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Simple Summary: Cancer treatment mostly involves drugs that has many side effects. In order to
limit the toxicity of the chemical drugs, the scientific community embraced immunotherapy involving
therapeutic antibodies targeting the tumor. In particular, immunotherapy aims to bolster the immune
cells of the host (patients) to fight against cancer. Such therapies involve antibodies directed against
traditional molecules in cancer and immune cells that prevent generation of autoimmunity or enable
tolerance against self-antigens. This works in a subset of patients but develop resistance in others
in the clinic. We suggest targeting other molecules on cancer and immune cells to overcome such
resistance against immunotherapy. We discuss the possible resistance mechanisms against traditional
immunotherapy and enlist new and alternative immunotherapy targets that can be employed as
selective therapeutic interventions in the clinic along with low doses of chemotherapy. This will
sustain and enhance the extraordinary momentum in cancer therapy.

Abstract: Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4
and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmu-
nity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor
microenvironment through expression of cognate ligands for the ICs present on the cell surface
of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling
pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure
of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available,
but the clinical outcome is quite variable due to the resistance encountered through upregulated
expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the
roles played by the traditional as well as alternate ICs and the contribution of associated signaling
pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional
and alternate ICs might be beneficial for immune-refractory tumors.

Keywords: immuno-refractory tumors; CD8+ T lymphocytes; immunosuppression; immunotherapy;
PD-1; immune checkpoints; CTLA-4; LAG-3; TIGIT; TIM-3; VISTA

1. Introduction

Breast cancer (BC) has a high morbidity rate and was declared as the most common
cause of death among the cancer types in the United States in 2020. In 2021 alone, the
incidence of cancer in the US was approaching 2 million with upwards of 600,000 deaths [1].
It has been estimated that in the US, 30% of all new cases of cancer in women will be of
BC [2]. Moreover, more than 12% of women will be diagnosed with BC over their lifetime [2].
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Mortality is significantly higher when breast cancer metastasizes to other organs such as the
lungs, bones and brain, especially in triple-negative breast cancer (TNBC) [3]. Metastasis
is responsible for most cancer-related deaths; however, the intricate mechanism is poorly
understood, leading to therapy failure.

The interplay between cancer and the immune system has proven to be significant
in primary cancer progression and metastasis. The tumor microenvironment (TME) is
strongly associated with driving tumorigenicity and disease progression [4,5]. The TME
is composed of stromal cells including the adaptive and innate immune cells, fibroblasts,
adipocytes, mesenchymal cells, endothelial cells, lymphendothelial cells, and the acellular
extracellular matrix [6,7]. Stromal mesenchymal cells have been implicated in secreting
immunosuppressive molecules which can promote cancer development, as well as control
the innate and adaptive immune response [8]. Both the adaptive and innate immune cells
contribute to the recognition of foreign pathogens and tumors. Adaptive immune cells
are broadly categorized into T and B lymphocytes. T and B lymphocytes have diversified
receptors for recognizing antigen which contribute to specificity, recognition, and response
to various antigenic epitopes [9,10]. T lymphocytes can be distinguished into two different
categories. Cytotoxic, CD8+ T lymphocytes can directly target cancer cells for destruction by
recognizing abnormal appearing antigens (neoantigens) on their surface [6]. In addition to
direct targeting for destruction, cytotoxic CD8+ T lymphocytes also secrete soluble cytokines.
Concurrent secretion of interferon gamma (IFN-γ) and tumor necrosis factor (TNF) by
cytotoxic CD8+ T lymphocytes leads to a compromise in the integrity of tumor-resident
blood vessels, and an ischemic state of the tumor is generated and sustained [11,12]. CD4+

T lymphocytes can be divided into subcategories of helper T lymphocytes, including Th1,
Th2, and Th17. Through the production of cytokines, these helper CD4+ T lymphocytes can
function in maintaining and enhancing the activity of the cytotoxic CD8+ T lymphocytes;
thus, they exhibit anti-tumor immune responses [13,14]. Additionally there are cytotoxic,
CD4+ T lymphocytes, and regulatory T cell subsets (Tregs) [15]. While cytotoxic CD8+

and CD4+ T lymphocytes directly contribute to tumor cytotoxicity through secretions of
perforin and granzyme cytokines, Tregs have the opposite effect [14]. Tregs have been shown
to ultimately promote tumor growth and development by decreasing the effector function
of T lymphocytes that infiltrated a tumor [6,14]. These adaptive immune cells are effective;
however, they are not the only tumor defense mechanism. Innate immune cells are also
associated with cancer. While they lack the diversified antigen receptors that adaptive
immune cells have, many innate lymphoid cells produce cytokines. Innate immune cells
can respond to commensals and pathogens at mucosal barriers, help potentiate adaptive
immunity, and participate in the regulation of tissue inflammation [16]. Tumor cells can
evade both adaptive and innate immune anti-tumor responses through various mechanisms.
This leads to adaptive immune resistance, subsequently promoting cancer growth [17].
One of the ways in which adaptive immune resistance occurs is through metabolic nutrient
alterations in the TME. The TME requires a vast amount of metabolic nutrients, the contents
of which can determine the activation or suppression of cellular immunity. Depletion of
extracellular glucose due to increased consumption by tumor cells is shown to restrict
glucose availability to T lymphocytes, thus decreasing their effector functions [18]. When
the TME is exhausted of its necessary nutrients, it can become immunosuppressive and
lead to the progression of cancer [19]. Additionally, there are several immune checkpoints
(ICs) that allow for inhibition of activating the immune system. These checkpoints have
been shown to limit the anti-tumor response of the immune system. Inhibition of these
immune checkpoints have become effective targets in several malignancies [20,21].

Alterations in genetic elements or modulation of the TME dictate primary tumor
progression and metastasis. Over time, these alterations result in the deactivation of regula-
tory molecules, namely IC proteins. IC proteins are vital regulators of immune response
against foreign antigens and simultaneously maintain tolerance against self-antigens. The
classical IC consists of co-inhibitory cell surface receptors on CD8+ cytotoxic T-lymphocytes
such as cytotoxic T lymphocyte associated protein 4 (CTLA-4) and programmed cell death
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protein 1 (PD-1). Blocking CTLA-4 and PD-1 with therapeutic antibodies was found to
provide survival benefit to cancer patients by rejuvenating the anti-tumor response of CD8+

cytotoxic T-lymphocytes.
New IC proteins have been discovered, including the V-domain Ig suppressor of T

cell activation (VISTA), T cell immunoreceptor with Ig and immunoreceptor tyrosine-based
inhibitory motif (TIGIT), lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin
and mucin-domain containing 3 (TIM3) and others. Tumors not only disrupt the functional
surveillance by ICs to avoid initiation of apoptotic clearance but also contribute to thera-
peutic resistance through the upregulation of other ICs. This process protects tumor cells
by warding off the anti-tumor response from the immune system especially from CD8+ cyto-
toxic T lymphocytes [22]. These interactions between different ICs are depicted in Figure 1.
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Figure 1. Interaction of immune checkpoint ligands and their cognate receptors. The specific
interaction of immune check point receptors with their respective ligands is depicted. Some receptors
have a plurality of ligands indicating a context-dependent function.

VISTA receptor is a relatively new IC discovered in 2011 [23]. After its identification,
the role of VISTA in tumor progression and metastasis has been studied intensively. VISTA
has two ligands and its affinity for these ligands depends on the acidity of the cellular
environment [24]. The TME is usually acidic, and this could center VISTA as an actionable
molecular target. Currently, several clinical trials are being conducted to determine the
efficacy of anti-VISTA therapeutic antibodies. TIGIT was discovered in 2009 by three
different laboratories [25–27] and the operative mechanism of TIGIT is not fully understood
yet. TIGIT has been implicated in tumorigenesis and metastasis however, and it is being
evaluated clinically as an effective therapeutic target. LAG-3 was discovered in 1990
in natural killer (NK) cells [28]. The discovery of its ligand, major histocompatibility
complex II (MHCII) has further enhanced the understanding of how LAG-3 downregulates
the functioning of CD4+ T lymphocytes [29]. There are several ongoing clinical trials
targeting LAG-3 in human tumors. TIM-3 was discovered in 2002 on the cell surface of
Th1 T lymphocytes [30] and was described as a negative regulator of immune cells. As
TIM3 levels were downregulated when Th1 T lymphocytes were activated [30]. The most
prominent IC is PD-1. PD-1 was originally discovered in 1992 on the plasma membrane
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of CD8+ T lymphocytes [31]. Although it was thought to be involved in programmed cell
death, the mode of action was unknown until the discovery of its ligand, program cell death
ligand 1 (PD-L1) in 1999 [31,32]. Upon observation that PD-L1 suppresses the functionality
of CD8+ T lymphocytes following ligation to its receptor, PD-1, it was concluded that
PD-1 is an IC [33]. Moreover, the elevated levels of PD-L1 on tumor cells suggested that
PD-L1/PD-1 axis would be excellent therapeutic targets for oncological drugs [34]. There
are a variety of signaling pathways implicated in the induction of ICs and this is depicted
in Figure 2.
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In addition to the aforementioned ICs, several ICs have also been implicated in
cancers, such as CTLA-4 and B and T lymphocyte attenuator (BTLA). In this review, the
role of five ICs, viz., VISTA, TIGIT, LAG-3, TIM-3, and PD-1, will be examined in cancer
progression, metastasis, and clinically refractory cases. The roles of these ICs, as well
as recent developments in treatments targeting these ICs, and different mechanisms of
therapeutic resistance are discussed. Although the discussion applies to many human
tumors, our primary emphasis in this review is breast cancer, especially TNBC.

2. VISTA

As we lean more towards immunotherapy as opposed to chemotherapy for the treat-
ment of oncological diseases, the targetable ICs such as V-domain Ig suppression of T Cell
activation (VISTA) has garnered much attention [25–27]. VISTA is a type 1 transmembrane
protein with a N-terminal Ig V domain of 30 amino acids, a transmembrane domain, and a
cytoplasmic domain of 95 amino acids [23]. The VISTA gene is located on the long arm of
chromosome 10 (10q22.1), away from the other Ig superfamilies. It can bind to different
ligands based on the acidity of the cellular microenvironment, which differentiates it from
the traditional B7 family of receptors [24,35].

The density of the expression of VISTA is elevated in the cells of myeloid lineages,
such as macrophages, dendritic cells, monocytes in tissues, and circulating monocytes [36].
Although VISTA is highly expressed on mature antigen-presenting cells (APCs), its role in
the quiescence of naïve T lymphocytes, especially naïve CD4+ T lymphocytes, is critical
in maintaining peripheral tolerance to self-antigens [36]. The role of VISTA was further
strengthened by the study conducted on VISTA-deficient mice which resulted in increased
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proliferation of memory CD4+ T lymphocytes and related cytokines causing autoimmunity
and inflammatory disease [36]. VISTA regulates quiescence of T lymphocytes by upregu-
lating anti-proliferative genes such as Klf2, Klf6, Ccr7, Btg1, and Btg2 [37–39]. Moreover,
VISTA is also known for maintaining epigenetic programs for regulation of naïve T lym-
phocytes. Therefore, the loss of VISTA has been linked to an increase in accessibility to
promoters of proliferative genes, such as Tcf7, Ifngr1, Bcl2, and Il7ra, causing a breakdown
in T lymphocyte peripheral tolerance [36]. Another paradigm of VISTA is its capacity
to function as both a ligand and a receptor. It has been proposed that VISTA acts as a
ligand when expressed on APCs, thereby engaging an inhibitory receptor on T lympho-
cytes, and suppressing their proliferation [40]. On the contrary, VISTA expresses itself
as both a ligand and a receptor on the surface of T lymphocytes, resulting in homotypic
interaction/signaling or engaging with other receptors, such as V-Set and Immunoglobulin
domain containing 3 (VSIG3) and P-selectin glycoprotein ligand-1 (PSGL1) [40,41].

As mentioned earlier, while reduced expression of VISTA results in autoimmune and
inflammatory diseases, overexpression can lead to the development and progression of
cancers by limiting T lymphocyte proliferation. One mechanism by which VISTA pro-
motes cancer progression is via its receptor VSIG3, which is found endogenously but is
elevated in cancer cells [35]. VSIG3 is a type 1 transmembrane receptor mostly expressed
in the brain and testis-specific IgG family [42]. In normal physiology, VSIG3 functions
to mediate homophilic adhesion of cells in a calcium-independent manner and protects
the integrity of the blood-testis barrier [35,42]. Although the mechanism governing the
increased expression of VSIG3 on cancer cells is still unknown, its interaction with VISTA
to reduce the proliferation of CD4+ T lymphocytes is evident [35]. Upon the interaction
with VSIG3, VISTA sends downstream signals in the T lymphocytes inhibiting the pro-
duction of IFN-γ, IL-2, IL-17, CCL5, CCL3, and CXCL11 [35]. These cytokines play vital
roles in the immune response in tumors by increasing T lymphocyte proliferation and
infiltration of immune cells into the TME [35]. Therefore, inhibition of the VISTA-VSIG3
axis will lead to an increase in the levels of these beneficial cytokines and chemokines.
This promotes more immunosurveillance within the TME by limiting tumor growth and
increasing tumor clearance.

The environment of the tumor bed is more acidic than the physiological pH. Under
these acidic conditions, VISTA acts as a selective ligand for PSGL1 [24]. PSGL1 is expressed
on the surface of most hematopoietic cells and is responsible for the migration of leuko-
cytes to the inflammatory sites via binding with P-selectin on vascular endothelium [43].
Although post-translational modifications such as glycosylation and sulfation, are required
for PSGL1 binding to P-selectin, it is absent in naïve T lymphocytes. PSGL1 can engage
with other ligands, such as VISTA, functioning as a negative regulator for T lymphocyte re-
sponses [44]. This interaction between VISTA and PSGL1 is significantly pronounced in an
acidic environment where histidine residues H152, H154, and H155 are deprotonated [24].
It has been hypothesized that interaction between VISTA and PSGL1 in the TME inhibits
the proliferation of T lymphocytes and causes exhaustion of T lymphocytes. However, the
exact mechanism behind these processes has yet to be determined [24].

Recent analysis of the TME has revealed a significant increase, up to ten-fold, in
expression of VISTA in myeloid-derived suppressor cells (MDSCs) [45]. MDSCs are patho-
logically activated, immature myeloid cells of either macrophage or neutrophil lineage.
MDSCs have potent immunosuppressive activities and are pro-tumorigenic in nature. The
signaling mechanism of how VISTA inhibits the proliferation of CD4+ T lymphocytes in
the TME is yet to be determined. Blocking VISTA receptor-ligand interactions has been
shown to increase the migration of tumor-specific effector T lymphocytes into the TME [45].
This presumably occurs via increasing concentrations of IFN-γ and CCL5 in the TME [45].
Moreover, the enhanced expression of MHC II and CD80, along with the production of
anti-tumor cytokines, such as IL-12 and TNF-α, was observed in the TME (14). Blockade
of VISTA also results in impairment of the immunosuppressive effect of Tregs [45]. Recent
analysis of a cohort of 919 BC patients has revealed the VISTA positivity in immune cells
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and tumor cells in 29.1% and 8.2% of patients, respectively [46]. Moreover, the increase in
VISTA in TNBC was correlated with unfavorable clinicopathological outcome in TNBC
patients [46]. Among immune cells, VISTA was found to be expressed highest in CD68+

macrophages, 32%, in BC [47]. Suggesting the possibility of targeting VISTA as part of
a therapeutic effort. Therefore, many clinical trials have been initiated to determine the
clinical efficacy of VISTA blockade. Some of these clinical trials are tabulated in Table 1.

Table 1. The clinical trials of anti-VISTA therapy drugs.

Drug Name ClinicalTrials.gov
Identifier (NCT) Phase Combined with Targets

CI-8993 [48] NCT04475523 Phase 1 - Solid tumors

CA-170 [49] NCT02812875 Phase 1 completed - Advance solid tumors and
lymphomas

HMBD-002 [50] NCT05082610 Phase 1 Pembrolizumab (anti-PD-1) Advance solid malignancy

3. TIGIT

The role of IC proteins in cancer can be the difference between prevention or pro-
gression of a cancer and has opened a new avenue of potential therapeutic options for
many patients. One of the ICs that plays a vital role in this process is TIGIT, also known
as Washington University cell adhesion molecule (WUCAM), V-set and transmembrane
domain-containing protein 3 (Vstm3), and V-set and immunoglobulin domain-containing
protein 9 (VSIG9). TIGIT is a transmembrane receptor that belongs to the PVR-like protein
family and is comprised of 244 amino acid residues whose gene is located on the q-arm of
the chromosome 3 [51]. Its structure consists of one immunoglobulin variable (IgV) domain,
a type 1 transmembrane domain, and a cytoplasmic tail [25–27]. The cytoplasmic tail
contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) and the immunoglob-
ulin tyrosine tail (ITT)-like motif [25–27,52]. In normal physiological conditions, TIGIT
is expressed as a receptor on most NK cells and T lymphocytes, including helper and
cytotoxic T lymphocytes, and Tregs [25–27].

Although TIGIT can bind to CD155 (also called poliovirus receptor; PVR), CD112 (also
called poliovirus receptor-related 2; PVRL2), and CD113, it binds with CD155 with the
highest affinity, making it the primary ligand for TIGIT [26,53]. All of these ligands belong to
the family of nectin and nectin-like (NECL) proteins. Nectin and NECL are responsible for
mediating cell adhesion, signaling, and polarization [54]. CD112 is an adhesive protein that
can act as either a stimulator or an inhibitor depending on the receptor [53]. For example,
the interaction of CD122 with DNAX accessory molecule-1 (DNAM-1 or CD226) stimulates
T lymphocyte proliferation and cytokine production, whereas the binding of CD122 with
TIGIT dampens T lymphocyte proliferation and their response to stimuli [55,56]. Normally
CD112 is found in the bone marrow, kidneys, pancreas, and lung cells [53]. Another ligand
of TIGIT, CD113, is responsible for establishing and maintaining cell-cell junctions along
with its role in cell adhesion and signaling [57]. As with CD112, overexpression of CD113
also leads to exhaustion of T lymphocytes [57]. The primary ligand of TIGIT, CD155, has a
specific “lock-and-key” motif designated for TIGIT binding [58]. CD155 is expressed on
macrophages, human dendritic cells, B lymphocytes, epithelial cells, and tumor cells [58].
Upon activation, TIGIT binds to CD155 in a cis-trans configuration [58]. Then two TIGIT-
CD155 dimers join to form a heterotetramer [58]. In this heterotetramer, there is TIGIT-TIGIT
binding in cis configuration and each TIGIT protein in this cis state binds to CD155 in
trans configuration [58]. All of these ligands are highly expressed in tumors of the breast,
bladder, lung, and pancreas [59–61]. While under normal physiological conditions, the
interaction of TIGIT with these ligands prevents the self-destruction of normal cells by NK
cells; however, in the TME, these ligands bind to TIGIT in T lymphocytes and suppress
immunological responses by altering the signaling cascade in T lymphocytes [62].
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TIGIT can mediate the innate and adaptive immune system via impacting the ac-
tivities of T lymphocytes and NK cells. In the cell-extrinsic mechanism, TIGIT binds to
the CD155 ligand on the surface of dendritic cells (DCs). This interaction impedes the
ability of DCs to process and present the antigen, thus failure to propagate appropriate
T lymphocyte response [27]. Furthermore, upon activation of the TIGIT-CD155 axis, the
secretion of the anti-inflammatory cytokine, IL-10, from DCs is favored over the secretion
of pro-inflammatory cytokines, IL-12, further limiting the activation of T lymphocytes [27].
In the cell-intrinsic mechanism, TIGIT works via its cytoplasmic tail. The binding of the
ligand, CD155, in the extracellular domain leads to phosphorylation of Tyr231 and Tyr 225
in the ITIM and ITT motif of the cytoplasmic tail, respectively [62]. This phosphorylation
promotes the recruitment of two cytosolic adaptor proteins, growth factor receptor-bound
protein 2 (Grb2) and β-arrestin2 by the cytoplasmic tail [62,63]. Grb2 then recruits Src
homology 2 (SH2)-containing inositol phosphate-1 (SHIP1), whose function is to inhibit
phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling
cascades [63]. Furthermore, the recruitment of β-arrestin2 leads to suppression of autoubiq-
uitination of TNF receptor-associated factor 6 (TRAF-6), inhibiting nuclear factor kappa B
(NF-κB) activation [62,63]. Inhibiting PI3K/MAPK signaling results in downregulation of
NK cell killing activity, whereas inhibition of NF-κB impairs the production and secretion
of IFN-γ [62].

Another mechanism by which TIGIT is implicated in tumor progression is via its
competitive and direct inhibition of DNAM-1. DNAM-1 is a cell surface adhesive glyco-
protein, mostly expressed by NK and T lymphocytes, and a receptor for ligand CD155
and CD112 [64,65]. During infection or in the TME, DNAM facilitates the adhesion of
immune cells by interacting with CD155 and CD112 [64,65]. Furthermore, the interaction
of DNAM-1-CD155/CD112 promotes the release of cytotoxic molecules from NK Cells,
thereby eliminating the infected/tumor cells [64,65]. This normal process is disrupted when
overexpression of TIGIT outcompetes DNAM-1 for its binding to CD155, limiting NK and
T lymphocytes cytotoxic activities against tumor cells [27]. Moreover, TIGIT can directly
interact with DNAM-1 on the cell surface, impairing its ability to bind to its designated
ligand [27]. In addition, TIGIT is also known for its role in modulating Treg response [66].
The overexpression of TIGIT in Treg is correlated with higher expression of suppressive
genes, such as Foxp3, CD23, and CTLA-3 [66]. This expression signature led to suppression
of Th1 and Th17 cell responses [66].

In the TME, there is an overexpression of CD155 by tumor cells [67–70]. As NK and
T lymphocytes enter the TME, they express TIGIT on their surface that interacts with
the CD155 on tumor cells [67–70]. CD155 on tumor cells normally interacts with CD266
expressed by NK and T lymphocytes, but this binding is disrupted due to the higher
affinity of CD155 for TIGIT [67–70]. This interaction between TIGIT and CD155 will result
in deactivation of NK and T lymphocytes [67]. Moreover, the interaction of CD155 on tumor
cells and TIGIT on Treg further hampers the normal immune response. Several studies
have suggested the correlation between increased expression of CD155 on tumor cells and
aggressiveness of BC [68–70]. TIGIT has been found to be significantly elevated in invasive
BC compared to normal tissue [68]. In a mRNA analysis of a cohort of 197 BC patients, an
elevated level of CD115 was significantly correlated with poor prognosis and decreased
recurrence-free survival rates [69]. Moreover, the blockade of TIGIT on immune cells or
CD155 on cancer cells was shown to promote the cytotoxic effects of immune cells [69].
The vital influence of TIGIT on the TME has encouraged the development of therapeutic
drugs. There are several clinical trials in progress targeting TIGIT and its receptor PVR to
halt tumor progression. Some of these clinical trials targeting BCs are depicted in Table 2.
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Table 2. Anti-TIGIT antibodies targeting breast cancers.

Drug Name ClinicalTrials.gov
Identifier (NCT) Phase Combined with Targets

JS006 [71] NCT05061628 Phase 1 Toripalimab Advanced tumors

IBI939 [72] NCT04672369 Phase 1 Sintilimab Advanced malignancies

COM902 [73] NCT04354246 Phase 1 - Advanced malignancies

M6223 [74] NCT04457778 Phase 1 Bintrafusp alfa Metastatic solid tumors

BAT6021 [75] NCT05073484 Phase 1 BAT1308 (anti-PD1) Advanced solid tumors

Domvanalimab [76] NCT05502237 Phase 1 Zimberelimab (anti-PD1) Solid tumors

COM701 [77] NCT04570839 Phase 1 Nivolumab (anti-PD1) Advanced cancers

NTX-1088 [78] NCT05378425 Phase 1 Pembrolizumab (anti-PD1) Cancer

OMP-313M32 [79] NCT03119428 Phase 1 Nivolumab (anti-PD1) Metastatic cancer

BMS-986207 [80] NCT02913313 Phase 2 Nivolumab
Ipilimumab Broad solid tumors

Tiragolumab [81] NCT04294810 Phase 1
Atezolizumab
Nab-paclitaxel

Carboplatin
TNBC

4. LAG 3

Tumor cells can also evade immune surveillance through manipulation of the IC,
LAG-3, which acts as a negative regulator of tumor infiltrating lymphocytes (TILs). LAG-
3 is encoded by the lag-3 gene located on the distal part of the short arm of chromo-
some 12 [29]. This gene encodes a type I membrane protein of 498 amino acid residues
(50 kDa) [29]. The locus of the lag-3 gene is adjacent to the CD4 gene, signifying the relation-
ship in the evolutionary origin and similarities in their functions [28]. Structurally, LAG-3
consists of three regions, extracellular, transmembrane, and intracellular domains [28]. The
extracellular region of LAG-3 has four immunoglobulin superfamily-like (IgSF) domains
(D1–D4) [82], the most important of which is the D1 domain because of its Ig variable-like
region (V-SET type) which contains a proline-rich loop and intrachain disulfide bridge
responsible for LAG-3-MHC II interaction [28,82]. The intracellular domain of LAG-3 has
three conserved motifs, a serine residue (S484) which can be phosphorylated and regulated,
a KIEELE motif, and a glutamate-proline dipeptide multiple repeats motif (EP motif) [83].
The phosphorylation of S484 has been attributed to the downstream signaling leading to
the production of the cytokine IL-2 [83]. The KIEELE motif is a highly conserved motif
found in LAG-3 [84,85]. The implication of lysine (K468) residue of KIEELE motif is found
to be vital in LAG-3 inhibitory downstream signaling [84,85]. The EP repeat motif in the
intracellular portion of LAG-3 is important in LAG-3 colocalization with CD3, CD4 and
CD8 proteins and activation of the T-cell receptor (TCR) within lipid rafts [86]. However,
the deletion of EP motif had no effect on the downstream signaling of LAG-3 [84].

LAG-3 is expressed on the plasma membrane of the activated CD4+ T helper lympho-
cytes, except for Th2, cytotoxic CD8+ T lymphocytes, and Treg, NK cells, B lymphocytes, and
DCs [87]. The expression of LAG-3 is elevated by cytokines such as IL-2 and IL-10 [88,89].
The activation of LAG-3 results in increased production of IL-10 by T lymphocytes [90].
There are multiple ligands for LAG-3 including MHC class II, galectin-3 (Gal-3), and
fibrinogen-like protein 1 (FGL1). MHC II interacts with LAG-3 with higher affinity than
CD4 via its D1 domain [29]. Once bound to MHC II, the cytoplasmic domains of LAG-3
propagate inhibitory signals in CD4+ T lymphocytes, leading to its inactivation and the es-
cape of tumor cells from undergoing immune cell-mediated apoptosis [91]. Another ligand
of LAG-3 is Gal-3, a 31-kDa galactose-binding lectin that is responsible for broad range
of physiological functions such as cell differentiation, apoptosis, cell adhesion, chemoat-
traction, and cell cycle progression [92]. Gal-3 is found in different cellular compartments
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including the cytoplasm, nucleus, and on the extracellular surface [92]. When expressed on
the surface of tumor cells in the TME, Gal-3 interacts with LAG-3 on CD8+ T lymphocytes
inhibit cytotoxicity of CD8+ T lymphocytes [93]. FGL1 is a protein produced by the liver
which functions to maintain a tolerogenic environment in the liver [94]. Recently, FGL1
was determined to be significantly upregulated in solid tumors, including TNBC [94]. The
fibrinogen-like domain of FGL1 interact with D1 and D2 domains of LAG-3, producing
immunosuppressive downstream signaling in T lymphocytes [94].

In normal physiology, LAG-3 plays a critical role in regulating autoimmunity as its
function is to limit overactivation of T lymphocytes. The expression of LAG-3 is also tightly
controlled by various membrane-bound metalloproteases ADAM10 and ADAM17 [95]. To
mount the immune response, ADAM10 cleaves the connecting peptide of LAG-3 to facilitate
T cell activation [95]. The activity of ADAM10 was found to be 12-fold higher following T
lymphocyte activation. ADAM17 mediates LAG-3 cleavage in a separate protein kinase
C-dependent manner following TCR signaling [95]. In the TME, the downregulation of
these metalloproteases and upregulation of cytokines such as IL-12 and IL-2 increases
the expression of LAG-3, which results in the unregulated inhibition of T lymphocytes.
The study of LAG-3 in BC samples of a cohort of 2994 patients revealed a significant
elevation of LAG-3 in the TME of BC compared to normal breast tissue [96]. Moreover,
the stage of cancer is positively correlated with the concentration of LAG-3 present in the
TME [96]. Therefore, it was concluded that LAG-3 could be an important prognostic marker
for TNBC [96]. Along with being a prognostic marker, the role of LAG-3 in the tumor
metastasis makes it a good therapeutic target for the treatment of cancer. Therefore, multiple
drugs are in clinical trials targeting the LAG-3 and its ligands and is provided in Table 3.

Table 3. Anti-LAG-3 antibodies targeting breast cancers.

Drug Name ClinicalTrials.gov
Identifier (NCT) Phase Combined with Targets

BI754111 [97] NCT03156114 Phase 1 BI754091 (anti-PD1) Carcinoma

LAG525 [98] NCT03365791 Phase 2 PDR001 (anti-PD1) TNBC

5. TIM-3

One emerging IC that it is important to acknowledge is the role of TIM-3 in the
TME. TIM-3 is a transmembrane protein that is part of TIM family of immunoregulatory
proteins [30]. TIM-3 is encoded by the tim-3 (HAVCR2) gene located on the long arm of
chromosome 5 [30]. The structure of TIM-3 consists of an amino-terminal immunoglobulin
variable domain (V domain), a mucin stalk, a transmembrane domain, and a cytoplasmic
tail [30]. Initially, TIM-3 was thought to be expressed only on T lymphocytes. However,
numerous studies have suggested that TIM-3 is also expressed not only on T lymphocytes
but on a variety of immune cells, such as macrophages, mast cells, NK cells, and tumor-
associated DCs [30,99–101]. The function of TIM-3 varies depending on its expression in
different cell types. For example, in macrophages, TIM-3 is responsible for regulating the
response to toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4) stimulation, thus
inhibiting the release of proinflammatory cytokines in autoimmune diseases [102,103]. In
mast cells, TIM-3 plays a role in cellular activation upon IgE sensitization and antigen
presentation [104]. Dysfunction of TIM-3 on the surface of NK cells in the TME often leads
to escape of tumor cells from the anti-tumor immune response [101].

TIM-3 has been reported to have additional ligands such as galectin 9 (Gal-9), phos-
phatidylserine (PtdSer), carcinoembryonic antigen-related cell adhesion molecule 1 (CEA-
CAM1), and high mobility group protein B1 (HMGB1). Gal-9 is a C-type lectin that is
secreted by multiple hematopoietic cells, tumor cells, APC cells, and TIM-3 expressing cells
in an autocrine fashion. It is expressed on the surface of tumor cells as well [105]. The bind-
ing of Gal-9 on the carbohydrate motif of the V-domain promotes the oligomerization of
TIM-3, thus facilitating the binding of another TIM-3 ligand, such as CEACAM1 [106,107].
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Initially, when TIM-3 is not bound to Gal-9, amino acid residues Tyr256 and Tyr263, in the
cytoplasmic domain interact with HLA-B-associated transcript (BAT3) protein [106,107].
BAT3 is a negative regulator of TIM-3, inhibiting the inhibitory function of TIM-3. However,
as Gal-9 interacts with TIM-3, it triggers the phosphorylation of Tyr256 and Tyr263 which
releases the BAT3 from the cytoplasmic domain of TIM-3 [108]. This results in unregulated
inhibition of T lymphocytes by TIM-3. Another ligand of TIM-3 is PtdSer, an apoptotic cell
surface marker. PtdSer binds the pocket of the V-domain on TIM-3 formed by the FG and
CC loops [109]. This interaction between TIM-3 and PtdSer is not implicated in apoptosis
or T lymphocyte anergy. However, it is found to be crucial in antigen presentation by
TIM-3 expressing DCs [110]. The mechanism of action of CEACAM1 upon interaction with
TIM-3 is similar to that of Gal-9. CEACAM1 is expressed by T lymphocytes, macrophages,
DCs, monocytes and tumor cells [111,112]. The binding of CEACAM1 on the FG and CC
loop of TIM-3 promotes the release of BAT3 via phosphorylation of the Tyr256 and Tyr263
residues [108]. Moreover, recent studies have suggested that CEACAM1 can also bind
TIM-3 in intracellular compartments [106]. The complex mechanism of TIM-3-CEACAM1
interaction in the TME hasn’t been fully understood. The HMGB1 is an intranuclear protein
responsible for binding to DNA helix and facilitating with the formation of protein com-
plexes [113]. During cell stress or death, HMGB1 is released by the cells thus functioning
as a marker for cell death, stress, or inflammation [113]. HMGB1 is expressed by tumor
cells in the TME. The binding of HMGB1 with TIM-3 on T lymphocytes and macrophages
induces the release of proinflammatory cytokines such as IL-1, IL-6, and IL-8, creating an
inflammatory TME [114]. These inflammatory conditions in turn facilitate angiogenesis
and enable further tumor progression such as metastasis.

In normal physiological conditions, TIM-3 is vital in the regulation of the immune
system and prevention of autoimmune diseases. For example, blockade of TIM-3 via anti-
TIM-3 antibodies resulted in the hyperactivation of immune cells, especially macrophages
and Th1 cells [115]. TIM-3-deficient mice were found to develop autoimmune diseases
more often than normal mice [116]. Additionally, the expression of TIM-3 was downreg-
ulated in patients with multiple sclerosis, rheumatoid arthritis, psoriasis, and ulcerative
colitis [116–119]. TIM-3 on Treg was determined to play an influential role in suppression of
the allograft rejection [120]. While downregulation of TIM-3 causes autoimmune diseases,
upregulation is implicated in T lymphocyte exhaustion. This leads to cancer progression
and metastasis. Recent studies performed on BC tissue have implicated the expression
of TIM-3 on cancer progression and metastasis. The expression of TIM-3 on tumor cells
or TILs is directly correlated to the staging of BC sample [121,122]. Furthermore, TIM-3
was found to directly correlate with Ki67 (a cell proliferation marker) and 5-year patient
survival rate (poor prognosis) [121,122]. The prominent role for TIM-3 in tumor progression
has made it an attractive therapeutic target. Therefore, multiple clinical studies are ongoing
to determine the potential of TIM-3 as an immune checkpoint inhibitor (ICI) and they are
shown in Table 4.

Table 4. Anti-TIM3 agents in cancer clinical trials.

Drug Name ClinicalTrials.gov
Identifier (NCT) Phase Combined with Targets

Sym023 [123] NCT03489343 Phase 1 - Metastatic cancers

MBG453 [124] NCT04266301 Phase 2 PDR001 (anti-PD1)
Decitabine Advance malignancies

LY3321367 [125] NCT03099109 Phase 1 - Solid tumor

RO7121661 [126] NCT04785820 Phase 1 - Solid tumor

LB1410 [127] NCT05357651 Phase 1 - Solid tumor

TSR-022 [128] NCT03680508. Phase 1 TSR-042 (anti-PD1) Advance solid tumor
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Table 4. Cont.

Drug Name ClinicalTrials.gov
Identifier (NCT) Phase Combined with Targets

BGBA425 [129] NCT03744468 Phase 1 Tislelizumab (anti-PD1) Metastatic tumors

INCAGN02390 [130] NCT03652077 Phase 1 - Solid tumors

BMS-986258 [131] NCT03446040 Phase 1 Nivolumab Advanced cancer

6. PD-1

Programmed Cell Death Protein 1 (PD-1) is a co-inhibitory receptor expressed on
the surface of T lymphocytes as part of the TCR complex with two B7 like ligands [132].
PD-1 and its two ligands programmed cell death ligand 1 and 2 (PD-L1/2) form one of
the most well documented and targeted ICs in cancer biology. Initially discovered in mice,
human PD-1 was found to be encoded by the pdcd1 gene and maps to chromosome 2
(2q.37.3) by in situ hybridization. PD-1 has a molecular mass of 55 kDa and is comprised of
288 amino acid residues. Structurally, PD-1 contains an extracellular IgV-like N-terminal
domain [133,134]. PD-1 shares a sequence similarity of 20% to another IC; CTLA-4, the first
IC that was approved for targeted therapy by the FDA in 2011. However, targeting CTLA-4
with the monoclonal antibody Ipilimumab showed promising activity against melanoma,
but patients receiving this treatment experienced adverse immune-mediated events [135].
These results demonstrated both the power of therapies targeting ICs and the need for
additional immunotherapy targets.

PD-1 is expressed on the surface of a wide range of activated immune cells includ-
ing dendritic cells, B lymphocytes, macrophages, monocytes, NK cells, and most impor-
tantly tumor-specific T lymphocytes [136]. In healthy individuals, the expression of PD-1
and its binding with the PD-L1 ligand determines the extent of T lymphocyte activa-
tion and balances autoimmunity with self-tolerance [33]. Binding of PD-1 with PD-L1
prevents TCR mediated proliferation of T lymphocytes and impairs effector cytokine
production [33,136]. The inverse of this concept has been further demonstrated as mice
lacking the PDCD1 gene were susceptible to autoimmune diseases due to proliferation of
self-reactive T lymphocytes [137]. Expression of PD-1 is under control of many different
transcription factors such as nuclear factor of activated T lymphocytes (NFAT), NOTCH,
Forkhead box protein 01 (FOX01) and interferon regulatory factor 9 (IRF9) [138]. Tran-
scription of PD-1 is also under epigenetic control, and in chronic infections, T lymphocytes
become functionally exhausted, and express high levels of PD-1 [139].

Factors within the TME also regulate this IC. Tumor associated macrophages (TAMs)
have been classified into anti-tumor M1 or pro-tumor M2 categories. M2 macrophages
secreting pro-inflammatory cytokines have been shown to increase PD-1/PD-L1 inter-
actions and expression [140,141]. In several types of cancer, increased infiltration of M2
macrophages into the TME correlates with a poor prognosis [142]. Through these mecha-
nisms, TAMs have been thought to contribute to resistance to anti-PD-1/PD-L1 therapies
and prevent T lymphocytes from mounting an anti-tumor response [143,144]. By depleting
M2 macrophages, some of this resistance can be overcome [145].

Binding of PD-1 with PD-L1 prevents the immune system from mounting an im-
mune response, even when the TCR recognizes an actionable antigen [146]. Many cancers
employ the PD-1/PD-L1 axis to avoid immune surveillance by expressing PD-L1 on the
tumor cell surface, although the value of PD-L1 expression as a prognostic indicator is
variable. One review found PD-L1 expression was correlated with a poor prognosis in blad-
der cancer, esophageal cancer, gastric cancer, hepatocellular cancer, renal cell carcinoma,
ovarian cancer, and pancreatic cancer, and a good prognosis Merkel cell carcinoma [147].
Even if the immune axis expression is not a good predictor for prognosis, inhibitors of
the PD-1/PD-L1 axis are indicated in various cancer types. Three anti-PD-1 antibodies,
nivolumab, pembrolizumab, and cemiplimab, have been approved by FDA for a wide
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range of cancers, along with three anti-PD-L1 monoclonal antibodies atezolizumab, dur-
valumab, and avelumab. Current inclusion criteria for antibody monotherapy requires a
tumor biopsy and positive staining for the IC [148]. However, despite upregulation and
indication across many cancers, the predicted response rate to anti-PD-1/PD-L1 therapy
remains 20–30% [149]. Even if patients did initially respond to therapy, many patients
developed resistance and relapsed following treatment [150].

In breast cancer, the story is tragically similar. While several subtypes of breast cancer
have targetable receptors, patients with triple negative breast cancer (TNBC) are lack-
ing options. Prior to immunotherapeutic options, TNBC patients would receive surgical
resection, radiotherapy, chemotherapy or a combination of the three [151]. TNBC pa-
tients will experience recurrence at a higher rate than other breast cancers subtypes [152].
Amongst TNBC patients that did not experience recurrence, increased immune system
activation against their cancers was discovered [153]. Immunotherapy represents an ac-
tionable target for many TNBC patients; PD-L1 specifically is upregulated in up to 20% of
TNBC patients [154]. The problem remains that monotherapy with anti-PD-1 or anti-PD-L1
antibodies is not effective on its own. When combined with chemotherapy however, pa-
tients receiving anti-PD-1 antibodies showed improved outcomes in the KEYNOTE-355
trial [155]. In the IMPassion131 trial, anti-PD-L1 antibody combined with chemotherapy
did not improve survival rates compared to chemotherapy alone [156]. The benefits of
targeting of the PD-1/PD-L1 axis remain unclear, some treatments prove to be effica-
cious while others much less so. In some cases, targeting of this axis has been found to
upregulate alternate immune checkpoints as a form of resistance [157]. Improved immuno-
histochemical methods for the detection of PD-L1 might help in selecting patients with
a better expression of PD-L1 in the tumor.

Monoclonal antibodies targeting the PD-1/PD-L1 axis is a well-documented im-
munotherapy approach that functions after the targets are expressed on the cell surface.
However, recent studies have aimed at intracellular regulation of this axis and manipu-
lation of the TME. New developments in targeted proteolysis of oncogenic proteins via
Proteolysis Targeting Chimeras (PROTACS) have shown promise in murine breast cancer
models [158]. These methods could be employed against the PD-1/PD-L1 axis. Intracellular
regulation was directly achieved via metformin administration, which activated AMPK,
in turn facilitating endoplasmic reticulum (ER) associated homeostasis pathways such as
autophagic degradation of PD-L1 [159,160]. Using chitosan biguanide (Bi-Ch) to target the
mitochondria in tumor cells, researchers decreased the available ATP for the multi-drug
resistance protein (MDR-1) [161]. Further refining this treatment to a metformin (Ch-met)
modified chitosan inhibited MDR-1, while simultaneously decreasing PD-L1 expression
through AMP-activated protein kinase (AMPK) activation [162]. Ch-met also potentiated
other chemotherapeutic agents such as platinum analogs [162].

7. Overcoming the Resistance to Immunotherapy

Monoclonal antibodies targeting ICs have shown very promising outcomes in the field
of oncology. Presently, there are multiple FDA-approved immune checkpoint inhibitors
(ICIs) being used in the clinic (Table 5). They are divided into four groups: anti PD-1,
anti-PD-L1, anti-CTLA-4 and anti-LAG-3 with more ICIs in different phase trials as shown
in previous tables.

Despite the impressive outcomes and survival benefits with ICI therapy in various
cancer types [163–167], the response rate to ICIs shows a dichotomy in which some patients
show a strong response and significant benefit from therapy, while others do not. Moreover,
with longer follow-up periods, relapse events are starting to be more common amongst
patients. All this suggests at least two types of ICI resistance: primary resistance (or
innate), and secondary (or acquired), with some groups call a third type termed “adaptive
resistance” (intermediate phenotype characterized by limited anti-tumor response with
immunosuppression) [168]. The likelihood of developing primary or secondary resistance
increases significantly in patients undergoing ICI monotherapy [169]. Several mechanisms
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of ICI resistance have been proposed (Figure 3). Cellular pathways of resistance include
the impairment of antigen-stimulated T lymphocyte responses, T lymphocyte exhaustion,
and cellular expression of alternative ICs. Signaling pathway resistance may stem from
disrupted IFN-γ signaling in tumor cells, or the dysregulation of oncogenic signaling
pathways (WNT–β-catenin, CDK4/6, MAPK cascades). The emergence of resistance
to ICIs is characterized by one or more of the following phenomena: insufficient anti-
tumor T lymphocyte generation, inadequate anti-tumor T lymphocyte effector function,
or impaired formation of T lymphocyte memory [170]. Tumor heterogeneity also plays a
role in resistance against ICI therapy. Different patients with the same type of tumor can
display different resistance mechanisms, and within a single patient, multiple resistance
mechanisms can co-exist.

Table 5. FDA-approved ICIs.

Drug Class First FDA Approval Date

Nivolumab
Anti-PD-1

22 December 2014
Pembrolizumab 4 September 2014

Cemiplimab 28 September 2018

Atezolizumab
Anti-PD-L1

18 May 2016
Avelumab 23 March 2017

Durvalumab 1 May 2017

Ipilimumab
Anti-CTLA-4

28 March 2011
Tremelimumab 24 October 2022

Relatlimab Anti-LAG-3 18 March 2022
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7.1. Expression of Alternate ICs

Resistance to one ICI is often rooted in the function of other ICs. For example, targeting
PD-1 increases the expression of other ICs, such as CTLA-4, TIM-3 and LAG-3 [169,171]. It
is important to understand the common transcription and translation factors that regulate
the expression of different ICs at a molecular level. TCR/CD28 signaling is regarded
as one of the main triggers for IC expression. Upon the activation of T lymphocytes
via TCR signaling, the p38MAPK/JNK pathway is activated, which further activates a
c-Jun/ATF2 complex [172]. This complex recruits the transcription factor Yin-Yang (YY1).
YY1 binds to the to the promoter region of the genes encoding PD-1, LAG-3, and TIM-3 and
increases their transcription [172]. Other regulators of the expression of ICs are cytokine
and interferon receptors. In TNBC, tumor cells induce the expression of IL-27, which
through STAT1/STAT3 signaling activates the transcription factors c-MAF, NFIL3 and
BLIMP1, promotes chromatin remodeling at the TIM-3 locus. This remodeling leads to the
increased expression of TIM-3 [173,174]. Furthermore, IL-27 expression is also linked to
enhanced activity of PD-1, TIGIT and LAG-3 within the TME via a STAT1/STAT3 signaling
cascade [174,175]. Yet another factor that can regulate the expression of ICs is one of
the receptors of vascular endothelial growth factor A (VEGF-A) called VEGF receptor 2
(VEGFR2). To induce angiogenesis, tumor cells produce abundant amounts of VEGF-A in
the TME. Tumor-infiltrating mature CD8+ T lymphocytes in turn express VEGFR2, which
interacts with the VEFG-A produced [176]. This interaction sends downstream signals
through a PLCγ-calcineurin-NFAT pathway enhancing the production of ICs by activating
the genes such as 2B4, CD160, KLRG1, and BTLA, ultimately increasing the expression of
PD-1, TIM-3, and LAG-3 [176]. TIM-3 was shown to be upregulated following anti-PD-
1 therapy in immunocompetent murine models, and patients who developed adaptive
resistance to anti-PD-1 therapy displayed a similar trend with upregulation of TIM-3 [157].
This suggests that sequential therapy or combination therapy with more than one classes
of ICIs could alleviate the emergence of resistance after immunotherapy. In line with
this, several trials have demonstrated how combination therapy yields superior results
compared to monotherapy [177,178] or current treatment guidelines [179].

It is believed that DNA methylation and histone modification also plays a key role
in regulating the expression of ICs. In breast cancer, demethylation enzymes TET2 and
TET3 were upregulated whereas methylation enzymes such as DNMT3a and DNMT3b
were found to be downregulated. Downregulation of methylation enzymes was found to
have major impact on the hypomethylation of the promoter regions of pdcd1 and tim-3,
thus increasing their transcription. However, no changes in the methylation status were
significant for the genes encoding and regulating TIGIT and LAG-3, suggesting that they
might follow different regulation patterns [51,180].

7.2. Impaired Antigen-Stimulated T Lymphocyte Response

Factors hindering antigen presentation to T lymphocytes, such as downregulation
of MHC expression or insufficient generation of antigens, often results in unsatisfactory
responses to ICI therapy. A tumor mutational burden (TMB) is the total number of so-
matic mutations per megabase of genomic sequence [181,182], and it has been proposed
as a tool for predicting therapeutic response to ICIs [183,184]. These mutations result
in novel protein products called neoantigens, which are then presented to T lympho-
cytes and generate an immune response. Tumors with a low TMB usually show a lim-
ited response or complete resistance to ICIs, most likely due to insufficient neoantigen
formation/presentation [185–188], Conversely, high response rates have been reported in
tumors with a high TMB [189]. Further in line, a dramatic robust response was observed in
mismatch repair deficiency, in locally advanced rectal cancer showing a high TMB [190].
These antigens are presented to T lymphocytes mainly through major histocompatibility
complex (MHC) class I, and a disruption in the antigen processing machinery can lead
to decreased T lymphocyte responses and evasion of immune surveillance and cytolytic
activity [191]. This disruption of the antigen presentation machinery can be due to a de-
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creased MHC expression, an alteration in the MHC structure, or mutation in the transport
of the antigen to the surface [192,193]. Furthermore, alterations of β2-microglobulin (β2M),
a structural component of MHC class I, is present in tumors displaying resistance to PD-1
blockade [194], PD-1/CTLA-4 blockade [195], and PD-1/PD-L1 blockade [196].

7.3. Disrupted IFN-γ Signaling in Tumor Cells

When tumor-reactive T lymphocytes mount an adequate response against tumor
neoantigens, IFN-γ is produced in the TME which activates JAK/STAT signaling, which in
turn activates the transcription factor interferon regulatory factor 1 (IRF1), culminating in
the transcription of cd274 (whose protein product is PD-L1). PD-L1 on the surface of tumor
cells decreases T lymphocyte anti-tumor activity upon binding PD-1, creating a negative
feedback loop that ultimately results in downregulating antitumor responses. PD-1/PD-L1
blockade breaks this cycle and restores antitumor activity. However, when IFN-γ signaling
is disrupted, a PD-L1 adaptive response is absent, rendering the PD-1/PD-L1 blockade
ineffective [22]. The IFN-γ signaling cascade can be affected by mutations of proteins
that form part of this pathway, such as Jak1, Jak2, and Stat1, among others [197,198].
Mutations or loss of IFN-γ genes was identified as the reason for resistance to anti-CTLA-4
therapy [199,200].

7.4. T Lymphocyte Exhaustion

Upon encountering an antigen, T lymphocytes mount an adaptive immune response
specifically aimed to clear the foreign immunogen. After clearance, a small subset of T
lymphocytes differentiates into memory cells with the task of clearing the foreign antigen in
the event of being encountered again. However, cancer cells can evade immune clearance
and persist in the presence of effector T lymphocytes even after tumor antigens have
been recognized. Continued presence of tumor antigens can lead those T lymphocytes to
lose their effector function and become exhausted, rendering them ineffective for tumor
control [201–203]. This dysfunctional state is distinct from functional effector and memory T
lymphocytes in both transcriptional terms and expression of ICs [204]. Proliferative capacity,
lack of cytotoxic and cytolytic activity, and decreased IFN-γ upon TCR binding are hallmark
of exhausted T lymphocytes, which end up being eliminated [205,206]. Interestingly,
exhausted T lymphocytes express high levels of PD-1 [136,207–209] and other ICs as
well, such as TIM-3, LAG-3, and the IC common transcription factor BLIMP1 [209–211].
Although anti-PD-1/PD-L1 therapy aims to invigorate and rescue exhausted cells, severe,
irreversible exhaustion characterized by an overexpression of ICs, especially PD-1, might
be a cause of refractoriness to ICI therapy [201,212–215]. Conversely, dietary regulation
of IFN-γ has been employed as a strategy to combat T lymphocyte exhaustion [216].
By administering a ketogenic diet, researchers were able to down regulate PD-L1 levels
and promote IFN-γ expression in the TME, which in turn led to improved efficacy of
ICI therapy [216].

7.5. Dysregulation of Oncogenic Signaling Pathways

Tumor signaling pathways and their role in shaping the TME have been reviewed
extensively [217–219]. Evidence suggesting a role in ICI resistance has been described for
at least three oncogenic pathways: MAPK, Cyclin-dependent kinases 4 and 6 (CDK4/6)
and WNT–β-catenin cascades.

Expression of immunosuppressive cytokines IL-6 and IL-10 is increased by the MAPK
signaling pathway, resulting in immune evasion [220]. Consequently, cancers with over-
activation of the MAPK pathway may show a decreased response to ICIs due to poor
T lymphocyte engagement. The fact that this occurs secondary to an already subpar T
lymphocyte recruitment and function further explains resistance. In addition, inhibition
of the MAPK pathway using EGFR and MEK inhibitors prevented expression of PD-L1 at
the transcriptional and translational levels in non-small cell lung cancer (NSCLC) [221].
Further corroborating the link between PD-L1 and MAPK, MAPK signaling was shown
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to regulate PD-L1 expression in lung cancer [222]. As previously described, the MAPK
pathway leads to the recruitment of transcription factor YY1, which regulates expression of
PD-1, LAG-3 and TIM-3 [174]. Anti-PD-1 therapy combined with MEK inhibition produced
lasting tumor regression in CT26-innoculated BALB/c mice [223] and the triple therapy
with trametinib (MEK inhibitor), dabrafenib (BRAF inhibitor) and anti-PD-1 showed a
strong anti-tumor effect [224]. Collectively, MAPK can lead to ICI resistance through many
discovered pathways: through decreasing T lymphocyte activity via IL-6 and IL-10; by
increasing expression of PD-L1 on tumor cells; and by promoting the co-expression of
several ICs in T lymphocytes. Overcoming this form of resistance may lay in a parallel
signal transduction pathway. The interplay between the MAPK pathway and the AMP
protein kinase (AMPK) pathway within the TME has been extensively studied [225]. The
overactivation of the MAPK pathway leads to the suppression of the AMPK pathway [225].
Recently, studies have shown that pharmacological activation of the AMPK pathway leads
to a downregulation of the PD-L1 within the TME [226,227].

CDKs are a family of critical regulatory enzymes that integrate intra- and extracellular
cues to control cell proliferation by regulating the progression through the different phases
of the cell cycle and modulating transcription [228]. Given their importance, mutation and
dysregulation of CDKs are often implicated in diseases such as cancer. CDK4/6 inhibitors
now constitute a widely used class of anticancer agents with 3 FDA-approved members
(as of October 2022), abemaciclib, albociclib and ribociclib. The role of CDK4/6 inhibitors
in anti-tumor immunity has been corroborated by several studies [229–232]. Analysis of
single-cell RNA sequence from melanoma patients identified an ICI resistance program
that was controlled by CDK4/6 [232]. After treatment with abemaciclib, this program
was repressed, and the melanoma cells were re-sensitized to anti-PD-1 therapy in mouse
models. In another study, CDK4/6 inhibitors in combination with anti-PD-L1 therapy
was more effective than either individual agent in murine breast cancer models [231]. In
general, CDK4/6 inhibitors enhance the anti-tumor immune response by promoting antigen
processing and presentation, stimulating DC maturation, and reducing the population of
immunosuppressive Tregs [188]. A growing body of evidence suggests that dysregulation
of CDK4/6 functions may lead to ICI resistance.

The canonical WNT–β-catenin pathway has been implicated in hindering anti-tumor
immune responses and fostering an immunologically “cold” TME by inducing the pro-
duction of immunosuppressive IL-10 by tumor cells. This impairs the maturation of
DCs and pushes immature DCs to differentiate into regulatory DCs. This regulation pro-
motes immune tolerance and produces more IL-10 [233–235], creating a feedback loop
of immunosuppression [236]. In addition, the WNT–β-catenin pathway has been im-
plicated in decreasing T lymphocyte infiltration and promoting resistance to ICIs. In
melanoma, this pathway interferes with the recruitment of DCs and decreases the expres-
sion of CCL4 [237,238]. The priming of anti-tumor CD8+ T lymphocytes is dependent on
this subpopulation of DCs [239]. Melanoma cells can release the soluble WNT agonist
WNT5A, that in turn activating the WNT–β-catenin pathway in DCs. This upregulates
the activity of the immunomodulatory enzyme indoleamine 2,3-dioxygenase-1 (IDO1).
IDO1 converts the amino acid tryptophan into kynurenine, and this increased kynurenine
promotes the differentiation of Tregs [240]. IDO1 expression is also controlled by IFN-γ
signaling [241,242]. The serine/threonine p21-activated kinase 4 (PAK4) is a mediator of the
WNT–β-catenin pathway with pro-oncogenic functions such as cell growth, invasiveness,
survival, and apoptosis resistance. Elevated levels of PAK4 have been found in several
types of cancer [243]. Resistance to PD-1 blockade was overcome after genetic deletion
of PAK4, and the combination of anti-PD-1 with PAK4 inhibition improved anti-tumor
response versus PD-1 blockade alone [244].

8. Conclusions

Immunotherapy is better for patients in terms of the number and the extent of the ad-
verse events following therapy. The classical ICs and the activation of the alternate ICs must
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be borne in mind when employing immunotherapy. Precision medicine following the evalu-
ation of ICs through biopsy along with a low dose cytotoxic or targeted therapy might pave
way for a better clinical outcome in treating therapy-naïve or immuno-refractory cancers.
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ADAM A disintegrin and metalloprotease
APC Antigen presenting cells
BAT3 B-associated transcript
BC Breast cancer
BLIMP1 B-lymphocyte induced maturation protein
BTLA B and T lymphocyte attenuator
CDK Cell division kinase
CEACAM1 carcinoembryonic antigen cell adhesion molecule 1
CTLA-4 Cytotoxic T lymphocyte antigen 4
DC Dendritic cells
DNAM1 DNAX accessory molecule 1
DNMT DNA methyltransferase
ECM Extracellular matrix
ERK Extracellular signal regulated kinase
FDA Food and drug administration
FGL1 Fibrinogen-like protein 1
FOX Forkhead box protein
Gal-3 Galectin 3
HLA-B Human leukocyte antigen B
HMGB1 High mobility group B1
IC Immune checkpoint
ICI Immune checkpoint inhibition
IDO1 Indoleamine 2,3 -dioxygenase 1
IFN-g Interferon-g
IRF Interferon regulatory factor
JAK Janus Kinase
LAG-3 lymphocyte activation gene 3
MAPK Mitogen activated protein kinase
MDSC Myeloid-derived suppressor cells
MHC II Major histocompatibility complex class II
NACT Neoadjuvant chemotherapy
NECL Nectin-like
NF-kB Nuclear factor kappa of B lymphocytes
NFAT Nuclear factor of activated T cell transcription factor
NK Cells Natural killer cells
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NSCLC Non-small cell lung carcinoma
PAK4 p21 activated kinase 4
PD-L1 Programmed death ligand 1
PD-1 Programmed death receptor 1
PI3K Phosphatidylinositol-3-kinase
PtdSer Phosphatidyl serine
PSGL1 P-selectin glycoprotein ligand 1
PVR Polio virus receptor
SHIP1 SH3 domain containing inhibitory phosphatase 1
STAT1 Signal transducers and activators of transcription 1
STAT3 Signal transducers and activators of transcription 3
TAM Tumor associated macrophages
TAN Tumor associated neutrophils
TCR T-cell receptor
TIGIT T lymphocyte immunoreceptor with Ig and ITIM domains
TILs Tumor infiltrating lymphocytes
TIM-3 T lymphocyte immunoglobulin mucin 3
TIME Tumor immune microenvironment
TLR Toll-like receptor
TNBC Triple-negative breast cancer
TNF-a Tumor necrosis factor a
TME Tumor microenvironment
Tregs Regulatory T cells
VEGF Vascular endothelial growth factor
VISTA V-domain Ig suppressor of T cell activation
VSIG3 V-set and immunoglobulin domain containing 3
YY1 Yin Yang 1
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