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Simple Summary: Immune checkpoint inhibitors (ICIs) offer high efficacy of cancer treatment, but
their use is limited to a subset of patients who respond well to the resetting of the immune system.
To attempt to identify patients and predict response to ICI, tumour-based biomarkers such as PD-L1
expression or mutational tumour burden have been widely used but proved to be of insufficient accu-
racy. Here, we have deployed epigenetic profiling that detects specific chromosome conformations in
the blood of the patients. It has been successfully used for predictive and prognostic applications. In
this study, we developed and validated blood biomarkers for a checkpoint inhibitor response test
that offers a significant increase in the accuracy of predicting positive response to ICI across multiple
oncological indications. This new test is accurate, rapid, and minimally invasive. It could assist in
treatment decisions, help to improve patient selection, and more efficiently manage costs.

Abstract: Background: Unprecedented advantages in cancer treatment with immune checkpoint
inhibitors (ICIs) remain limited to only a subset of patients. Systemic analyses of the regulatory 3D
genome architecture linked to individual epigenetic and immunogenetic controls associated with
tumour immune evasion mechanisms and immune checkpoint pathways reveal a highly prevalent
molecular profile predictive of response to PD-1/PD-L1 ICIs. A clinical blood test based on a set of
eight (8) 3D genomic biomarkers has been developed and validated on the basis of an observational
trial to predict response to ICI therapy. Methods: The predictive eight biomarker set is derived
from prospective observational clinical trials, representing 280 treatments with Pembrolizumab,
Atezolizumab, Durvalumab, Nivolumab, and Avelumab in a broad range of indications: melanoma,
lung, hepatocellular, renal, breast, bladder, colon, head and neck, bone, brain, lymphoma, prostate,
vulvar, and cervical cancers. Results: The 3D genomic eight biomarker panel for response to immune
checkpoint therapy achieved a high accuracy of 85%, sensitivity of 93%, and specificity of 82%.
Conclusions: This study demonstrates that a 3D genomic approach can be used to develop a predictive
clinical assay for response to PD-1/PD-L1 checkpoint inhibition in cancer patients.

Keywords: immuno-oncology; immune checkpoint inhibitors; response to treatment; epigenetics;
blood test
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1. Background

Insights into tumour immunology related to mechanisms of tumour immunosurveil-
lance and anti-tumour immune responses have led to unprecedented advances in cancer
treatment. This breakthrough in cancer treatment takes advantage of key mechanisms that
mitigate tumour immune evasion by targeting immune checkpoints to enhance anti-tumour
immunity and harnesses the overall patient immune system. These agents have shown
considerable clinical benefit in certain patient populations [1–3].

Under physiological conditions, immune checkpoint molecules regulate the immune
system by dampening the immune response following successful mitigation of an infection
and preventing the onset auto-immune conditions. One of the first identified inhibitory
checkpoints—CD152, also known as T lymphocyte-associated protein (CTLA-4)—has been
shown to prevent expansion of CD4+ helper T cells, boost regulatory T cells, and promote
a pro-tumour immuno-suppressive phenotype [4,5]. Strategies to antagonise CTLA-4
as a means of increasing anti-tumour immunity eventually lead to US Food and Drug
Administration (FDA) approval of ipilimumab for treatment of metastatic melanoma [6].
With limited other therapeutic options to improve the survival of advanced melanoma
patients, ipilimumab demonstrated a 2-year survival rate of 23.5%. However, consistent
with auto-immunity observed in pre-clinical models targeting CTLA-4 [7,8], treatment with
ipilimumab was associated with immune-related adverse effects in 60% of patients [9].

Today, the two most successfully exploited immune checkpoints are CD279, called
programmed cell death protein 1 (PD-1), expressed on tumour infiltrating lymphocytes,
B cells, NK cells, and myeloid cells; and its ligand, CD274, called programmed death-
ligand 1 (PD-L1), expressed on tumour cells. The PD-L1/PD-1 interaction is a major
mechanism leading to tumour immune evasion. Agents that interfere with this interaction
have demonstrated potent and durable anti-tumour activities, with less severe immune-
related toxicity compared to CTLA-4 blockade [3]. Accordingly, in earlier clinical trials the
anti-PD-1 antibodies Nivolumab and Pembrolizumab had already been proven effective in
treatments of melanoma, non-small cell lung cancer (NSCLC), and colorectal cancer [10–14],
while anti-PD-L1 antibodies, such as Atezolizumab, Avelumab, Durvalumab—have been
proven effective in treatments of NSCLC, urothelial carcinoma, and triple negative breast
cancer [15–18]. Additional cancer types are currently under active clinical investigation.

In addition to the expanding array of therapeutic agents targeting PD-(L)1 (dostar-
limab, tyvyt, libtayo, tislelizumab, camrelizumab, and sasanlimab), a series of novel im-
mune checkpoint molecules are undergoing evaluation (LAG-3/CD223, TIM-3, TIGIT,
VISTA, B7-H3/CD276, BTLA/CD272) [3].

Limitations of currently approved immune checkpoint inhibitors (ICIs) include vari-
able responses among cancer types, primary resistance in the majority of patients with
objective responses observed in the minority, acquired resistance in most cancer types, and
significant risk of immune-related adverse side effects. The objective response rate (ORR)
for anti-CTLA-4 ipilimumab (Yervoy) in melanoma was 10.9%, with a high-grade treatment-
related adverse event rate of 15% [9]; for anti-PD-1 Pembrolizumab (Keytruda) in advanced
melanoma—33% ORR, with 14% high-grade treatment-related adverse events [19]; for
anti-PD-L1 Avelumab (Bavencio) in urothelial carcinoma—17% ORR, with 8% high-grade
treatment adverse events [20].

In practical terms, oncologists prescribing an ICI must weigh the risk of immune-
related adverse effects against the ORR and benefits of ICI treatment, with very limited data
to guide the decision. This has led to multiple efforts to develop predictive biomarkers to
identify patients who will benefit from treatment. The predictive value of tumour intrinsic
factors such as tumour mutational burden (TMB), microsatellite instability (MSI), and DNA
mismatch repair deficiencies (dMMR) has been supported by several studies [21–23]. In
2017, the FDA approved Pembrolizumab for treatment of advanced paediatric and adult
solid tumours with high MSI and dMMR, which have not responded to prior treatments
and have no other alternative treatment options [3]. The association of genetic biomarkers



Cancers 2023, 15, 2696 3 of 27

such as TMB with response to ICI treatment is not observed in all patients [21], and has
been reported to have limited predictive value in a particular study context [24].

Also, the advanced technology and standardisation required for such biopsy-based
tests impose practical limitations on applicability of these biomarkers in practice-based
clinical settings.

Assessment of tumour infiltrating lymphocytes has been evaluated for predictive
value with mixed success [25]. With that said, there is much work still required, one
thought being that the standardisation of histologic evaluation may improve reliability [26].

Earlier trials of anti-PD-1/PD-L1 inhibitors reported association between tumour
PD-L1 expression and response to treatment in melanoma and NSCLC [27,28]. In contrast,
other reports showed that durable responses to ICI could be obtained in the absence of
tumour PD-L1 expression [29]. The variability in the definitions of PD-L1 positivity and in
methods for its evaluation account for significant inconsistencies in predictive results, with
calls for further standardisation [3].

The 3D configuration of the genome plays a crucial role in coordinated gene regulation
and homeostasis of cellular phenotype [30–32]. Three-dimensional genome architecture
has been shown to act as the regulatory interface and integration point for genetic risks,
epigenetic cues and modifications, metabolic signalling, and transcriptional events all
integrated into the manifestation of specific cellular phenotypes and, ultimately, clinical
outcomes [30,33,34]. EpiSwitch® is a biomarker platform and methodology for patient
stratification developed on the basis of the original chromosome conformation capture (3C)
approach as a novel biomarker modality [35,36]. The EpiSwitch® platform has reduced
to practice all stages of the discovery, development, validation, and monitoring of blood-
based biomarkers, based on 3D genome architecture. To date, 3D genomic EpiSwitch®

biomarkers, also known as chromosome conformation signatures; have been used in
blood test format to stratify melanoma patients; prognostically stratify patients with fast
versus slow progressing motor neurone disease; stratify patients with symptomatic and
pre-symptomatic neurodegenerative disease; diagnose patients with thyroid cancer and
various stages of prostate cancer; prognostically stratify patients for outcome in diffuse
large B cell lymphoma; predictively stratify patients with NSCLC for response to the anti-
PD-L1 ICI Avelumab; prognostically stratify high-risk individuals with an immune-health
profile susceptible to systemic hyperreaction and severe COVID disease complications
upon infection with SARS-CoV-2; and significantly increase PSA positive predictive value
in the context of prostate cancer treatment in the population at risk [37–51].

Based on predictive and prognostic methodologies developed with systemic 3D ge-
nomic biomarkers, we looked at the EpiSwitch® platform 3D genomic profiles in patients
treated with ICIs to see if any could be used to predict responsiveness to ICI treatment.
We have focused on the PD-(L)1 pathway target, as it is the most advanced in terms of
clinically developed inhibitors. We have based our analysis on a prospective observational
study with the use of several of the approved ICIs for a variety of oncological indications.

We have used the EpiSwitch® Explorer array platform for whole genome profiling
of patients prior to ICI treatment, with subsequent classification of the clinical outcome
of response based on standard ORR criteria/RECIST 1.1, as a standard in clinical practice
and trials settings [52,53]. After analysing 1.1 million data points with annotations across
the whole genome for each screened patient, we identified significant and reproducible
differences in marker profiles of responders and non-responders, as potential marker leads.
The top leads representing alternative 3D genomic conformations were then translated into
a qPCR format, evaluated, and reduced to a molecular classifier. The classifier was then
validated on samples from the observational trial and from independent validation cohorts.
Here, we report on the development of the 3D genomic biomarker panel with clinical utility
in predicting response to ICIs targeting PD-(L)1 across a variety of oncological indications.
These biomarkers reflect prevalent regulatory settings at the level of 3D genomics in the
dynamic equilibrium with the patient immune system. They are systemically present at
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baseline prior to treatment and have predictive value for response/non-response outcomes
to ICI treatments, either with a PD-1 or PD-L1 monoclonal antibody antagonist.

2. Materials and Methods
2.1. Patient Characteristics

Whole blood samples, 232 in total, were obtained from consenting patients enrolled in
the observational trial “Identifying and Developing Chromosomal Conformation Signa-
tures in Patients Undergoing Cancer Immunotherapy” at Mount Miriam Cancer Hospital
(MMCH) in Penang, Malaysia. Additionally, 48 retrospective baseline IO treatment samples
were procured commercially (Supplementary Table S1). Thirty-two (32) patients were used
in the EpiSwitch® screening and discovery stage, 77 in the training model cohort, and there
were three independent validation cohorts of 24, 128, and 51 patients. The subject pool
represented a multinational set of ICI treated cases, with over 40 distinct oncological diag-
noses, from the United States, Europe, and Asia. Patient indications, treatments, clinical
outcomes, calls by EpiSwitch® classifier, and sample use at different stages of the biomarker
development are listed in (Supplementary Table S1). Disease response or progression to
the therapy was assessed by the investigators according to RECIST 1.1 guidelines [52].

2.2. Preparation of 3D Genomic Templates

EpiSwitch® 3D libraries, chromosome conformation analytes converted to sequence-
based tags, were prepared from frozen whole blood samples. Using EpiSwitch® protocols
following the manufacturer’s instructions for EpiSwitch® Explorer Array kits (Oxford
BioDynamics Plc, Oxford, UK), samples were processed on the Freedom EVO 200 robotic
platform (Tecan Group Ltd., Männedorf, Switzerland). Briefly, 50 µL of whole blood was
diluted and fixed with a formaldehyde containing EpiSwitch buffer. Density cushion
centrifugation was used to purify intact nuclei. Following a short detergent-based step to
permeabilise the nuclei, restriction enzyme digestion and proximity ligation were used
to generate the 3D libraries. Samples were centrifuged to pellet the intact nuclei before
purification with an adapted protocol from the QIAmp DNA FFPE Tissue kit (Qiagen,
Hilden, Germany) Eluting in 1x TE buffer pH7.5. The 3D libraries were quantified using the
Quant-iT™ Picogreen dsDNA Assay kit (Invitrogen, Waltham, MA, USA) and normalised
to 5 ng/mL prior to interrogation by PCR.

2.3. Array Design

Custom microarrays were designed using the EpiSwitch® pattern recognition algo-
rithm, which operates on Bayesian modelling and provides a probabilistic score that a
region is involved in long-range chromatin interactions. The algorithm was used to an-
notate the GRCh38 human genome assembly across ~1.1 million sites with the potential
to form long-range chromosome conformations [29–36]. The most probable interactions
were identified and filtered on a probabilistic score and proximity to the protein, long
non-coding RNA, or microRNA coding sequences. Predicted interactions were limited
to EpiSwitch® sites greater than 10 kb and less than 300 kb apart. Repeat masking and
sequence analysis was used to ensure unique marker sequences for each interaction. The
EpiSwitch® Explorer array (Agilent Technologies, Product Code X-HS-AC-02), containing
60-mer oligonucleotide probes, was designed to interrogate potential 3D genomic inter-
actions. In total, 964,631 experimental probes and 2500 control probes were added to a
1 × 1 M CGH microarray slide design. The experimental probes were placed on the design
in singlicate with the controls in groups of 250. The control probes consisted of six differ-
ent EpiSwitch® interactions that are generated during the extraction processes and used
for monitoring library quality. A further four external inline control probe designs were
added to detect non-human (Arabidopsis thaliana) spikes in DNA added during the sample
labelling protocol to provide a standard curve and control for labelling. The external spike
DNA consists of 400 bp ssDNA fragments from genomic regions of A. thaliana. Array-based
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comparisons were performed as described previously, with the modification of only one
sample being hybridised to each array slide in the Cy3 channel [45].

2.4. Translation of Array-Based 3D Genomic Markers to PCR Readouts

The top array-derived markers identified in our previous study were interrogated
using OBD’s proprietary primer design software package to identify genomic positions
suitable for a hydrolysis probe-based real-time PCR (RT-PCR) assay [46]. Briefly, the
top array-derived markers associated with predictive potential to differentiate between
response and non-response to ICI outcomes were filtered on the logistic regression Glmnet
coefficient. PCR primer probes were ordered from Eurofins (Luxembourg) genomics
as salt-free primers. The probes were designed with a 5′ FAM fluorophore, 3′ IABkFQ
quencher and an additional internal ZEN quencher and ordered from iDT (Integrated DNA
Technologies, Coralville, IA, USA) [54]. Each assay was optimised using a temperature
gradient PCR with an annealing temperature range from 58 to 68 ◦C. Individual PCR assays
were tested across the temperature gradient alongside negative controls including soluble
and unstructured commercial TaqMan human genomic DNA controls (Life Technologies,
Carslbad, CA, USA) and used a TE buffer-only negative control. Assay performance
was assessed based on Cq values and reliability of detection and efficiency based on the
slope of the individual amplification curves. Assays that passed the quality criteria and
presented with reliable detection differences between the pooled samples associated with
responders and non-responders to ICI treatment outcomes were used to screen individual
patient samples.

2.5. EpiSwitch® PCR

Each patient sample was interrogated using RT-PCR in triplicate. Each reaction
consisted of 50 ng of EpiSwitch® library template, 250 mM of each of the primers, 200 mM
of the hydrolysis probe, and a final 1X Kapa Probe Force Universal (Roche) concentration
in a final 25 mL volume. The PCR cycling and data collection were performed using a
CFX96 Touch Real-Time PCR detection system (Bio-Rad, Hercule, CA, USA). The annealing
temperature of each assay was changed to the optimum temperature identified in the
temperature gradients performed during translation for each assay. Otherwise, the same
cycling conditions were used: 98 ◦C for 3 min followed by 45 cycles of 95 ◦C for 10 s and
20 s at the identified optimum annealing temperature. The individual well Cq values
were exported from the CFX manager software after baseline and threshold value checks.
A total of 20 3D genomic markers that passed the translation phase were screened on
32 responder and non-responder samples as a marker reduction step based on statistical
criteria to identify the top 8 discriminating markers. These markers were evaluated on
78 individual samples from the training cohort as part of the classifier model design. They
were then used to screen the independent validation cohorts of 24 and 128 samples.

2.6. Genomic Mapping

The 24 3D genomic markers from the statistically filtered list with the greatest and
lowest abundance scores were selected for genome mapping. Mapping was carried out
using Bedtools closest function for the 3 closest protein coding loci—upstream, downstream,
and within the long-range chromosome interaction (Gencode v33). All markers were
visualised using the EpiSwitch® Analytical Portal.
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2.7. Statistical Analysis

The 20 markers screened on 32 individual patient samples in Screens 1 and 2 were
subject to permutated logistic modelling with bootstrapping for 500 data splits and non-
parametric Rank Product analysis (EpiSwitch® RankProd R library). Two machine learning
procedures (eXtreme Gradient Boosting: XGBoost and CatBoost) were used to further
reduce the feature pool and identify the most predictive/prognostic 3D genomic markers.
The resulting markers were then used to build the final classifying models using CatBoost
on a 78 sample cohort. Catboost is a member of the Gradient Boosted Decision Trees
machine learning ensemble techniques [55]. All analysis was performed using R statistical
language with the Caret, XGBoost, SHAPforxgboost, and CatBoost libraries.

2.8. Biological Network/Pathway Analysis

Protein interaction networks and pathway enrichment were generated using the Search
Tool for the Retrieval of Interacting proteins (STRING) and Reactome Pathway Browser
databases [56–58].

2.9. Causal Graph Analysis

The bnlearn (version 4.7.1) package in R (version 4.0.3) was used to generate Bayesian
causal networks [59]. A score-based algorithm—the hill-climbing greedy search algorithm
with bootstrapping (500 with 5 restarts)—was used as the basis for the Bayesian structure
learning algorithm to generate weighting for the relationships found between the markers
within the training set.

3. Results
3.1. Whole Genome Array Profiling for Discovery of Predictive 3D Genomic Marker Leads in
Baseline Immuno-Oncology (IO) Patients at Baseline

The EpiSwitch® array platform was used for whole genome screening and the dis-
covery of 3D genomic biomarker leads. It has been utilised to date on over 120 IO pa-
tients, generating over 104 million individual chromosome conformation data points. We
based our initial selection of marker leads on the screening results from a whole genome
EpiSwitch array for 32 patients from the observational trial at Mount Miriam Cancer Hos-
pital (MMCH). These patients were treated with either Pembrolizumab, Atezolizumab,
or Durvalumab, and were diagnosed with one of the following indications: lung cancer,
kidney cancer, nasopharyngeal cancer, sagittal sinus carcinoma, neuroendocrine tumour, or
vulvar carcinoma. Among the responders, those patients were confirmed in the durable
nature of their response and absence of acquired resistance.

From over 30 million data points, following the logistic regression Glmnet coefficient
selection for baseline responders and non-responders, we identified the top 72 marker leads
associated with predictive value for response and non-response to ICI (Table 1).

It is important to point out that the most significant marker in this selection was
associated with CD274 and PDCD1LG2 loci, at the junction of the genes encoding for PD-L1
and PD-L2 checkpoint inhibitors. Functionally, this suggests a regulatory event associated
with the predictive profile for response to ICI and leading to specific conditional differences
among patients, as captured systemically through regulatory 3D genomic profiles. This
is consistent with earlier observations that PD-L1 expression levels, as reflected in HIT
testing, could share predictive values under specific conditions [27,28].
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Table 1. Array based 3D genomic marker leads for baseline response to ICI.

Probe a Glmnet_Coef b p. Value adj.p.Val c FC d Primers Design ID e Primer1 f Primer2 f Gene g

Hg38_9_5495992_5572986_RR 0.247101522 0.001213344 0.039106564 1.18337794 OBD189-q0s57/q059 GAGGGTCACTCAC
TGCCCAACAGGC

GACTGTAAGGTAGA
AATCCTGCCTGGGT

PDCD1LG2,
CD274

Hg38_9_5495992_5572986_RR 0.247101522 0.001213344 0.039106564 1.18337794 OBD189-q057/q059 GAGGGTCACTCAC
TGCCCAACAGGC

GACTGTAAGGTAGAA
ATCCTGCCTGGGT CD274

Hg38_9_5495992_5572986_RR 0.247101522 0.001213344 0.039106564 1.18337794 OBD189-q057/q059 GAGGGTCACTCACT
GCCCAACAGGC

GACTGTAAGGTAGAA
ATCCTGCCTGGGT RIC1

Hg38_13_20664875_20698635_FF 0.111815729 0.039447494 0.258498898 1.165419467 OBD189-q081/q083 GAAGTGCCACGAGA
AGGAGGATGGTCC

GGGCTGTGTCCTG
ATAAACCCATTGTTA IFT88

Hg38_13_20664875_20698635_FF 0.111815729 0.039447494 0.258498898 1.165419467 OBD189-q081/q083 GAAGTGCCACGAG
AAGGAGGATGGTCC

GGGCTGTGTCCTGAT
AAACCCATTGTTA IL17D

Hg38_13_20664875_20698635_FF 0.111815729 0.039447494 0.258498898 1.165419467 OBD189-q081/q083 GAAGTGCCACGAGAA
GGAGGATGGTCC

GGGCTGTGTCCTGAT
AAACCCATTGTTA N6AMT2

Hg38_13_46087370_46193039_RF 0.132758731 0.097937296 0.391249484 1.09303819 OBD189-q053/q055 TAGAAGCAGGGAGTA
GTTGAGCAATGGG

TCTTCACTTGTGCTA
TTGGCTTTCCAGC CPB2

Hg38_13_46087370_46193039_RF 0.132758731 0.097937296 0.391249484 1.09303819 OBD189-q053/q055 TAGAAGCAGGGAGTA
GTTGAGCAATGGG

TCTTCACTTGTGC
TATTGGCTTTCCAGC LCP1

Hg38_13_46087370_46193039_RF 0.132758731 0.097937296 0.391249484 1.09303819 OBD189-q053/q055 TAGAAGCAGGGAGTA
GTTGAGCAATGGG

TCTTCACTTGTGCT
ATTGGCTTTCCAGC LRRC63

Hg38_15_98731539_98790114_FF 0.165726908 0.108961414 0.410037537 1.08563184 OBD189-q001/q003 GGCTGGTGGGAGTATT
TTCAAAGAGAAC

GCTCTGTTCAAGT
GGCTCTGTTCCA IGF1R

Hg38_15_98731539_98790114_FF 0.165726908 0.108961414 0.410037537 1.08563184 OBD189-q001/q003 GGCTGGTGGGAGTAT
TTTCAAAGAGAAC

GCTCTGTTCAAGTG
GCTCTGTTCCA PGPEP1L

Hg38_15_98731539_98790114_FF 0.165726908 0.108961414 0.410037537 1.08563184 OBD189-q001/q003 GGCTGGTGGGAGTAT
TTTCAAAGAGAAC

GCTCTGTTCAAG
TGGCTCTGTTCCA FAM169B

Hg38_8_42264241_42332799_FR 0.10211307 0.160069169 0.484452574 1.079808853 OBD148_261/263 CGGTGAGCACGG
TCTGTCTACTT

GTCCTGGGTCCTG
GGTGAAAGTC IKBKB

Hg38_8_42264241_42332799_FR 0.10211307 0.160069169 0.484452574 1.079808853 OBD148_261/263 CGGTGAGCACGG
TCTGTCTACTT

GTCCTGGGTCCT
GGGTGAAAGTC POLB

Hg38_8_42264241_42332799_FR 0.10211307 0.160069169 0.484452574 1.079808853 OBD148_261/263 CGGTGAGCACG
GTCTGTCTACTT

GTCCTGGGTCC
TGGGTGAAAGTC DKK4

Hg38_1_6461604_6515315_FR 0.049660907 0.171178937 0.498342453 1.125005092 OBD189-q029/q031 TGCCCGTCGTG
GTTCCGCCTTCA

AGAGACCCACCC
CAGCCTCCTGA TNFRSF25
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Table 1. Cont.

Probe a Glmnet_Coef b p. Value adj.p.Val c FC d Primers Design ID e Primer1 f Primer2 f Gene g

Hg38_1_6461604_6515315_FR 0.049660907 0.171178937 0.498342453 1.125005092 OBD189-q029/q031 TGCCCGTCGTG
GTTCCGCCTTCA

AGAGACCCACCCC
AGCCTCCTGA PLEKHG5

Hg38_1_6461604_6515315_FR 0.049660907 0.171178937 0.498342453 1.125005092 OBD189-q029/q031 TGCCCGTCGTGG
TTCCGCCTTCA

AGAGACCCACCCC
AGCCTCCTGA ESPN

Hg38_4_109703339_109741090_RF 0.050864625 0.218283899 0.551427137 1.109210269 OBD189-q005/q007 CCCCAACTCACA
ACACCCCAGAC

AGAGGAGGGCAA
GGTGTCTGGCT CASP6

Hg38_4_109703339_109741090_RF 0.050864625 0.218283899 0.551427137 1.109210269 OBD189-q005/q007 CCCCAACTCAC
AACACCCCAGAC

AGAGGAGGGCAA
GGTGTCTGGCT PLA2G12A

Hg38_4_109703339_109741090_RF 0.050864625 0.218283899 0.551427137 1.109210269 OBD189-q005/q007 CCCCAACTCAC
AACACCCCAGAC

AGAGGAGGGCAAG
GTGTCTGGCT CFI

Hg38_8_81007411_81099880_FR 0.115763362 0.224881246 0.55802192 1.062648413 OBD189-q061/q063 TGGACAGCCACTACT
CAACCTTTTCCTA

CAAACCCAGATTGGA
CCTCACAGCCCC PAG1

Hg38_8_81007411_81099880_FR 0.115763362 0.224881246 0.55802192 1.062648413 OBD189-q061/q063 TGGACAGCCACTACT
CAACCTTTTCCTA

CAAACCCAGATTGGA
CCTCACAGCCCC ZNF704

Hg38_8_81007411_81099880_FR 0.115763362 0.224881246 0.55802192 1.062648413 OBD189-q061/q063 TGGACAGCCACTACT
CAACCTTTTCCTA

CAAACCCAGATTGG
ACCTCACAGCCCC FABP5

Hg38_1_161633494_161661864_RF 0.027579594 0.247573207 0.581047746 1.148972903 OBD189-q041/q043 TTGCCACCTGTCTCAG
ATACCCTTGGTT

GCTGCTCCTCTTGC
CTGGAATGCCTATT FCGR2B

Hg38_1_161633494_161661864_RF 0.027579594 0.247573207 0.581047746 1.148972903 OBD189-q041/q043 TTGCCACCTGTCTCA
GATACCCTTGGTT

GCTGCTCCTCTTG
CCTGGAATGCCTATT FCGR3B

Hg38_1_161633494_161661864_RF 0.027579594 0.247573207 0.581047746 1.148972903 OBD189-q041/q043 TTGCCACCTGTCTCA
GATACCCTTGGTT

GCTGCTCCTCTTGC
CTGGAATGCCTATT FCRLA

Hg38_5_157178319_157271762_RR 0.026456597 0.298498007 0.628568025 1.13173441 OBD189-q065/q067 TGTATGTCTCCTGAG
GTGAAGCAAGAGG

CTTCCACCGTGCC
CGCAGCCAGC ITK

Hg38_5_157178319_157271762_RR 0.026456597 0.298498007 0.628568025 1.13173441 OBD189-q065/q067 TGTATGTCTCCTGAG
GTGAAGCAAGAGG

CTTCCACCGTGCC
CGCAGCCAGC CYFIP2

Hg38_5_157178319_157271762_RR 0.026456597 0.298498007 0.628568025 1.13173441 OBD189-q065/q067 TGTATGTCTCCTGAG
GTGAAGCAAGAGG

CTTCCACCGTGCC
CGCAGCCAGC FAM71B

Hg38_9_114957908_114977746_RF −0.026269829 0.301172707 0.630926161 −1.124920787 OBD148-q917/q919 TTGCTTGTGAGT
TTGATGCAG

AAGCCAAATGG
GCCTAGCCA TNFSF8

Hg38_9_114957908_114977746_RF −0.026269829 0.301172707 0.630926161 −1.124920787 OBD148-q917/q919 TTGCTTGTGAG
TTTGATGCAG

AAGCCAAATGG
GCCTAGCCA TNC
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Table 1. Cont.

Probe a Glmnet_Coef b p. Value adj.p.Val c FC d Primers Design ID e Primer1 f Primer2 f Gene g

Hg38_9_114957908_114977746_RF −0.026269829 0.301172707 0.630926161 −1.124920787 OBD148-q917/q919 TTGCTTGTGAG
TTTGATGCAG

AAGCCAAATGG
GCCTAGCCA TNFSF15

Hg38_18_62330039_62362521_FR −0.102570352 0.301374789 0.631092221 −1.070331563 OBD189-q037/q039 CCTACTGGCACCAC
TGTGTTGGCTGG

TATCATAATCAGGCAA
CTGGCTGGTGC TNFRSF11A

Hg38_18_62330039_62362521_FR −0.102570352 0.301374789 0.631092221 −1.070331563 OBD189-q037/q039 CCTACTGGCACCACT
GTGTTGGCTGG

TATCATAATCAGGC
AACTGGCTGGTGC KIAA1468

Hg38_18_62330039_62362521_FR −0.102570352 0.301374789 0.631092221 −1.070331563 OBD189-q037/q039 CCTACTGGCACCAC
TGTGTTGGCTGG

TATCATAATCAGG
CAACTGGCTGGTGC PIGN

Hg38_9_136904007_136941363_RF 0.021876797 0.302188532 0.631834649 1.115259064 OBD189-q009/q011 AGCACTCGTCGTT
GGGCGTGTAG

CGGCACACCTCT
ACTCTCAGCCT RABL6

Hg38_9_136904007_136941363_RF 0.021876797 0.302188532 0.631834649 1.115259064 OBD189-q009/q011 AGCACTCGTCGTT
GGGCGTGTAG

CGGCACACCTC
TACTCTCAGCCT TRAF2

Hg38_9_136904007_136941363_RF 0.021876797 0.302188532 0.631834649 1.115259064 OBD189-q009/q011 AGCACTCGTCGTT
GGGCGTGTAG

CGGCACACCTCT
ACTCTCAGCCT FBXW5

Hg38_17_34316073_34373948_RF −0.243856053 0.359171973 0.67918219 −1.036704719 OBD148-q893/q895 ACTTGTGGCTT
CCTTAGCCC

TCCTTTGCAGG
TATGGACATC CCL8

Hg38_17_34316073_34373948_RF −0.243856053 0.359171973 0.67918219 −1.036704719 OBD148-q893/q895 ACTTGTGGCT
TCCTTAGCCC

TCCTTTGCAGG
TATGGACATC CCL13

Hg38_17_34316073_34373948_RF −0.243856053 0.359171973 0.67918219 −1.036704719 OBD148-q893/q895 ACTTGTGGCTT
CCTTAGCCC

TCCTTTGCAGG
TATGGACATC CCL1

Hg38_13_20664875_20744490_FR 0.080919132 0.460746676 0.752684253 1.036210668 OBD189-q073/q075 GGAAGTGCCACGAG
AAGGAGGATGGTCC

GGTAAGATGAGGCT
GTGGGCAAGGAGC IFT88

Hg38_13_20664875_20744490_FR 0.080919132 0.460746676 0.752684253 1.036210668 OBD189-q073/q075 GGAAGTGCCACGAG
AAGGAGGATGGTCC

GGTAAGATGAGGCT
GTGGGCAAGGAGC IL17D

Hg38_13_20664875_20744490_FR 0.080919132 0.460746676 0.752684253 1.036210668 OBD189-q073/q075 GGAAGTGCCACGAG
AAGGAGGATGGTCC

GGTAAGATGAGGCT
GTGGGCAAGGAGC N6AMT2

Hg38_11_77430379_77519103_RF 0.150008419 0.482939086 0.766977325 1.027489411 OBD189-q033/q035 CATAACCACACTGCT
ACCAACACACCTA

CTGGTTATTCGGACA
CTCATAGGACTGG PAK1

Hg38_11_77430379_77519103_RF 0.150008419 0.482939086 0.766977325 1.027489411 OBD189-q033/q035 CATAACCACACTGCT
ACCAACACACCTA

CTGGTTATTCGGAC
ACTCATAGGACTGG CLNS1A

Hg38_11_77430379_77519103_RF 0.150008419 0.482939086 0.766977325 1.027489411 OBD189-q033/q035 CATAACCACACTGC
TACCAACACACCTA

CTGGTTATTCGGAC
ACTCATAGGACTGG AQP11
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Table 1. Cont.

Probe a Glmnet_Coef b p. Value adj.p.Val c FC d Primers Design ID e Primer1 f Primer2 f Gene g

Hg38_8_42264241_42292124_FR 0.028350069 0.486591863 0.769305711 1.0425716 OBD189-q025/q027 GGTGAGCACGGTCT
GTCTACTTTCCC

GGACCCAGGC
TCTGCTGCTACAG IKBKB

Hg38_8_42264241_42292124_FR 0.028350069 0.486591863 0.769305711 1.0425716 OBD189-q025/q027 GGTGAGCACGGTC
TGTCTACTTTCCC

GGACCCAGGCTCT
GCTGCTACAG POLB

Hg38_8_42264241_42292124_FR 0.028350069 0.486591863 0.769305711 1.0425716 OBD189-q025/q027 GGTGAGCACGGTC
TGTCTACTTTCCC

GGACCCAGGCT
CTGCTGCTACAG PLAT

Hg38_18_62296384_62386748_FF 0.055316179 0.499574836 0.777354809 1.031115956 OBD189-q045/q047 CATAGACCCAGGTGTG
CTCCGTGGCAGC

GAGCACTGGTTCCC
CGCAAATACTGGG KIAA1468

Hg38_18_62296384_62386748_FF 0.055316179 0.499574836 0.777354809 1.031115956 OBD189-q045/q047 CATAGACCCAGGTGT
GCTCCGTGGCAGC

GAGCACTGGTTCC
CCGCAAATACTGGG TNFRSF11A

Hg38_18_62296384_62386748_FF 0.055316179 0.499574836 0.777354809 1.031115956 OBD189-q045/q047 CATAGACCCAGGTG
TGCTCCGTGGCAGC

GAGCACTGGTTCC
CCGCAAATACTGGG PIGN

Hg38_9_114855753_114929419_FR 0.134189513 0.52698868 0.793876125 1.033468601 OBD189-q049/q051 CCATTGTTGCTCAG
GCTGCCCTCTTGC

GCATTCAAGTGACAG
AGAGAAAAGAGGC TNFSF8

Hg38_9_114855753_114929419_FR 0.134189513 0.52698868 0.793876125 1.033468601 OBD189-q049/q051 CCATTGTTGCTCAG
GCTGCCCTCTTGC

GCATTCAAGTGACAG
AGAGAAAAGAGGC TNFSF15

Hg38_9_114855753_114929419_FR 0.134189513 0.52698868 0.793876125 1.033468601 OBD189-q049/q051 CCATTGTTGCTCA
GGCTGCCCTCTTGC

GCATTCAAGTGACAG
AGAGAAAAGAGGC TNC

Hg38_8_26561792_26644530_FR 0.055843287 0.625162161 0.848039488 1.042292141 OBD189-q069/q071 CAGTATGAGTGTTCT
GTGGCTGCTCCCA

GCGTGTCTCTCAGG
GAAGGCAGGATGC DPYSL2

Hg38_8_26561792_26644530_FR 0.055843287 0.625162161 0.848039488 1.042292141 OBD189-q069/q071 CAGTATGAGTGTTCT
GTGGCTGCTCCCA

GCGTGTCTCTCAGG
GAAGGCAGGATGC PNMA2

Hg38_8_26561792_26644530_FR 0.055843287 0.625162161 0.848039488 1.042292141 OBD189-q069/q071 CAGTATGAGTGTTCT
GTGGCTGCTCCCA

GCGTGTCTCTCAGG
GAAGGCAGGATGC BNIP3L

Hg38_8_127691489_127740424_FR −0.000580983 0.676617738 0.873913467 1.034088403 OBD189-q013/q015 GTCACCTTCATCTCC
TTCTCACAGCAG

GCTTCGCTTACC
AGAGTCGCTGC MYC

Hg38_8_127691489_127740424_FR −0.000580983 0.676617738 0.873913467 1.034088403 OBD189-q013/q015 GTCACCTTCATCTC
CTTCTCACAGCAG

GCTTCGCTTACC
AGAGTCGCTGC AC108925.1

Hg38_8_127691489_127740424_FR −0.000580983 0.676617738 0.873913467 1.034088403 OBD189-q013/q015 GTCACCTTCATCTCC
TTCTCACAGCAG

GCTTCGCTTACC
AGAGTCGCTGC POU5F1B

Hg38_9_120888366_120919710_RR 0.018753385 0.784545989 0.922028968 1.010214644 OBD189-q017/q019 CCCAGTTGTCCA
GGTTGCTGCCT

CCTGGAGCAGAA
CCTGTCAGACC PHF19
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Table 1. Cont.

Probe a Glmnet_Coef b p. Value adj.p.Val c FC d Primers Design ID e Primer1 f Primer2 f Gene g

Hg38_9_120888366_120919710_RR 0.018753385 0.784545989 0.922028968 1.010214644 OBD189-q017/q019 CCCAGTTGTCCAG
GTTGCTGCCT

CCTGGAGCAGA
ACCTGTCAGACC TRAF1

Hg38_9_120888366_120919710_RR 0.018753385 0.784545989 0.922028968 1.010214644 OBD189-q017/q019 CCCAGTTGTCCA
GGTTGCTGCCT

CCTGGAGCAGA
ACCTGTCAGACC C5

Hg38_13_20664875_20691044_FF −0.023912747 0.80365095 0.929901824 −1.012741717 OBD189-q077/q079 GGAAGTGCCACGAG
AAGGAGGATGGTCC

CCACCCAGTTCCTC
CAGGCATAGCAGG IFT88

Hg38_13_20664875_20691044_FF −0.023912747 0.80365095 0.929901824 −1.012741717 OBD189-q077/q079 GGAAGTGCCACGAGA
AGGAGGATGGTCC

CCACCCAGTTCCTC
CAGGCATAGCAGG IL17D

Hg38_13_20664875_20691044_FF −0.023912747 0.80365095 0.929901824 −1.012741717 OBD189-q077/q079 GGAAGTGCCACGAG
AAGGAGGATGGTCC

CCACCCAGTTCCT
CCAGGCATAGCAGG N6AMT2

Hg38_5_168579937_168620163_RR 0.019685283 0.8953453 0.964751362 −1.005369684 OBD189-q021/q023 CCGACCCTAACATTC
AAGGTGTCTCTAT

GAGTCAGCGTGT
AGTGCTCCCAC PANK3

Hg38_5_168579937_168620163_RR 0.019685283 0.8953453 0.964751362 −1.005369684 OBD189-q021/q023 CCGACCCTAACATTC
AAGGTGTCTCTAT

GAGTCAGCGTG
TAGTGCTCCCAC SLIT3

Hg38_5_168579937_168620163_RR 0.019685283 0.8953453 0.964751362 −1.005369684 OBD189-q021/q023 CCGACCCTAACATT
CAAGGTGTCTCTAT

GAGTCAGCGTGTA
GTGCTCCCAC FBLL1

a Internal Array probe ID. b Glment coefficient. c Adjusted p value. d Fold Change. e Internal primer design ID. f Primer sequence. g Gene at the locus of the probe. Top array-based 3D
genomic markers identified from over 30 million data points in 32 responders and non-responders across several indications and several choices of ICI: Pembrolizumab, Atezolizumab,
or Durvalumab. Probe—array-based marker coordinates for long-range interaction junction; Glmnet coefficient, p value, Adjusted p value, and Fold Change (FC) are array-based
measures of markers in the comparison of responder and non-responder groups; primer design ID—qPCR primer probe designs corresponding to array probes. Twenty-four optimal in
silico designs (marked in green) were taken forward to quality control checks in temperature gradient analysis. Gene—identity of genes of interest in the location of 3D genomic markers.
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3.2. Identification of the Top Predictive 3D Genomic Markers for ICI Treatment Outcomes

Following the established methodology for EpiSwitch® marker reduction [42,46], we
employed a stepwise approach to translate array-based marker leads from the 32 array
screened patients into qPCR format in order to identify a minimal set of biomarkers for
predictive stratification of ICI treatment response outcome (Figure 1).
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Figure 1. Workflow for development and testing the 3D genomic classifier model for prediction
of ICI treatment response outcome. From EpiSwitch array screening profiles accounting for over
30 million data points, 72 top array markers were selected based on Glmnet logistic regression.
Twenty-four markers qualified for translation into EpiSwitch qPCR format, of which 20 markers
have passed quality control and feature reduction control on 32 patient samples. A training cohort of
77 patients was used to build a predictive classifier model based on eight qPCR markers. It was then
validated on independent cohorts of 24, 128, and 51 patients.

From over 30 million data points on array profiling, the top 72 markers were used
for translation into qPCR format. The design and sequencing restrictions on the primers
and fluorescent probes corresponding to the array probe sites of genome long-ranged
junction points have reduced 72 markers to 24 qPCR designs (denoted in Table 1). At the
experimental stage of temperature gradient optimisation, 20 qPCR marker designs have
passed quality control (Table 2).

All 20 markers then underwent feature reduction in several steps (Materials and
Methods). Firstly, they were evaluated in qPCR format on pooled samples from 32 patients
representing either responders or non-responders. These sample cohorts represented
patients treated with Pembrolizumab, Atezolizumab, and Durvalumab. Based on the
results, the top 13 markers were then evaluated on patient samples individually, reducing
the selection to the top eight markers (Table 2).
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Table 2. Translation and selection of top markers into qPCR format.

Episwitch Interaction a Primers Design ID b Probe Used Opt Ann Tm c QC Optimisation d Screen 1 Screen 2

CASP6_4_109703339_109741090_RF OBD189-q005/q007 OBD189-p005 68 Passed Passed Passed
IGF1R_15_98731539_98790114_FF OBD189-q001/q003 OBD189-p003 64.4 Passed Failed
IKBKB_8_42264241_42292124_FR OBD189-q025/q027 OBD189-p025 66.4 Passed Failed
IKBKB_8_42264241_42332799_FR OBD148_261/263 OBD189-p261 68 Passed Failed
IL17D_13_20664875_20691044_FF OBD189-q077/q079 OBD189-p077 67.5 Passed Failed
ITK_5_157178319_157271762_RR OBD189-q065/q067 OBD189-p065 66.4 Passed Passed Passed

MYC_8_127691489_127740424_FR OBD189-q013/q015 OBD189-p013 66.4 Passed Failed
ORF102_17_34316073_34373948_RF OBD148-q893/q895 OBD148-p893 62 Passed Passed Passed
ORF197_8_26561792_26644530_FR OBD189-q069/q071 N/A e N/A Failed Failed

ORF243_1_161633494_161661864_RF OBD189-q041/q043 OBD189-p043 62 Passed Failed
ORF313_13_20664875_20698635_FF OBD189-q081/q083 OBD189-p081 64.4 Passed Passed Passed
ORF313_13_20664875_20744490_FR OBD189-q073/q075 N/A N/A Failed Failed
ORF369_13_46087370_46193039_RF OBD189-q053/q055 OBD189-p053 67.5 Passed Passed Passed
ORF479_8_81007411_81099880_FR OBD189-q061/q063 OBD189-p061 64.4 Passed Failed
ORF480_11_77430379_77519103_RF OBD189-q033/q035 OBD189-p033 66.4 Passed Failed

ORF482_5_168579937_168620163_RR OBD189-q021/q023 OBD189-p021 66.4 Passed Failed
ORF698_18_62296384_62386748_FF OBD189-q045/q047 OBD189-p045 66.4 Passed Failed
ORF698_18_62330039_62362521_FR OBD189-q037/q039 N/A N/A Failed Failed

ORF703_1_6461604_6515315_FR OBD189-q029/q031 OBD189-p031 67.5 Passed Passed Passed
ORF705_9_114855753_114929419_FR OBD189-q049/q051 OBD189-p049 66.4 Passed Passed Passed
ORF712_9_120888366_120919710_RR OBD189-q017/q019 OBD189-p017 68 Passed Failed
PDCD1LG2_9_5495992_5572986_RR OBD189-q057/q059 OBD189-p057 67.5 Passed Passed Passed
TNFSF8_9_114957908_114977746_RF OBD148-q917/q919 N/A N/A Failed Failed
TRAF2_9_136904007_136941363_RF OBD189-q009/q011 OBD189-p009 64.4 Passed Failed

a Internal EpiSwitch Interaction ID. b Internal primer design ID. c Optimum Annealing Temperature. d Quality Control Optimisation. e Not Available. Temperature gradient optimisation
for primer probe designs of the top 24 markers: markers that failed quality control and feature reduction in Screen 1 and Screen 2, are marked.
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The eight selected markers were further evaluated on the training cohort of 77 patients
(Supplementary Table S1). Blood samples taken from patients prior to initiation of ICI
therapy were used together with clinical assessment for response status according to
RECIST 1.1 criteria. Baseline clinical characteristics were similar between responders and
non-responders (Supplementary Table S1). The training cohort of 77 patients represented
ICI treatments: Pembrolizumab, Atezolizumab, and Durvalumab, with cancers of the
lung, pancreas, bladder, kidney, head and neck (larynx, nasopharynx, salivary gland), liver,
breast, colon, meninges, and vulva.

We used these eight markers to generate the 3D genomic classifier with predictive
ability for ICI response, which we then applied to the independent test cohorts.

3.3. Testing of the Predictive 3D Genomic Biomarker Panel for Response to ICI Treatments on
Independent Patient Cohorts

To access the predictive power of the classifier model, the eight-marker 3D genomic
panel was validated on an independent baseline test cohort #1 (Supplementary Table S1).
No samples from that cohort were used to rebuild or refine the model. The EpiSwitch
platform readouts for the eight-marker classifier model were uploaded to the EpiSwitch
Analytical Portal for analysis. Clinical outcomes for the test cohort #1 included a balanced
representation of 12 responders and 8 non-responders and 3 stable diseases. It is important
to mention that, from the start of the model classification design, all the stable disease
cases were considered to be non-responders. EpiSwitch predictive calls based on the
eight-marker model demonstrated a high performance of 83% balanced accuracy and 83%
positive predictive value in the test cohort #1 (Figure 2A). Across all 101 patients used in this
study in both training and testing cohorts, the test demonstrated positive predictive value
of 96% and balanced accuracy of 96% (Figure 2B). The patients represented ICI treatments:
Pembrolizumab, Atezolizumab, and Durvalumab, and indications including cancer of the
cervix, kidney, liver, lung, neuroendocrine, meninges, and vulva.
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We have further extended our validation exercise, obtaining additional 128 samples as
test cohort #2 (Supplementary Table S1). This cohort was based largely on retrospective sam-
ples and represented an unbalanced group of non-responders with only nine responders
among them. The EpiSwitch predictive calls based on eight-marker model demonstrated
76% accuracy, 78% sensitivity, and 76% specificity on 128 patients in the test cohort #2
(Figure 3A). Across all 229 patients used, with 170 non-responders and 59 responders in
training and both testing cohorts, the test demonstrated an accuracy of 85%, sensitivity of
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93%, and specificity of 82%, with a positive predictive value of 64%, and negative predictive
value of 97% (Figure 3B).
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The validation was lastly extended with the further collection of 51 samples exclusively
from the observational trial (cohort #3, Supplementary Table S1). Unlike the retrospective
collection, all the observational samples were evaluated by EpiSwitch predictive biomark-
ers against RECIST 1.1 response assessment preformed for the same cycle of treatment as
the sample collection. The EpiSwitch predictive calls based on the eight-marker model
demonstrated 87% sensitivity, 82% balanced accuracy, and 77% positive predictive value of
the test cohort #3 (Figure 4A). Across all 280 samples used in this study, the test demon-
strated a sensitivity of 91%, positive predictive value of 67%, and balanced accuracy of 84%
(Figure 4B).
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Altogether, the combined cohort of patients used in this study represented treatments
with anti-PD-1 or anti-PD-L1 ICI therapies, including: Pembrolizumab, Atezolizumab,
Durvalumab, and Nivolumab in a variety of indications including cancer of: pancreas, soft
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tissue (alveolar soft part sarcoma), bile duct (cholangiocarcinoma), bladder, cervix, vulva,
kidney, head and neck (larynx, parotid gland (mucoepidermoid carcinoma), nasopharynx,
oral cavity and maxilla) colon, liver, breast, lung (adenocarcinoma, small cell carcinoma,
squamous cell carcinoma), lymphoepithelial carcinoma, prostate, stomach, high-grade
neuroendocrine tumour, melanoma, meninges, and brain.

4. Discussion

Cancer treatment has been revolutionised by the development of therapies that target
the immune checkpoint response [3]. However, only a minority of patients ultimately
benefit from ICI therapies today. It is well recognised that there is a high prevalence of
immune-related adverse events accompanying ICI treatments. Both clinical decisions
and evaluation of the risk–benefit ratio would greatly benefit from the development of
molecular biomarkers to predict the clinical response to therapy.

Here, we used a 3D genomics biomarker approach, which has demonstrated successful
development of valuable prognostic and predictive biomarkers in oncology and autoim-
mune conditions [38,42,50]. We have identified eight systemic 3D genomic biomarkers
that, when assessed as a molecular classifier in blood samples from a diverse group of
baseline patients treated with anti-PD-(L)1 ICIs, gave an early readout of likely response or
non-response to ICI therapies prior to treatment initiation.

Additionally, we have followed a subset of patients longitudinally and demonstrated
that the same test re-affirms a patient’s likely response or non-response to therapy even
while they are in the middle of their therapy course. Importantly, as a reflection of the
network regulation, the identified 3D genomic markers are associated with genes related to
the regulation of the immune system (Figure 5). This is consistent with the concept that ICI
therapies exert their therapeutic effects on tumour cells by enhancing the cell-mediated
immune response [3].
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The captured 3D genomic differences observed between responder and non-responder
baseline patients also identified 3D biomarkers corresponding to genetic loci and pathways
(Figure 6) including NF-kB and TGF-b, whose biological functions are related to checkpoint
response [60–62].



Cancers 2023, 15, 2696 17 of 27Cancers 2023, 15, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 6. Mapping of the top eight predictive 3D genomic markers to biological pathways. Analysis 
of the top eight 3D genomic markers separating PD-1/PD-L1 ICI responders and non-responders at 
baseline. 

The top 3D genomic markers identified by the EpiSwitch Explorer Array profile as 
associated at baseline with response/non-response to ICI treatment were also analysed 
using the Search Tool for Retrieval of Interacting Genes (STRING) database. The view 
from the established protein–protein networks confirmed that the coding regions associ-
ated with the top 24 EpiSwitch marker leads are highly connected (Figure 7). In fact, no 
additional nodes were added to generate the network based on these 24 EpiSwitch marker 
leads. This is consistent with the regulatory network formed by the 3D genome architec-
ture, as an integrator of molecular multi-omics mechanisms [30] and being concordant 
with controls of the protein expression and cellular phenotype. 

Figure 6. Mapping of the top eight predictive 3D genomic markers to biological pathways. Analysis
of the top eight 3D genomic markers separating PD-1/PD-L1 ICI responders and non-responders
at baseline.

The top 3D genomic markers identified by the EpiSwitch Explorer Array profile as
associated at baseline with response/non-response to ICI treatment were also analysed
using the Search Tool for Retrieval of Interacting Genes (STRING) database. The view from
the established protein–protein networks confirmed that the coding regions associated with
the top 24 EpiSwitch marker leads are highly connected (Figure 7). In fact, no additional
nodes were added to generate the network based on these 24 EpiSwitch marker leads. This
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is consistent with the regulatory network formed by the 3D genome architecture, as an
integrator of molecular multi-omics mechanisms [30] and being concordant with controls
of the protein expression and cellular phenotype.
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Figure 7. STRING Network associated with baseline prediction of response/non-response to ICI
treatment. The proteins encoded by genes in the top 3D genomic markers associated with baseline
response/non-response to ICI profile show a highly connected network. The yellow nodes mark the
coding regions associated with the top eight markers of the validated classifier.

Among other interesting observations is the high prevalence of the validated 3D
marker OBD189_q057_q059 responsible for conditional regulatory long-range interactions
in the region spanning CD274 (PD-L1) and PDCD1LG2 (PD-L2) (Figure 5). In fact, this
systemic predictive marker has been consistently observed across multiple cohorts of
IO patients, indicating that the complex network regulation manifestly shares predictive
value both at the systemic 3D genomic level and at the level of PD-L1 gene expression in
established IHC testing [3]. The EpiSwitch Portal view of this marker (Figure 8) identifies
variable allelic frequency SNPs and the affected transcriptional factor (TF) binding motifs
around the marker anchor sites. Three TFs were identified at the proximal anchor site of the
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marker: NFIC, ZEB1, MZF1. Analysis of the GeneHancer repository (GeneCards) shows
evidence of enhancer controls (Gene association score) over CD274 (PD-L1) for the distal
anchor site of the same marker. Altogether, this strongly suggests that the regulatory effect
of the EpiSwitch marker over the PD-L1 locus is executed through coordinated activities of
the CD274 enhancer and ZEB1 TF activities.
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Figure 8. EpiSwitch Data Portal view of the EpiSwitch Marker located in CD274/PDCD1LG2 region
imposed over the Integrative Genomic Viewer (IGV) (ref). Anchor sites brought into juxtaposition
by chromosome long-range interactions of the EpiSwitch marker overlap with the listed SNPs and
enhancers. Analysis of SNPs identified affected binding sites for transcription factors (TFs) such as
ZEB1 [63]. GeneCards analysis of the enhancers identifies CD274 enhancer at the distal anchor site of
the EpiSwitch marker. CD274 corresponds to PD-L1, and PDCD1LG2 to PD-L2 immune checkpoints.

Finally, we deployed causal graphs, also known as Bayesian causal networks, to
evaluate the relationship between the markers and other variables within the training set
of the data. Such analysis is based on graphical models where nodes represent random
variables and arrows represent probabilistic dependencies between them [64]. The graphical
structure of a Bayesian network is a directed acyclic graph, of nodes (or vertexes) and arcs
(or edges). The graph defines a factorisation of the global probability distribution, into a set
of local probability distributions, one for each variable.

Analysis of the training data set showed the causal relationships, based on probabilistic
relationships, between all the final EpiSwitch markers selected into the signature for
the classifier model, starting from the clinical outcome of RECIST 1.1 assessment for
IO treatment response (Figure 9A, RECIST 1.1 outcome). Translating the causal graph
from the identities of the 3D Genomic EpiSwitch markers to the identities of the genes
(Figure 9B) affected by those markers at the level of 3D genomic organisation reveals a close
causal relationship between the RECIST 1.1 clinical outcome and changes in the regulatory
architecture of the PD-L1 (CD274) locus, presumably contributing as a result to complex
changes of its expression pattern as well. As mentioned earlier, our data suggested that the
systemic 3D genomic regulatory profiles at the PD-L1 (CD274) locus shared their predictive
values with threshold changes in PD-L1 gene expression from the established IHC PD-L1
testing [3].
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Figure 9. Causal graphs (Bayesian causal networks) based on training set of the EpiSwitch biomarkers
and clinical outcome of IO treatment. Probabilistic relationship of the EpiSwitch markers and RECIST
1.1 assessment of IO treatment outcome, based on 3D genomic architecture (A) and gene identities at
the sites of EpiSwitch markers (B). The edge in (B) marks the causal relationship between RECIST
1.1 outcome and PD-L1 (CD274)-based EpiSwitch marker (marked in red, see also Figure 8 for the
detailed location of the marker).

Altogether, our data show that the predictive model developed in this study has high
biological relevance and is anchored on the baseline presence of a prevalent systemic 3D
genomic profile, itself functionally linked to immuno-genetic settings conducive to the
clinical outcome of response to PD-(L)1 blockade. The systemic nature of the observed
marker profile is not surprising since the 3D genomic approach described here was done
on whole blood samples, with dominant lymphocytic representation. The fact that some
T-cell-related loci were found to bear conditional regulatory differences in 3D genome
architecture, in association with clinical phenotypes of responder/non-responder profiles,
is a fascinating regulatory phenomenon. It is consistent with multiple observations of
the role 3D genome architecture plays in regulation of oncological phenotype and clinical
outcomes [30].

A simple blood-based assay that provides a readout of likely response to PD-(L)1 ICI
therapy could be a valuable asset for oncologists considering ICI therapy, since only a mi-
nority of patients experience durable tumour responses. For example, ORR for metastatic
NSCLC is 24% and 16%, for treatment-naïve and previously treated patients, respec-
tively [65]. A positive PD-L1 expression result from an immunohistochemistry test, which
increases ORR to 39.7% (PD-L1 50% or greater) [65]. Many of the remaining patients derive
no clinical benefit, suffering significant drug-related adverse events (~14%) or even death
from pulmonary toxicity (>1%) [66]. Moreover, approximately 15% of non-responders may
also be at risk of hyper-progressive disease, accelerated by ICI therapy and shortening their
lives by months [67]. Today, despite a low response rate, many patients are prescribed
ICI therapies at a substantial financial cost to both payers and patients [68]. Altogether,
these aspects highlight the importance of a response predictive assay to improve patient
selection for optimised treatment, better overall treatment-decision planning, potential
utilisation of alternative effective treatments, avoiding futile care and unnecessarily toxicity,
and efficiently managing costs and resources [68].

This study has been exclusively focused on systemic readouts based on liquid biopsy,
rather than exclusively on the solid tumour itself. Therefore, relative to predictive features
for the response to immune checkpoint inhibitors, these treatments act by systemically
releasing the brakes of the immune system and at the same time resetting it, all within the
context of the dynamic immune exchanges between the tumour and the host. The validity
of the liquid biopsy approach with 3D genomic biomarkers was initially demonstrated



Cancers 2023, 15, 2696 21 of 27

in the development and validation of systemic EpiSwitch biomarkers for response to
Avelumab in a NSCLC cohort of 99 patients from the Javelin Solid Tumor trial NCT01772004,
in collaboration with the Pfizer-EMD Serono consortium and the Mayo Clinic [50]. In
that study, the systemic readout with the EpiSwitch 3D genomic profile far exceeded the
predictive powers of the IHC PD-L1 expression in the tumour biopsy. Recently, the systemic
EpiSwitch approach has also been validated on a cohort of 384 metastatic urothelial cancer
patients tin a 2-arm study, from the Pfizer JAVELIN Bladder 100 trial NCT02603432 [69].
In that study, an EpiSwitch systemic biomarker associated with regulation of the POU2F2
locus provided highly significant binary baseline calls for benefit from treatment with
Avelumab in combination with best supportive care (BSC) against the control arm of BSC
alone, demonstrating a Hazard Ratio of 0.44. The systemic biomarker approach therefore
significantly improved the TMB predictive classification.

Interestingly, from a broader perspective, EpiSwitch prognostic systemic biomarkers
in DLBCL patients also turned out to be more informative than the punch biopsy based
gene profiles classification models looking at the cell or origin distinctions (Fluidigm),
particularly for Type III patient sub-type [42].

Even with such results, it might still be difficult to conceptualise how systemic 3D
profiling can relate ICI sensitivity to the relevant aspects of the immune microenvironment
in the tumour tissue, specifically the impact of tumour burden and various mutations which
may contribute to the individual patient outcome. Important insights into the complex
relationships between systemic and localised deregulations at the level of 3D genomic
architecture comes from the latest breakthroughs into the understanding of mechanisms be-
hind systemic epigenetic synchronisation; from horizontal transfer of secretory microRNA
in cancer [70], to cancer exosomes promoting tumorigenesis [71], to characterisation of
cross-tissue genetic-epigenetic synchronisation effects [72]. It has been noted that almost
half of the epigenetic bandwidth reflects tissue-specific patterns while the other half reflects
systemic synchronised patterns, indicating molecular pathological dysregulation from the
distant sites of origin, including even on the other side of the brain barrier [72].

One of the most relevant studies has demonstrated that two independent method-
ologies of exposure to exosome signalling from prostate cancer cells leads to changes in
3D genomic profiles of the monocytes, consistent with the clinical biomarkers already
identified in prostate cancer patients [44,51,73].

Exosome traffic, or in its broader definition—the traffic of extracellular vesicles (EV),
is a high-density flow (up to 1010 per mL of blood) of endosomal representations from
multiple cells of origin in the body, loaded with selective protein content (including PD-1
and PD-L1), metabolites, and non-coding RNAs—all of which could potentially act as
epigenetic regulators in the recipient effector cells (Figure 10). Here, the exosome traffic
has been clearly observed to switch regulatory 3D architecture towards a cell of origin
profile on a subset of genomic loci [73–75]. Such changes in 3D architecture of the genome
are highly informative of the primary site conditions. Moreover, they have been shown
to take place as similar stable binary changes both in cell–cell and cell–conditioned media
settings. Together, this has provided the first insights into a mechanistic explanation of the
concordance observed between individual 3D genomic switches detected in the blood of
patients and within their primary tumours [73].

The current study represents a proof of concept that 3D genomic changes, measurable
in blood, can be used as biomarkers of response prediction to PD-(L)1 ICIs in oncology.
In this study, all patients underwent ICI treatment, with no comparator arm undergoing
control treatment or basic standard of care. The single-arm design of this study does
not allow us to definitively differentiate between predictive and prognostic values of the
classifier. Extension of this work to a larger number of advanced patients with different ICI
therapies and with a comparator treatment arm could help further validate the predictive
value of the developed EpiSwitch ICI biomarker classifier.
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Figure 10. Horizontal transfer by EV, including exosomes, carry epigenetic information from primary
sites to the secondary sites and the sites of systemic detection. Extracellular vehicles, including
exosomes, carry representative loads of proteins, metabolites, and non-coding RNAs from primary
sites, all of which could act as epigenetic regulatory factors for resetting 3D architecture of the
selective genetic loci of the effector cells [73]. In early symptomatic systemic readouts, the cells of
immunosurveillance were identified as a potential subject of primary 3D modulation, as in the case
of early melanoma detection [39].

The endpoint of the model developed is whether an individual patient, rather than just
a localised neoplasm, will respond to checkpoint inhibition. This is an assessment of the
whole biological system, capturing the dynamic between the systemic host responses and
profile of the specific features of the tumour mass itself. The analyte we measure, a present
or absent conditional chromosome conformation has certain benefit over existing contin-
uous data modalities (RNA and protein expression levels, DNA methylation, IHC etc.),
due to it being a binary marker at its root. There is similarity through its binary nature
with classic genetic risk markers like SNPs. However, a SNP represents a single point of
change in 3.2 billion full genomic length, with the potential for four base differences. Such
features significantly reduce the effect size for SNPs as a biomarker modality. One requires
a high number of input samples in order to identify any significant SNPs of interest. The
conditional chromosome conformations are also binary, they establish themselves over an
extensive footprint of anchor site sequences and demonstrate lasting stability, featuring
a high effect size as biomarkers. Importantly, the high effect size helps to reduce the bias
potential when using mid-sized heterogenic populations.

Currently, further collections and monitoring of IO responses by RECIST 1.1 and by the
identified EpiSwitch predictive biomarkers have been expanded to over five hospital sites
and clinical practices, from Malaysia to the US. Real life data on predictive stratifications
for IO patients will further evaluate the established classification model. A pan-therapy
application of the test with response prediction across tumour types with historically low
ORRs could help to improve both patient outcomes and increase the cost effectiveness of
cancer care [76,77].

5. Conclusions

With the rapid advancement of novel therapies targeting the immune checkpoint
pathway, there is a pressing need to develop better biomarkers to assess likely clinical
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response in advance of therapeutic intervention. Here, we report on a novel 3D genomics
approach to identify predictive blood-based markers that can identify, with high accuracy,
individuals that are likely to respond to PD-(L)1 ICIs monotherapy, especially across tumour
types with low ORRs. The 3D genomics approach described here has been developed
into a clinical assay to assist in treatment decisions, help improve patient selection for
optimised treatment, help better utilise alternative effective treatments, minimise or avoid
unnecessarily toxicity, and efficiently manage costs and resources.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15102696/s1, Table S1: Clinical annotations and
classification calls for patient samples used in this study.
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