibodies revolutionized the treatment for HER2-enriched breast
tumors [27]. Unfortunately, although TNBCs are associated with poor long-term prognosis,
higher probabilities of recurrence over time, and high probabilities of local and distant
recurrence [28,29], no effective therapy has yet been approved for the targeted treatment of
these tumors. The 5-year overall survival for non-metastatic disease is 85% for TNBC stage
I patients compared with 94–99% for stage I patients with hormone-receptor-positive and
HER2-positive breast tumors [25]. However, the overall 5-year survival rate for patients
with metastatic disease is 22% [30].

These molecular classifications with major predictive and prognostic implications
opened the way to histologic-independent personalized therapies, such as poly-ADP ribose
polymerase (PARP) inhibitors for the treatment of tumors with mutations in BRCA1 and
BRCA2 genes (present in up to 5% of breast cancer patients [31]) by preventing tumor
cells with BRCA1/BRCA2 mutations from repairing DNA damage caused by cytotoxic
chemotherapy [32].

As for more advanced transcriptomic analyses, i.e., assays that analyze the expression
of multiple genes with the aim of providing prognostic and predictive information about
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breast cancer patients, these should be used at the time of initial diagnosis, not after
relapse, and help to make therapeutic decisions when this is not clearly based on traditional
clinicopathologic features [33,34]. Oncotype DX is a test developed by the Genomic Health,
Inc., laboratory that analyzes 16 cancer-related genes for the diagnosis and prediction of
ER-positive and HER2-negative cancer patients. MammaPrint analyzes the expression of
80 genes that allow the tumor to be categorized as luminal A, luminal B or basal-like [34].
Prosigna is a test designed for HER-positive postmenopausal patients and analyzes the
expression of 50 genes to categorize the tumor into luminal A, luminal B, basal-like or
HER2-enriched subtypes [33].

1.3. Conventional Treatments for Breast Cancer

The conventional treatments used to treat breast cancer are surgery, radiotherapy,
chemotherapy, hormone therapy and immunotherapy, used alone or in combination.

Breast cancer surgery usually consists of two options: conservative surgery and mas-
tectomy. Currently, breast-conserving surgery has replaced mastectomy, as the overall and
disease-free survival rates are equivalent to this radical procedure. In addition, current
early diagnosis programs have made the early detection of tumors possible, which allows
for avoiding radical mastectomies in most cases. Although with conservative surgery,
only the tumor mass is removed, sometimes it is necessary to remove more than 20% of
the normal breast tissue surrounding the tumor, which has implications for the physical,
emotional, and mental health of the patient. In recent years, the implementation of neoadju-
vant chemotherapy has allowed for reducing the tumor size before surgery and, therefore,
more conservative surgical interventions. Moreover, the incorporation of sentinel lymph
node biopsy into surgery has made it possible to reduce the extent of surgery without
compromising the prognostic value [35–37] since patients with one or two positive sentinel
nodes should no longer undergo axillary lymphadenectomy [38].

Radiation therapy by means of X-rays or gamma rays is usually used to eliminate
possible cancer cells that remain in the area after surgery. This additional component of
breast-conserving therapy, which includes strong enough radiation doses that ensure the
complete elimination of malignant cells [39], can be omitted in patients with limited life
expectancy, adjuvant endocrine therapy, negative nodes, and hormone-receptor-positive or
HER2-negative tumors [37].

Chemotherapy can be applied both before surgery to reduce tumor size (neoadjuvant
chemotherapy) and avoid mastectomy and/or after surgery (adjuvant chemotherapy),
while always considering the tumor size, hormone and HER2 receptor status, as well as the
lymph node status [40]. Adjuvant chemotherapy is usually recommended for patients with
a high risk of disease recurrence and usually involves combined treatment with taxanes
and anthracyclines. For patients at low risk, anthracyclines are usually omitted [41].

Hormone therapy is the first-line option for all patients with ER-expressing breast
cancer, where tamoxifen (Nolvadex, AstraZeneca Pharmaceutics, Cambridge, UK), which
is a selective receptor estrogen modulator, is the drug commonly used because of its ability
to reduce disease recurrence by half [42]. In postmenopausal women, tamoxifen is replaced
by aromatase inhibitor drugs, which also target the estrogen signaling pathway, such as
anastrozole (Arimidex, AstraZeneca Pharmaceutics, United Kingdom) or letrozole (Femara,
Novartis Pharma, Basel, Switzerland) [43], as they produce a greater reduction in breast
cancer recurrence than tamoxifen alone [44]. However, the best way to use these therapies
is still uncertain [45].

The use of monoclonal antibodies opened a new era in the fight against breast with
targeted treatments (Table 1). HER2, which plays a key role in tumor growth by activating
different signaling pathways closely linked to cell proliferation, can be targeted with
Trastuzumab (Herceptin, Roche Registration GmbH, Grenzach-Wyhlen, Germany) and
pertuzumab (Perjeta, Roche Registration GmbH, Germany), which are two monoclonal
antibodies that inhibit HER2 through the extracellular domain of the receptor [46], thereby
blocking the signaling pathways it controls, and thus, exerting a considerable antitumor
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effect [47]. In 1998, Trastuzumab became the first monoclonal antibody approved by
the FDA to treat HER2-positive breast cancer patients. Pertuzumab was approved in
2013 by the FDA for use in combination with Trastuzumab for HER2-positive patients at
risk of relapse [48], which is a scheme that has shown good tolerability and a decrease
in associated side effects [49]. In 2021, the FDA approved Margetuximab (Margenza,
Macrogenics, Rockville, MD, USA) as a monoclonal antibody against HER2 for patients
with HER2-positive metastatic breast cancer [50,51], the use of which in combination with
chemotherapy significantly improves overall survival, although with important associated
adverse effects [52].

Table 1. Types of immunotherapeutics used to treat breast cancer.

Type Molecular Target Immunotherapeutics Type of Patient

Tyrosine kinase inhibitors
(TKIs)

ATP-binding side of HER2 and
EGFR tyrosine kinase Lapatinib HER2+

Tyrosine kinase domain of HER2 Neratinib HER2+ treated with adjuvant
Trastazumab therapy

Tyrosine kinase domain of HER2
and HER3 Tucatinib Advanced-stage HER2+

Human epidermal growth factor
receptor type 1 (EGFR) specific

tyrosine kinase domain
Pyrotinib

Advanced-stage HER2+
previously treated with

chemotherapy

HER2 Extracellular domain of HER2

Trastazumab HER2+

Pertuzumab HER2+ with risk of relapse

Margetuximab HER2+ in metastasis stage

Drug–antibody conjugates

Extracellular domain of HER2+
microtubule depolymerizer

Trastazumab emtansine
(T-DM1) HER2+ in metastasic stage

HER2 extracellular domain +
maleimide +

topoisomerase inhibitor

Trastazumab deruxtecan
(DS-821a) HER2+

Other HER2-associated monoclonal antibodies include epidermal growth factor re-
ceptor (EGFR) and transforming growth factor alpha (TFGα), whose binding activates the
PTEN/I3K/Akt/mTOR and Ras/Raf/MEK intracellular signaling pathways. These are
directly involved in cell proliferation and apoptosis. Inhibitors of kinases (TKIs) inhibitors
at the extracellular domain level of HER2, such as lapatinib (Tyverb, Novartis Europharm
Limited, Dublin, Ireland), neratinib (Nerlynx, Pierre Fabre Medicament, Paris, France),
tucatinib (Tukysa, Seagen B.V., Schiphol, The Netherlands) and pyrotinib (AiRuiNi, Jiangsu
Hengrui Pharmaceutical Group Co., Ltd., Lianyungang, China), are noteworthy in this
regard [53]. Lapatinib is a HER2 and EGFR tyrosine kinase inhibitor at the kinase ATP
binding site level and was approved in 2018 by the FDA for HER2-positive patients in
combination with other anti-HER2 agents, such as trastuzumab [54]. Neratinib binds to
the tyrosine kinase domain of HER2 and was approved by the FDA in 2018 likewise for
HER2-positive stage I to III patients who received adjuvant therapy with trastuzumab [55].
Tucatinib, which is highly selective against HER2, was approved in 2020 by the FDA for
advanced-stage HER2-positive patients and in combination with trastuzumab [56]. Fi-
nally, pyrotinib is a HER inhibitor that was approved in 2018 in China for advanced-stage
HER2-positive patients who received prior chemotherapy [57].

The recent incorporation of drug–antibody conjugates against breast cancer represent
an innovative therapeutic approach that combines the high specificity and antitumoral
properties of monoclonal antibodies with the potent cytotoxic activity of small molecule
drugs [58]. Examples of these conjugates are (1) trastuzumab emtansine (T-DM1) (Kadcyla,
Roche Pharma AG, Germany), which includes trastuzumab, and a maitansinoid deriv-
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ative, which depolymerizes cell microtubules and triggers cell apoptosis [59], were ap-
proved by the FDA in 2013 for patients with HER2-positive metastatic breast cancer [60],
and (2) Trastuzumab deruxtecan (DS-8201a) (Enhertu, Daiichi Sankyo Europe GmbH,
Munich, Germany), which was approved by the FDA in 2020 for the treatment of HER2-
positive breast cancers and is composed of trastuzumab, a maleimide, and a topoisomerase
inhibitor [58,61].

1.4. Targeted Therapies for Breast Cancer

Angiogenesis is a process directly involved in tumor development, as tumor formation
depends on the formation of new blood vessels and influences the appearance of metas-
tasis [62]. Although it is a process controlled by a variety of factors, vascular endothelial
growth factor A (VEGF-A) is among those mainly responsible [40]. The human mono-
clonal antibody anti-VEGF-A Bevacizumab (Avastin, Roche Registration GmbH, Germany)
is among the most prominent antiangiogenic drugs for angiogenesis inhibition [63,64].
Despite causing many side effects, such as bleeding, skin rashes and hypertension [65],
Bevacizumab was approved in 2008 by FDA for the treatment of HER2-negative breast
cancer in combination with paclitaxel (Taxol, Teva Pharma, Madrid, Spain) or capecitabine
(Kern Pharma, Barcelona, Spain) [66].

Cyclin-dependent kinases (CDKs), such as the kinase cyclin D/cdk4/6, are key en-
zymes in cell progression, tumor development and clonal expansion [67]. CDK4/6 in-
hibitors, such as palbociclib (Ibrance, Pfizer, Ixelles, Belgium), ribociclib (Kisqali, Novartis
Europharm Limited, Ireland) and abemaciclib (Verzenios, Eli Lilly Nederland B.V., Utrecht,
The Netherlands), were approved in 2017 by the FDA for the treatment of HER2-positive
or -negative breast tumors, in combination with endocrine therapy. Although this scheme
can cause neutropenia as the main side effect, it is usually well tolerated and has led to a
significant improvement in patient overall survival [68].

The PI3K/Akt/mTOR pathway plays a fundamental role in cell proliferation, survival
and development [69], and is altered in breast cancer [70]; therefore, efforts have focused
on trying to inhibit the various components that make up this signaling pathway. The
PI3K inhibitor alpelisib (Piqray, Novartis Europharm Limited, Ireland) was the first FDA-
approved breast cancer drug for hormone-receptor-positive and HER2-negative patients. Its
approval in 2020 was under its combined use with fulvestrant (AstraZeneca, UK), which is
an estrogen receptor antagonist [71], and its most common side effect is hyperglycemia [72].
For its part, everolimus (Afinitor, Novartis Europharm Limited, Ireland), which is an
inhibitor of the mTORC1 complex, was approved by the FDA in 2009 for patients with
hormone-receptor-positive, HER2-negative advanced breast cancer in combination with
exemestane (Exemestane Sandoz, Sandoz Farmacéutica, Madrid, Spain), which is a steroid
aromatase inhibitor. Like Alpelisib, Everolimus causes hyperglycemia as a major side effect,
as both affect lipid metabolism [73].

Currently, for Akt kinase, the inhibitor ipatasertib (GDC-0068, RG7440) is still under
development for the treatment of locally advanced/metastatic inoperable TNBC. In the
preclinical phase, it demonstrated efficacy in inhibiting the PI3K/AKT pathway [74]. In
phase Ib, the combination of this drug with paclitaxel (Taxol, Teva Pharma, Spain) evidenced
good tolerance [75], while in phase II, it managed to improve tumor-progression-free
survival [76,77]. However, recent phase III results show that adding this drug does not
improve the efficacy of treatment with paclitaxel (Abraxane, Bristol-Myers Squibb Pharma,
Dublin, Ireland) [78].

Mutations that cause errors in the DNA replication process, as well as those affecting
the DNA repair machinery, are common in the development of cancer [79]. Poly ADP-
ribose polymerase (PARP) enzymes, which are involved in DNA repair, and members of
the BER pathway, which is the base excision repair pathway, are critical [80]. In this regard,
olaparib (Lynparza, AstraZeneca AB, Södertälje, Sweden) was the first drug approved
by the FDA in 2018 for the treatment of patients with HER2-negative breast cancer and
BRCA mutations [81], but it has many reported side effects [82]. Talazoparib (Talzenna,
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Pfizer Europe MA EEIG, Belgium) is another drug approved by the FDA in 2018, but
for HER2-negative and locally advanced or BRCA-mutated patients. In vitro, it showed
200-fold greater antitumor results than other PARP inhibitors [83]. However, the list of
associated side effects is equally extensive [84].

Table 2 shows the main targeted therapies for treating breast cancer employed today.

Table 2. Types of targeted therapies against breast cancer.

Type Molecular Target Chemotherapeutic Type of Patient

Angiogenic VEGF-A Bevacizumab HER2-

CDK4/6 inhibitor CDK4/6
Palbociclib
Ribociclib

Abemaciclib
HER2+ or HER2-

PI3K/Akt/mTOR pathway
inhibitors

PI3K Alpelisib Hormone-receptor-positive and
HER2-positive

mTORC1 Everolimus
Advanced

hormone-receptor-positive and
HER2-positive

PARP inhibitors PARP

Olaparib HER2- and BRCA-mutated breast
cancer

Talazoparib
HER2- and locally advanced

tumors or with mutations
in BRCA

2. Role of the Ca2+-Signaling Pathway in Breast Cancer

Ninety-nine percent of the total body calcium is found in the body in mineral form as
calcium hydroxyapatite (Ca10[PO4]6[OH]2) associated with hard tissues, such as bones and
teeth, which also act as a reservoir and source of free calcium ions (Ca2+) that are essential
for bodily and cellular physiological functions [85].

As a second messenger, intracellular Ca2+ levels increase as a stimulus–response
reaction, with an allosteric regulatory effect on enzymes and proteins involved in signal
transduction pathways and different cellular processes, such as gene activation, secretion,
migration, division, differentiation, proliferation and cell death [86], as well as invasion,
metastasis and acquisition of drug resistance [87]. In the 1940s, a decrease in calcium
levels in epidermal carcinoma cells was observed for several weeks, followed by the
transformation of these cells into malignant ones, when this precancerous condition was
experimentally induced [88]. Since then, the central role of this ion and proteins involved
in Ca2+-signaling pathways in carcinogenesis and tumor progression has been widely
reported [89] in different types of malignancies, including breast cancer [61,90], which
is why blocking calcium signaling was proposed as a promising strategy to improve the
efficacy of current anticancer therapies, as well as antitumor immune responses.

Calcium homeostasis is achieved by keeping cytosolic calcium levels low, with the
extracellular space, cytoplasm, endoplasmic reticulum and mitochondria being the four
primary compartments involved in cellular Ca2+ circulation [91], and with both the mito-
chondria and endoplasmic reticulum serving as intracellular calcium stores. Indeed, in
the face of an extracellular Ca2+ concentration of 1.3 mM [92], cytoplasmic Ca2+ in resting
cells is maintained at concentrations ranging from 0.05 to 0.15 mM [93,94], mainly due
to the coordinated function of calcium receptors, organelle and membrane ion channels,
membrane pumps and transporters, as well as calcium buffer proteins. The modulation of
the Ca2+ concentration is tightly regulated according to cellular needs [92] by three main
processes that are not mutually exclusive [85]:

• Amplitude modulation [95]: the process responsible for triggering different down-
stream signaling responses, as proteins with higher Ca2+ binding affinity are activated
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at lower Ca2+ concentrations, whereas proteins with lower Ca2+ binding affinity are
activated at higher concentrations [96].

• Frequency modulation: the process by which repetitive and transient increases in
cytosolic Ca2+ concentration led to different protein activation [95].

• Modulation related to the spatial distribution of signals, which depends on the local-
ization of effectors to Ca2+ modulators, such as channels [97].

Considering that the ion concentration in luminally mammary glands and breast milk
is 10 mM and 2–4 mM, respectively, Ca2+ homeostasis is especially important in mammary
gland cells, even more so during the lactation process, with them being very sensitive
to changes in Ca2+ signaling, concentration and modulation mechanisms, which are also
decisive in breast cancer progression [98]. However, despite the importance of Ca2+ during
lactation and the association of dysregulation of calcium homeostasis and signaling with
mammary gland pathophysiology, the implications of calcium signaling in the regulation
of cell proliferation, differentiation and apoptosis are not yet fully understood [99].

2.1. Proteins Involved in Calcium Homeostasis and Relevance in Breast Cancer

Multiple proteins are directly involved in the regulation of cellular Ca2+ homeostasis,
and thus, the cellular response. Alterations in Ca2+ channels, G-protein-coupled receptors
(GPCRs), calcium buffer proteins and ATPases were described as hallmarks of different
types of cancer and as potential drug targets for breast cancer treatment [99].

2.1.1. Calcium Ion Channels

Calcium ion channels are transmembrane proteins with selective Ca2+ permeability
that allow calcium to flow across cell membranes through a central pore. These ion channels
are very diverse in both structure and function, with voltage-dependent calcium channels
being one of the main types at the plasma membrane.

Voltage-dependent ion channels are integral membrane proteins that rapidly open and
transport calcium to the cytoplasm upon electrochemical-gradient-driven changes in cell
membrane voltage. They are widely expressed in neurons and muscles and play key roles in
synaptic transmission and muscle contraction, respectively. Aberrant functioning of these
channels was detected in different malignancies, such as melanomas and gliomas, as well as
in prostate, colon, pancreatic and breast cancers [100]. Recent studies in this field reported
that calcium channel subunit 4 (CACNG4), which is overexpressed in breast cancers with
poor prognosis [100], is involved in cell proliferation, adhesion and invasion [101], and the
potential utility of channel antagonists to inhibit cell proliferation and adhesion in breast
cancer was suggested [100].

2.1.2. Ligand-Dependent Calcium Ion Channels

Among ligand-dependent channels (LGCCs), Ca2+-release-activated channels (CRACs)
are responsible for the following:

• Store-operated Ca2+ entry, which is a process that serves to replenish Ca2+ after its
release from reserve sites, such as the endoplasmic reticulum.

• Cytosolic calcium increases are necessary for cell activation. The entire process of
calcium-dependent cell activation is based on ER calcium release combined with
capacitative calcium influx and consequent increases in cytosolic calcium levels.

The pores of LGCC channels are formed by plasma membrane ORAI proteins that
work in concert with the endoplasmic reticulum stromal interaction molecule (STIM),
which senses an ER luminal calcium decrease during Ca2+ mobilization and activates ORAI
upon depletion of Ca2+ storage (Figure 2) [85]. Other types of LGCC channels, such as
transient receptor potential channels (TRPC) that allow Ca2+ fluctuations (Figure 2), also
play a major role in this process [102] by promoting membrane hyperpolarization and Ca2+

entry into cells [103]. Both types of LGCCs can bind to form heteromeric complexes for a
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major Ca2+ entry into the cell, which has been associated with poor prognosis in cancer
patients [104,105].
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2.1.3. Voltage-Dependent Calcium Channels

Voltage-dependent calcium channels (VGCCs) comprise five subtypes: L, R, P/Q,
T and N, with T-type channels playing a key role in regulating cytosolic calcium levels.
These channels present three isoforms of the ∝1 subunit (CaV1, CaV2 and CaV3) [106]
that have each generated a subfamily. The CaV3 isoform consists of three subtypes:
CaV3.1 (CACNA1G), CaV3.2 (CACNAH1) and CaV3.3 (CACNA1I), where their functions
include the regulation of the G1/S checkpoint of the cell cycle [107] and programmed cell
death [108], evidencing their importance in carcinogenesis. Although there is still no drug
for T-type channels, the blockade of these channels appears to contribute to the therapeutic
utility of other drugs, making them a new target for anticancer drug development [109].

2.1.4. G-Protein-Coupled Receptors

G-protein-coupled receptors (GPCRs) also have an indirect role in the initiation of
Ca2+ signaling upon activation by different extracellular signals. Ligand binding to these
membrane receptors causes a change in receptor conformation that promotes the activation
of cytoplasmic G proteins (Gα, Gβ and Gγ), which, in turn, can activate the membrane-
associated enzyme adenylyl cyclase responsible for the second messenger cAMP from ATP
molecules, as well as activation of phospholipase C that converts phosphatidylinositol-
4,5-bisphosphate (PIP2) into the secondary messengers diacylglycerol (DAG) and inositol-
1,4,5-trisphosphate (IP3). While DAG remains within the membrane, IP3 diffuses into
the cell and interacts with its calcium receptor channel in the endoplasmic reticulum,
promoting Ca2+ outflow from the lumen into the cytoplasm (Figure 2) [85]. It should be
noted that various growth factor receptors, such as Epidermal Growth Factor (EGF), human
Epidermal Growth Factor Receptor (EGFR), Transforming Growth Factor-alpha (TFG-α)
and Platelet-derived growth factor (PDGF), can also induce calcium signaling via PLC-γ
activation [110–112].

2.1.5. Calcium Buffer Proteins

When Ca2+ enters the cell, it rapidly binds to negatively charged proteins, such as
calbindin-D28k, calbindin-D9k, calreticulin, parvalbumins, calnexin, calretinin, GRP78/94
and calsequestrin, which act as effectors or buffers [113], transporting ions across cells and
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causing changes at the level of amplitude, frequency and spatial distribution that limit the
availability of free Ca2+ to activate cellular functions, such as differentiation, transcription,
migration, motility and phagocytosis [114–116]. Effectors, such as the annexin family of
proteins, troponin C, calpain protease, myosin light chain kinase, synaptotagmin, nitric
oxide synthases, cadmodulin-dependent protein kinase (CAMK), downstream regulatory
element antagonist modulator (DREAM) and cyclic AMP response element binding pro-
tein (CREB), initiate downstream signaling pathways that ultimately induce activation of
cellular functions [85].

Mitochondria rapidly internalize Ca2+ through the outer mitochondrial membrane, but
to cross the inner mitochondrial membrane, they need the mitochondrial calcium uniporter
complex (MCU) to accumulate Ca2+ in the mitochondrial matrix. In turn, to export it
from the matrix, mitochondria release Ca2+ via a mitochondrial Na+–Ca2+ exchanger
(NCLX) [117]. Although the most important intracellular Ca2+ stores are in the endoplasmic
reticulum (ER), the mitochondrial Ca2+ concentration also influences cytosolic concentration
by regulating cellular processes such as cell death by necrosis and cell apoptosis [118].

The concentration differences and the transport mechanisms involved in gradient
maintenance are critical in Ca2+ signaling, which is a process that is essential for cellular
homeostasis.

Alterations in the expression of Ca2+ channels, receptors and buffers can cause cal-
cium levels to increase above the physiological threshold, promoting uncontrolled cell
proliferation and the acquisition of a malignant phenotype [119] caused by transcriptional
activation of genes that promote tumor growth. Although it might be thought that the
decrease in Ca2+ levels or even its depletion could be a solution to stop the signaling
pathways leading to the acquisition of this phenotype, this is not the case. The decrease
induces tumor chemoresistance and evasion of cell apoptosis, which justifies the need for
further studies in this field [120,121].

2.2. Ca2+ as a Therapeutic Target in Breast Cancer

Despite the worldwide effort to raise awareness of breast cancer and the improvement
of detection and screening methods and treatment strategies, up to 5% of patients have
metastases at the time of diagnosis, for which a complete cure is not possible, and up to 30%
of women diagnosed with early-stage disease progress to metastatic breast cancer [122]
due to intrinsic or acquired drug resistance; therefore, lines of research aimed at decreasing
the high mortality rates in patients with metastatic breast cancer are priority areas.

A total of 75% of advanced breast cancer cases present with bone metastases, and 70%
of them show pathological cancer-associated bone pain, bone resorption and microfractures,
which significantly affect their quality of life [123]. Since both pathological breast-cancer-
associated bone pain and breast calcifications share Ca2+ as a common component, there
are currently different lines of research focused on identifying potential biomarkers of
Ca2+-signaling pathways that can be used to treat breast cancer and to prevent bone pain,
breast calcifications and tumor progression [124,125].

During routine mammography, it is common to detect breast calcifications, which
are calcium deposits formed by different calcium salts, such as calcium oxalate and hy-
droxyapatite, with the participation of metals—such as zinc, magnesium and iron, where
the latter is especially found in malignant calcifications [126]—within the breast tissue.
Although breast calcification may be associated with different pathological processes, such
as inflammation, infection or benign lesions, especially after the age of 50 years [127], they
are present in about 30% of all malignant breast lesions, in more than 50% of malignant
infraclinical breast lesions and in up to 85–95% of ductal carcinomas in situ [128] such
that both the detection of microcalcifications in mammograms and their composition were
proposed as risk factors for the development of breast cancer [129].

Although the pathophysiology of mammary calcifications is not well understood yet,
they were reported to be caused by a combination of abnormal expression of bone matrix
proteins and alterations in the secretory pathway of calcium ATPase (SPCA2) isoform [127],
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which is a Golgi-localized protein responsible for Ca2+ and Mn2+ sequestration required
for proper protein folding, glycosylation and sorting from the RE to Golgi vesicles [130].
In humans, the SPCA1 and SPCA2 isoforms are encoded by the ATP2C1 and ATP2C2
genes, respectively, and differ from each other by their N-terminus, as well as by the higher
affinity of SPCA1 for Ca2+ relative to SPCA2 [131]. Although the functions of both isoforms
are being explored, studies show that while SPCA1 is elevated during the mid-lactation
phase, SPCA2 is responsible for Ca2+ accumulation in the Golgi apparatus during lactation,
especially just before parturition [131]. SPCA2 is frequently overexpressed in the tumors
of patients with hormone-receptor-positive (ER+/PR+), which is associated with poor
prognosis, as it exerts a pro-survival effect on mammary epithelial tumor cells. SPCA2
activates Ca2+ entry through ORAI1 channels via a constitutive mechanism called store-
independent calcium entry (SICE), where it acts as a strong activator of the ORAI1 channel
with its interaction with the N- and C-terminal domains, causing intense Ca2+ entry into
the plasma membrane. This promotes cell survival, progression and chemoresistance of
breast cancer cells [132]. However, silencing of SPCA2 expression increases mitochondrial
ROS production, DNA damage and activation of the ataxia-telangiectasia-mutated/rad3
kinase–p53–related kinase (ATM/ATR) axis, which arrests the cell cycle in the G0/G1
phase and induces apoptosis. Hence, SPCA2 was proposed as a prognostic marker and
its knockdown was proposed as a possible therapeutic potential in the treatment of breast
cancer [132,133].

In line with these results, alterations in the expression of other Ca2+ channels have
been associated with different breast cancer subtypes (Table 3).

Table 3. Alteration of the calcium signaling pathway in breast cancer.

Ion Channel Member Overview

ORAI protein ORAI1 and ORAI3

• Higher expression levels of the ORAI1 isoform in
hormone-receptor-negative subtypes and ORAI3 in
hormone-receptor-positive subtypes [134].

• ORAI3 was found to be overexpressed in 76.9% of breast cancer
samples analyzed [135].

• ORAI1 increases in expression during lactation [136].
• ORAI1 and ORAI3 have been established as therapeutic targets in

hormone-receptor-positive and hormone-receptor-negative breast
cancers, respectively [137].

• ORAI1 regulates the stimulation of the SICE (store-independent
calcium entry) pathway and ORAI3 initiates the SOCE (store-operated
calcium entry) pathway.

STIM protein STIM1 and STIM2

• STIM1 shows higher expression in hormone-receptor-positive patients
[102], which is associated with increased aggressiveness and worse
prognosis [138].

• STIM1, STIM2 and ORAI3 mediate the SOCE pathway in the MCF-7
cell line, while STIM1 and ORAI1 mediate the SOCE pathway in the
MDA-MB-231 cell line [139]. Although the origin of these differences is
unknown, it appears that sex hormones play a key role in regulating
the expression of the different ORAI isoforms in breast cancer [140].

• High STIM1 and low STIM2 phenotypes are associated with the basal
subtype and correlate with a worse prognosis [137].

• The SOCE pathway is mediated by STIM1/2 and ORAI3 in ER-positive
breast cancer cells whereas ER- cells use the STIM1 and ORAI1
pathways [140].
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Table 3. Cont.

Ion Channel Member Overview

Transient Receptor
Potential Canonical

(TRPC) channels
TRPC6

• Abnormal expression of TRPC6, along with TRP melastin (TRPM) and
TRP vanilloid (TRPV) channels, is observed in breast cancer [141–143].

• TRPC6 allows for the translocation of ORAI isoforms to the plasma
membrane [144].

Channel TRP TRPC1 and TRPM2

• In the MDA cell line, silencing of TRP channels blocks the ability to
express the EMT marker vimentin, which allows us to intuit different
Ca2+ influx pathways responsible for the epithelial–mesenchymal
transition (EMT).

• The TRPC1 channel has a higher expression level in the TNBC subtype
than in luminal A, luminal B or HER2+ subtypes [145].

• Overexpression of the TRPM2 channel in luminal B patients and low
expression in HER2+ patients evidenced worse patient outcomes [146].

VGCC type T CAV3.2 and CACNA1G

• CaV3.2 isoform can be used as a marker in luminal A, luminal B and
HER2-enriched subtypes versus basal subtypes. High levels of Cav3.2
were associated with worse outcomes in ER+ patients. However, high
levels are positively associated with survival after chemotherapy in
HER2+ patients [147].

• 7 VGCC family members (CACNA1C, CACNA1D, CACNA1A,
CACNA1B, CACNA1E, CACNA1H and CACNA1I) were shown to be
underexpressed in breast cancer [148].

• CaV3.1 (CACNA1G) can be used to distinguish invasive versus
mucinous lobular breast cancer [148].

Given the role of calcium channels in the regulation of the epithelial–mesenchymal
transition (EMT), recent studies proposed the use of calcium channel blockers as a thera-
peutic strategy to inhibit EMT in cancer cells [132]. However, conflicting results showing
both the association of aberrant expression of Ca2+ channels and pumps to triple-negative
and hormone-receptor-positive breast tumors with poor prognosis [132,149], but also the
better survival of patients with luminal subtype tumors warrant further studies in this area
of research.

Studies in this field showed that Ca2+ pumps are highly elevated in breast cancer cells
in a subtype-specific manner and that changes in their expression are often correlated with
tumor progression [150] (Table 4).

Table 4. Altered Ca2+ pumps in breast cancer.

Ca2+ Pumps Member Overview

SERCA-ATPases of
the endoplasmic

reticulum
SERCA3

• Their expression is greatly decreased in precancerous lesions and inversely
correlated with tumor grade in triple-negative invasive breast tumors
compared with receptor-positive tumors [150].

• SERCA3 increases in response to TGF-β (tumor growth factor beta) during
the epithelial–mesenchymal transition of tumor cells.

• It was proposed that a loss of SERCA3 may be implicated in a loss of an
IP3-mobilized endoplasmic reticulum compartment, thus altering the
ability to respond to stimuli through IP3 [150].
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Table 4. Cont.

Ca2+ Pumps Member Overview

ATPases of the
plasma membrane

PMCA2

• Recent studies reported the role of plasma membrane calcium pump
isoform 2 (PMCA2), which is expressed in human epithelia undergoing
lactational remodeling, in Ca2+ efflux from mammary cells into milk [151]
but also during carcinogenesis and tumor progression, where it was found
to be overexpressed in up to 9% of human breast cancers [130].

• Overexpression of PMCA2 has been associated with poor prognosis in
triple-negative breast cancer patients younger than 50 years, as well as with
poor survival in patients with HER2-positive tumors [130], apparently due
to the interaction between the HER2 receptor and PMCA2 at actin-rich sites
in the plasma membrane, where the Ca2+ pump maintains the ion
concentration at low levels affecting Ca2+ homeostasis [152].

PMCA4

• The role of plasma membrane calcium pump isoform 4 (PMCA4) inhibition
has been associated with Bcl-2 inhibitor ABT-263-mediated apoptosis, as
well as NF-kB-induced promotion of cell death in MDA-MB-231 breast
cancer cells. The fact that breast cancers with a poor prognosis are
associated with elevated constitutive NFkB activity makes them a
potentially effective tool in the therapy of this disease [153].

• In BRAF-mutated melanomas, PMCA4b was associated with increased
expression of the pump, inhibiting the migratory, and thus, the metastatic
capacity of the cells [154].

• Studies in which the differentiation of MCF-7 breast cells was induced by
treatment with histone deacetylase inhibitors (HDACis) showed an
increase in PMCA4b expression. Increased PMCA4b expression leads to
Ca2+ clearance in cells, contributing to normal mammary epithelium
development, and thus, to tumor cell elimination [155].

Ca2+ signaling promotes reactive oxygen species (ROS) in mitochondria and the
phosphorylation and translocation to the cell nucleus of signal transducer and activator of
transcription 3 (STAT3), which is a transcriptional activator in breast cancer that regulates
the activation of several target oncogenes associated with immunosuppression, malignant
transformation, tumor growth, apoptosis, metastasis and chemoresistance [156]. Consistent
with studies demonstrating that STAT3 is an early diagnostic tumor marker that is often
constitutively overexpressed and activated in breast cancer, strategies aimed at modulating
Ca2+ signaling in these tumors may be useful as a novel therapeutic approach.

Calcium signaling is also linked to mitogen-activated protein kinases (MAPK, MAPK/
ERK, Ras-Raf-MEK-ERK), which are kinases involved in extracellular signaling transduc-
tion related to growth, proliferation, differentiation, development, transformation, migra-
tion, resistance and cell death, which are frequently overactivated in breast carcinomas [157].
For example, overexpression of SPCA2 in hormone-receptor-positive breast tumors results
in the upregulation of SICE, which activates the tumorigenic MAPK pathway [133]. Simi-
larly, TRPC3 acts as an anti-apoptotic regulator through the MAPK pathway [158]. MAPKs
are tightly regulated by phosphatases and bidirectional communication with other kinases
that regulate cell survival and proliferation, such as protein kinase B PKB/Akt, which is a
serine/threonine protein kinase that is often dysregulated in breast cancer when abnormal
Ca2+ signaling occurs. Given the important role of MAPKs and Akt in malignant breast
cancer behavior and resistance to conventional treatments [157], targeting Ca2+ signaling
using a channel blockade could also represent a useful therapeutic approach in tumors
with such kinase alterations.
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3. Preclinical and Clinical Research on Ca2+ in Breast Cancer

Although most studies have focused on evaluating the role of Ca2+-signaling pathways
in tumor proliferation and/or identifying those channels with deregulated expression in
breast cancer cells, different groups have gone a step further in this field.

Before starting clinical studies, drug development programs go through a preclinical
phase in which both in vitro and in vivo research is carried out to investigate the possible
therapeutic potential of a given candidate molecule to treat the disease. In vitro, one of
the strategies followed to trigger tumor cell apoptosis has been based on the use of heavy-
metal-based drugs to increase intracellular calcium levels [159,160]. Specifically, one study
measured the effects of the gold compound auranofin on cell apoptosis and intracellular
Ca2+ concentration in MCF-7, showing that this drug increases the Ca2+ concentration,
although the origin of the increase could not be determined when trying to block different
receptors [161]. Given the risk of drug resistance and associated toxicities, the potential use
of this type of drug is very limited [162,163].

On the other hand, melatonin, which is a hormone that regulates the calmodulin-
mediated Ca2+-signaling pathway through G-protein-coupled membrane receptors, was
also shown to change the level of intracellular Ca2+ concentration. One study in this field
determined that while ATP can induce MCF-7 cell growth, melatonin can abrogate MCF-7
cell proliferation and that pretreatment with melatonin followed by ATP in MCF-7 cells
can further suppress cell proliferation [164], which deserves additional research.

Baicalein, which is a natural polyphenolic pigment, was also shown to induce apop-
tosis in breast, gastric, prostate and hepatoblastoma cancer cells [165–168], which has
motivated in vitro studies on the role of Ca2+ and its signaling pathway in apoptosis in-
duced by this pigment. The results for MDA-MB-231 show that baicalein has effects on
apoptosis through the inhibition of antiapoptotic Bcl-2, induction of proapoptotic Bax
proteins and caspase-3 [169].

Recently, electroporation has been incorporated as a novel therapeutic approach for
cancer treatment with less risk of adverse effects than conventional treatments, such as
surgery or radiation, and greater durability of effect and requiring less cost [170,171].
Preclinical results showed that lipid composition and heat capacity influence cell per-
meability [170], which can be used to facilitate the transportation into tumor cells of
chemotherapeutic drugs, such as bleomycin or cisplatin, to increase their cytotoxicity. Elec-
trochemotherapy is understood as the permeabilization of tumor cells by electroporation
after intravenous injection of a chemotherapeutic drug, commonly bleomycin (Figure 3).
The first clinical trial with electrochemotherapy was performed in 1990 [172], and since
then, many trials have been performed to treat breast tumors [173,174]. More recently,
in 2018, the first clinical trial with Ca2+ electroporation demonstrated the utility of this
electroporation modification in which supraphysiological doses of Ca2+ were used after
electrochemotherapy as an effective and safe anticancer treatment [175]. Ca2+ electro-
poration treatment is a modification of conventional electrochemotherapy because, after
electroporation, supraphysiological doses of Ca2+ are used (Figure 3) [176]. Given its favor-
able cost–benefit ratio, Ca2+ electrochemotherapy has turned into a promising therapeutic
approach that is no less effective than conventional electrochemotherapy [171].

Given the lack of major hormone receptors and the limited number of therapeutic
options for TNBC patients, electroporation represents a promising option [177], having
already demonstrated its palliative effect by reducing patients’ pain [178,179].

Clinical cases in which patients with HER2-positive breast cancer skin metastases
were treated using (1) trastazumab alone, (2) trastazumab emtansine (TDM1), or (3) a
combination of trastazumab and Ca2+ electroporation showed that although TDM1 was
more effective on skin metastasis than trastazumab alone, the side effects associated with
TDM1 were not well tolerated. On the other hand, the study also showed that a com-
bination therapy of transtazumab and Ca2+ electroporation intermittently applied when
needed effectively controls metastasis during the applied period with better tolerance
to the chemotherapeutic, including a better preservation of the skin area in which the



Cancers 2023, 15, 2872 15 of 22

Ca2+-electroporation was applied, which justifies continuing the investigation in a phase II
study [180].
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Failure of anthracycline chemotherapy, one of the most widely used cytotoxic drugs for
breast cancer treatment, is often associated with the poor prognosis of patients, as “salvage”
chemotherapy usually has a low response rate. The use of verapamil, which is a potent
Ca2+ channel blocker commonly used to treat hypertension, was shown to increase survival
in patients with metastatic breast cancer with anthracycline resistance [181]. Moreover,
verapamil also has important effects on drug efflux pumps of the ABC transporters family
involved in cytotoxic drug resistance. Although these results were promising, the use
of calcium channel blockers has always raised great doubts as to whether they could
contribute to tumor growth by inhibiting Ca2+-signaling-mediated apoptosis and thereby
inducing cell growth. In this regard, some recent studies found no evidence that long-term
exposure to Ca2+ channel blockers is associated with an increased risk of breast cancer [182],
but not all agree on this, which still generates much uncertainty, especially in the long term
and depending on the subtype of breast cancer [183].

4. Conclusions

Although the treatment of breast cancer has been improving over the last few decades,
there are still numerous cases of patients who die because of this disease. This has generated
the need to identify new therapeutic targets that allow, on the one hand, for improving
patient survival and, on the other hand, understanding the mechanisms underlying the
current resistance to existing therapeutic agents.

The fact that both prolonged elevation and depletion of intracellular Ca2+ is oncogenic
in nature, as well as deregulated expression varies according to breast cancer subtype,
has led to the need to better understand the specific molecular mechanisms driving the
acquisition of this malignant phenotype [119–121].

Specific and selective targeting of the Ca2+-signaling pathway could be an important
approach in the precision medicine of breast cancer treatment, something already evidenced
in some in vivo studies. However, much remains to be done in this field and many
more studies are required to optimize the therapeutic strategies to be followed in the
clinical practice of this disease, including the consideration of the possible pharmacological
interactions that can be produced by changes in the calcium-signaling pathways.
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