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Simple Summary: Perineural invasion (PNI) is present in 17–75% of prostate cancer patients and is an
important mechanism for cancer progression, leading to poor prognoses. An optimized preoperative
technique is needed to detect PNI in prostate cancer patients and administer the best treatment. The
aim of our retrospective study was to develop a model based on high-throughput radiomic features
of bi-parametric MRI combined with clinical factors that can predict PNI status in high-grade prostate
cancers. In total, 183 high-grade PCa patients were included in this retrospective study, and the
radiomics model based on 13 selected features of bi-parametric MRI showed better discrimination
than did the conventional model in the test cohort (area under the curve (AUC): 0.908). Discrimination
efficiency improved when the radiomics and clinical models were combined (AUC: 0.947). This
improved model may help predict PNI in prostate cancer patients and allow more personalized
clinical decision-making.

Abstract: Purpose: To explore the role of bi-parametric MRI radiomics features in identifying PNI in
high-grade PCa and to further develop a combined nomogram with clinical information. Methods:
183 high-grade PCa patients were included in this retrospective study. Tumor regions of interest
(ROIs) were manually delineated on T2WI and DWI images. Radiomics features were extracted
from lesion area segmented images obtained. Univariate logistic regression analysis and the least
absolute shrinkage and selection operator (LASSO) method were used for feature selection. A clinical
model, a radiomics model, and a combined model were developed to predict PNI positive. Predictive
performance was estimated using receiver operating characteristic (ROC) curves, calibration curves,
and decision curves. Results: The differential diagnostic efficiency of the clinical model had no
statistical difference compared with the radiomics model (area under the curve (AUC) values were
0.766 and 0.823 in the train and test group, respectively). The radiomics model showed better
discrimination in both the train cohort and test cohort (train AUC: 0.879 and test AUC: 0.908)
than each subcategory image (T2WI train AUC: 0.813 and test AUC: 0.827; DWI train AUC: 0.749
and test AUC: 0.734). The discrimination efficiency improved when combining the radiomics and
clinical models (train AUC: 0.906 and test AUC: 0.947). Conclusion: The model including radiomics
signatures and clinical factors can accurately predict PNI positive in high-grade PCa patients.
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1. Introduction

Prostate cancer (PCa) is the most frequent malignant tumor in 105 countries worldwide
and the first leading cause of cancer-related death in 46 countries among males [1]. Often,
there are significant differences in the prognosis of patients with the same stratification
who adopt the same treatment plan [2]. In addition, many localized PCa cases, especially
high-grade cases, are not truly localized tumors when they are diagnosed. The reasons
for this situation are that cancer cells have already spread beyond the scope of surgery or
radiotherapy, and these patients are prone to developing biochemical recurrence [3]. It is
widely accepted that prostate-specific antigen (PSA), Gleason score (GS), and T stage are the
main variables for evaluating the prognosis of localized PCa. Among the factors causing
tumor spread, perineural invasion (PNI), which is invasion along or around nerves within
the perineural space, also plays an important role in cancer [4]. PNI can be evaluated in a
biopsy specimen or radical prostatectomy specimen, and it is present in 17–75% of prostate
cancer patients [5]. The College of American Pathologists published a consensus statement
on prognostic factors for PCa in which PNI was identified as a potential prognostic factor
(category III) that needed additional study [6]. Therefore, identifying the PNI status of
high-grade PCa is an urgent problem to be solved.

At present, magnetic resonance imaging (MRI) is widely used for diagnosing PCa
and can help detect several prognostic factors; it has been used to increase T staging
accuracy and predict positive surgical margins (PSMs) by detecting and localizing extra-
capsular extension (ECE) [7,8]. Radiomics, as an extension concept of texture analysis,
can convert medical images into high-dimensional mineable and quantitative features by
using high-throughput extraction algorithms of these characterizations. In recent years,
qualitative analysis of prostate MRI images by means of radiomics plays a crucial role
at the pretreatment staging step and is increasingly applied to determine invasion and
prognosis for prostate cancer [9,10]. PNI is a pathological feature that can only be detected
after an invasive biopsy or prostatectomy. This form of metastasis can affect peri-prostatic
neurovascular fibers, the lumbosacral plexus, and the sciatic nerve, and MRI can visualize
involvement of these nerve fibers as direct evidence of cancer cell spreading [11,12]. In the
age of high-resolution imaging, developing a method based on radiomics to accurately
assess the PNI status of PCa is urgently needed.

In this study, we evaluated the relationship between MRI radiomics signature, as well
as other clinical and pathological factors, and PNI in high-grade PCa. We hypothesized that
the MRI radiomics signature may provide effective information and established a model
for preoperatively predicting the probability of PNI in high-grade PCa patients.

2. Materials and Methods
2.1. Patients

This retrospective study received Institutional Review Board approval of the First
Hospital of Shanxi Medical University, ethic code: (K131). We retrospectively selected PCa
patients with clinical and imaging data from January 2016 to May 2021 who underwent
prostate MR examination before systematic prostate biopsy or radical prostatectomy (RP).
Clinical data, including age, PSA level, prostate volume, prostate-specific antigen density
(PSAD), GS, grading groups (GGs), and tumor location in the prostate, were collected from
patient medical records. The study inclusion criteria were as follows: (a) high-grade PCa
patients who underwent prostate MRI examination; and (b) tumor perineural invasion
status obtained on histopathology by biopsy or RP. The following exclusion criteria were
applied: (a) PCa patients who received other treatments before MRI examination, such
as androgen suppression therapy or any previous transurethral surgery; (b) poor image
quality due to artifacts; (c) incomplete MR sequence; and (d) incomplete clinical data
collection; (e) the lesions were too small for segmentation and analysis (maximum diameter
<3 mm). A total of 208 high-grade prostate cancer patients’ data were collected. According
to the exclusion criteria, 25 patients were excluded. Ultimately, 183 high-grade PCa patients
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were enrolled in the study. The patients were randomly divided into training and test
groups at a ratio of 7 to 3 (training group: 128 patients, test group: 55 patients).

2.2. MR Image Data

The prostate MRI examination was performed according to PI-RADS v2.1 protocol
and the process was as follows. We utilized a 3.0-T scanner (GE Signa HDxt) with an
8-channel array coil to acquire the images of multiplanar T2-weighted imaging (T2WI) and
diffusion-weighted imaging (DWI), which were obtained with a turbo spin-echo sequence
and the following parameters: repetition time/echo time (TR/TE): 3360/68.16 ms; field of
view (FOV): 220 × 220 mm; matrix: 320 × 256; slice thickness: 5 mm; and spacing between
slices: 5.5 mm. A single-shot echo-planar sequence with four b-values was also acquired: 0
and 1500 s/mm (TR/TE: 5250/78.6 ms; FOV: 100 × 100 mm; matrix: 128 × 160; and slice
thickness: 5 mm).

2.3. Histopathologic Analysis

All patients underwent transrectal ultrasound-guided 12-core systematic prostate
biopsy or RP after prostate MRI examination. The specimen pathological diagnosis was
made by two pathologists with more than three years of experience in diagnosis of prostate
diseases. The GS was updated according to the 2014 International Society of Urological
Pathology criteria. PNI was diagnosed when PCa infiltration was identified in any layer of
the nerve sheath or tumor invasion involved at least one-third of the nerve circumference.
Pathologic information was collected, and, according to the outcomes, all patients were
divided into two groups: one group had positive prostate cancer cell PNI and the other
group had negative prostate cancer cell PNI (Figure 1).
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Figure 1. Preoperative MRI images, ROI delineation, and pathological comparison of prostate cancer
with and without PNI, as indicated by the arrow.

2.4. Tumor Segmentation

All MR images were manually delineated by two independent readers with more
than 5 years’ experience in reading prostate MR images. ITK-SNAP software was used
to process T2WI and high-b-value (b = 1500) DWI images. Tumors were targeted as the
regions of interest (ROIs), defined as hypointense signal areas compared with the normal
prostate area on T2WI and a higher signal intensity than that of the normal prostate area
on DWI. For consistency between ROIs in both T2WI and DWI images, all depicted ROIs
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were strictly delineated with the same criteria and visually validated by the same expert.
The ROIs were manually delineated layer-by-layer along the lesion boundary, obtaining
three-dimensional data (Figure 1).

2.5. Extraction of Radiomic Features

Software of FAE (FAE version is 0.5.2 and PyRadiomics version is 3.0.1. The software
was soured from East China Normal University, Shanghai, China. https://github.com/
salan668/FAE accessed on 16 December 2022), which was developed based on the PyRa-
diomics package (https://github.com/Radiomics/pyradiomics, accessed on 2 June 2022),
was used to extract features from the T2WI ROIs and DWI ROIs. The parameters of fea-
ture extraction were: first order statistics, shape-based, GLCM, GLRLM, GLSZM, GLDM,
NGTDM. A total of 1702 features were extracted from the MRI data and 851 features each
from T2WI and DWI, including 14 shape features, 18 first-order features, 24 gray level
co-occurrence matrix (GLCM) features, 16 gray level run length matrix (GLRLM) features,
16 gray level size zone matrix (GLSZM) features, 5 neighboring gray tone difference matrix
(NGTDM) features, and 14 gray level dependence matrix (GLDM) features and 744 wavelet
features [13].

2.6. Feature Selection and Model Building

The process of feature selection was based on training set. Thirty patients were
randomly selected for a double-blinded comparison of manual segmentations by two
radiologists. Inter- and intraclass correlation coefficients (ICCs) between groups and
within groups were calculated to select features with high stability and reproducibility,
and ICCs greater than or equal to 0.75 were considered to have good agreement. To
remove the imbalance of the training dataset, we used the synthetic minority oversampling
technique (SMOTE) to balance the positive/negative samples. Before feature selection,
we subtracted by the mean value and divided by the standard deviation to normalize the
feature matrix for each feature vector. Next, the feature selection process was divided into
two steps. In the first step, the features with statistical significance for identifying PNI
positivity were selected by univariate logistic regression analysis. In addition, the first
stage of dimensionality reduction of the data was achieved to ensure that each feature
had a significant effect on the outcome. In the second step, least absolute shrinkage and
selection operator (LASSO) regression analysis was used for further data dimensionality
reduction, and the best features were determined for establishment of the radiomics model.
The hyperparameter lambda value and the number of selected features were determined
by tenfold cross-validation. After the radiomics model was established, each feature was
multiplied by its corresponding coefficient, and an intercept value was added to calculate
the radiomics score (Rad-score) for each patient, which was establishment of the radiomics
signature (Appendix A).

For clinical features, we used the univariate analysis method, and the features with
statistical significance for the results were selected to construct a clinical model. Finally,
the combined model of clinical and radiomics features was established by multiple logistic
regression analysis method.

2.7. Model Evaluation

After the models were built, their performance was evaluated using receiver operating
characteristic (ROC) curve analysis. The area under the ROC curve (AUC) was calculated
for quantification of the performance. The accuracy, sensitivity, and specificity were also
calculated at a cutoff value that maximized the value of the Youden index. A radiomic
nomogram combining the Rad-score derived from T2WI and DWI scans and clinical
factors was developed for predicting PNI. The calibration curves measured the consistency
between the predicted probability of PNI and the actual probability of PNI. Decision curve
analysis was applied to measure the clinical utility of the nomogram.

https://github.com/
https://github.com/Radiomics/pyradiomics
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2.8. Statistical Analysis

Demographic data were compared by chi-squared test, Mann-Whitney test, or t-test.
Continuous variables are expressed as mean ± standard deviation, and categorical variables
are expressed as median (25 quantile, 75 quantile). A value of p < 0.05 was considered
statistically significant. Statistical analyses were performed using SPSS v22.0 (IBM SPSS
Statistics, IBM Corp., Armonk, NY, USA) and R software (R is a language and environment
for statistical computing and graphics. It is a GNU project which is similar to the S language
and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent
Technologies) by John Chambers and colleagues, version 4.1.2; http://www.Rproject.org,
accessed on 17 December 2022).

3. Results
3.1. Patient Characteristics

PNI was diagnosed histologically based on RP or biopsy specimen tissues. In total,
183 patients were then divided into the PNI positive [PNI (+)] group and the PNI negative
[PNI (−)] group. The PNI (+) group contained 54 patients (29.51%), while the PNI (−)
group contained 129 patients (70.49%). In the PNI positive group, 42 were detected on RP
and 12 on biopsy. Twenty-seven of the forty-two cases were confirmed PNI positive both
on preoperative biopsy and RP; eight of the forty-two cases had no PNI positive results
on biopsy, but the RP outcomes were determinative; seven of the forty-two cases obtained
a biopsy at another center, and we only had PNI positive results after RP in our center.
Twelve PNI positive cases confirmed by biopsy did not undergo RP after biopsy in our
center. The concordance rate of PNI positive results between biopsy and RP was 64.29%. In
the PNI negative group, 98 cases were diagnosed as PNI negative both on preoperative
biopsy and RP; 31 cases obtained a biopsy at another center; we only had their PNI negative
outcomes of RP in our center. The concordance rate was 75.97%. The average ages were
69.7 ± 8.2 years and 72.0 ± 9.0 years in the two respective groups. The PSA levels were
15.9 ng/mL and 17.4 ng/mL in the two respective groups. In the PNI (+) group, the GS
proportions were distributed as follows: 22.2% of patients (12/54) had a score of 8, 42.6%
(23/54) had a score of 9, and 11.1% (6/54) had a score of 10. In the PNI (−) group, the
GS proportions were distributed as follows: 41.1% of patients (53/129) had a score of 8,
39.5% (51/129) had a score of 9, and 19.4% (25/129) had a score of 10. The radiological
and other clinical characteristics of the two groups are summarized in Table 3. There were
no significant differences between these two groups in terms of age, PSA level, PSAD, or
tumor location. However, there were significant differences in prostate volume, GS, and
GG (p < 0.05). There were no significant differences between the training and test cohorts
in terms of all clinical characteristics, which are summarized in Table 2 (p > 0.05).

Table 1. Patient clinic radiological characteristics between groups of PNI (+) and PNI (−).

Characteristics PNI (+)
(N = 54)

PNI (−)
(N = 129) p Value

Age (years) 69.7 ± 8.2 72.0 ± 9.0 0.121
PSA level (ng/mL) 15.9 (10–23) 17.4 (11.4–25.7) 0.406

Prostate volume (mL) 43.7 (31.3–59.7) 53.7 (38.1–87.7) 0.006
Foot–head (FH) (cm) 4.4 (3.6–5.1) 4.7 (3.9–5.8) 0.02
Right–left (RL) (cm) 4.7 (4–5) 5.1 (4.5–5.9) <0.001

Anterior–posterior (AP) (cm) 4.1 (3.6–4.9) 4.3 (3.7–5.2) 0.247
PSAD (ng/mL/cm3) 0.4 (0.2–0.5) 0.3 (0.2–0.5) 0.176
Gleason Score (GS) 9.13 (9–10) 8.78 (8–9) 0.005

Grading Groups (GG) <0.001
Grade 1 0.0% (0/54) 0.0% (0/129)
Grade 2 0.0% (0/54) 0.0% (0/129)
Grade 3 0.0% (0/54) 0.0% (0/129)

http://www.Rproject.org
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Table 1. Cont.

Characteristics PNI (+)
(N = 54)

PNI (−)
(N = 129) p Value

Grade 4 22.2% (12/54) 41.1% (53/129)
Grade 5 77.8% (42/54) 58.9% (76/129)
Location 0.196

Central zone 1.9% (1/54) 2.3% (3/129)
Transition zone 13.0% (7/54) 7.0% (9/129)
Peripheral zone 25.9% (14/54) 17.1% (22/129)
Multiple zone 59.3% (32/54) 73.6% (95/129)

Rad-score 1.52 ± 2.649 −1.815 ± 2.065 <0.001

Table 2. Patient clinic radiological characteristics between training and test cohort.

Characteristics Training
(N = 128)

Test
(N = 55) p Value

Age (years) 72.0 ± 8.6 69.8 ± 9.1 0.117
PSA level (ng/mL) 42.4 (14.3–138.6) 49.8 (13.9–169) 0.716

Prostate volume (mL) 48.6 (35.2–77.4) 52.9 (36.6–71.0) 0.797
Foot–head (FH) (cm) 4.7 (3.8–5.7) 4.6 (3.8–5.3) 0.484
Right–left (RL) (cm) 4.9 (4.4–5.5) 4.9 (4.2–5.5) 0.796

Anterior–posterior (AP) (cm) 4.3 (3.7–5.2) 4.1 (3.4–4.9) 0.157
PSAD (ng/mL/cm3) 0.9 (0.3–2.9) 0.9 (0.3–2.8) 0.861
Gleason Score (GS) 9.0 (8–9) 9.0 (8–9) 0.092

Location 0.193
Central zone 1.6% (2/128) 3.6% (2/55)

Transition zone 10.9% (14/128) 3.6% (2/55)
Peripheral zone 21.1% (27/128) 14.5% (8/55)
Multiple zone 66.4% (85/128) 78.2% (43/55)

Rad-score −0.542 ± 2.518 −1.503 ± 3.046 0.052
PSA: prostate-specific antigen. Prostate volume: foot–head (FH) length × right–left (RL) length × anterior–
posterior (AP) length × π/6. PSAD: prostate-specific antigen density, PSA value divided by MRI-estimated
prostate volume. Grading groups (GG): GG1: Gleason scores ≤ 6; GG2: Gleason scores 3 + 4; GG3: Gleason scores
4 + 3; GG4: Gleason scores 4 + 4, 3 + 5, 5 + 3; GG5: Gleason scores 4 + 5, 5 + 4, 5 + 5. p < 0.05 indicates a statistically
significant difference.

3.2. Feature Selection and Comparison of Models

Further, 1193 stable features with ICCs ≥ 0.75 were retained (611 features from T2WI,
and 582 features from DWI). The T2WI sequence selected 10 features when the λ1se was
equal to 0.06478 and obtained the highest AUC on the testing dataset. The AUC and
accuracy of the model were 0.827 (95% CI 0.707–0.947) and 0.818, respectively. The DWI
sequence selected four features when the λ1se was equal to 0.11225 and obtained the highest
AUC on the testing dataset. The AUC and accuracy of the model were 0.734 (95% CI
0.593–0.975) and 0.746, respectively. The T2WI + DWI sequence selected 13 features when
the λ1se was equal to 0.06787 and obtained the highest AUC on the validation dataset. The
AUC and accuracy of the model were 0.908 (95% CI 0.821–0.996) and 0.855, respectively.
Thirteen features were found to have high stability for prediction of PNI and were chosen
to construct the final model. The details of feature selection and comparison of models
were shown in Figures 2 and 3 and Tables 3 and 4.

The clinical model based on features including FH, RL, prostate volume, and GS
obtained the highest AUC on the test dataset. The AUC and accuracy of the model were
0.823 (95% CI 0.712–0.933) and 0.673, respectively, on the testing dataset (Figures 2 and 3
and Table 4).
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Table 3. The selected radiomics features of T2WI, DWI, and T2WI + DWI models.

Radiomics Features Coefficient Odds Ratio (95% CI) p-Value

T2WI

T2_wavelet.HHH_glrlm_RunPercentage −0.220 0.802 (0.533–1.236) 0.298
T2_wavelet.HHH_ngtdm_Coarseness 1.471 4.355 (0.800–29.392) 0.106

T2_wavelet.HLH_gldm_
SmallDependenceHighGrayLevelEmphasis −5.081 0.006 (5.54 × 10−6–0.687) 0.080

T2_wavelet.HLH_glrlm_RunPercentage 1.443 4.235 (1.481–26.510) 0.045
T2_wavelet.HLL_ngtdm_Coarseness −1.294 0.274 (0.043–1.324) 0.134

T2_wavelet.LHH_gldm_
DependenceNonUniformityNormalized 5.107 1.652 (1.358–4.033) 0.104

T2_wavelet.LHH_glszm_
SizeZoneNonUniformityNormalized 0.860 2.362 (1.187–5.205) 0.022

T2_wavelet.LHH_ngtdm_Contrast 0.722 2.058 (1.291–3.564) 0.005
T2_wavelet.LHL_firstorder_RootMeanSquared 0.270 1.310 (0.808–2.146) 0.268

T2_wavelet.LLL_gldm_
SmallDependenceLowGrayLevelEmphasis 0.025 1.025 (0.637–1.626) 0.916
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Table 3. Cont.

Radiomics Features Coefficient Odds Ratio (95% CI) p-Value

DWI

DWI_original_glszm_SizeZoneNonUniformityNormalized 0.378 1.460 (1.0109–2.229) 0.061
DWI_original_shape_SurfaceArea −0.443 0.642 (0.257–1.511) 0.324

DWI_wavelet.HLH_glcm_MaximumProbability −0.731 0.481 (0.272–0.763) 0.005
DWI_wavelet.LLL_glrlm_RunLengthNonUniformity −0.700 0.496 (0.200–1.136) 0.109

T2WI + DWI

T2_wavelet.HLH_gldm_
SmallDependenceHighGrayLevelEmphasis 0.947 2.579 (1.255–7.864) 0.030

T2_wavelet.HLH_glrlm_RunPercentage −0.509 0.601 (0.278–1.236) 0.176
T2_wavelet.HLL_ngtdm_Coarseness 0.703 2.020 (0.844–6.290) 0.181

T2_wavelet.LHH_gldm_
DependenceNonUniformityNormalized 0.834 2.303 (1.171–5.080) 0.023

T2_wavelet.LHH_glszm_
SizeZoneNonUniformityNormalized 0.537 1.710 (1.059–2.955) 0.039

T2_wavelet.LHH_ngtdm_Contrast 0.304 1.355 (0.808–2.315) 0.249
T2_wavelet.LHL_firstorder_RootMeanSquared 0.343 1.409 (0.859–2.375) 0.180

DWI_original_glszm_SizeZoneNonUniformityNormalized 0.271 1.311 (0.829–2.266) 0.289
DWI_original_shape_SurfaceArea −0.896 0.408 (0.162–0.896) 0.039

DWI_wavelet.HHH_glcm_DifferenceEntropy 0.687 1.988 (1.010–4.306) 0.064
DWI_wavelet.HLH_glcm_MaximumProbability −0.494 0.610 (0.299–1.178) 0.151

DWI_wavelet.HLL_gldm_
LargeDependenceLowGrayLevelEmphasis 0.377 1.457 (0.873–2.460) 0.152

DWI_wavelet.LHH_glszm_ZoneEntropy −0.127 0.881 (0.463–1.668) 0.697

Table 4. The diagnostic performance of models.

Model Train Test

AUC Sensitivity Specificity P AUC Sensitivity Specificity P

Clinical 0.766
(0.698–0.834) 0.890 0.522 0.823

(0.712–0.933) 1 0.514

T2WI 0.813
(0.753–0.873) 0.868 0.609 0.276 0.827

(0.707–0.947) 0.611 0.919 0.959

DWI 0.749
(0.678–0.819) 0.802 0.598 0.709 0.734

(0.593–0.975) 0.556 0.838 0.269

T2WI + DWI 0.879
(0.832–0.926) 0.736 0.870 0.003 0.908

(0.821–0.996) 0.944 0.811 0.197

Combined 0.906
(0.866–0.947) 0.780 0.870 <0.01 0.947

(0.884–1) 0.944 0.865 0.01

P: AUC value of T2WI model, DWI model, T2WI + DWI model, and radiomic combined clinical model, respectively,
compared to AUC value of clinical model.

3.3. Development of the Clinical–Radiomics Predictive Model

After the independently associated risk factors of FH, RL, volume, and GS were
selected, we combined them with the Rad-score of the 13 features to form a PNI predictive
nomogram. This nomogram had better performance in predicting PNI: the AUCs were
0.906 (95% CI 0.866–0.947) in the training group and 0.947 (95% CI 0.884–1) in the test group
(Figure 4 and Table 4).
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perineural invasion.

3.4. Validation of the Clinical–Radiomics Predictive Nomogram

The calibration charts showed that the actual probability of PNI occurrence was
consistent with the predicted probability, and the Hosmer-Leme show test yielded P values
of 0.907 and 0.689 in the training and test cohorts, respectively. As shown in Figure 5,
decision curve analysis indicated that the PNI predictive nomogram model was the best
method across the full range of reasonable threshold probabilities. In the training group, the
net reclassification index (NRI) was 1.1252 (0.8659–1.3644, p < 0.01) comparing the clinical
model and combined model, while the NRI was 0.886 (0.6271–1.449, p < 0.01) comparing the
radiomic model and combined model. In the test group, the NRI was 1.2312 (0.7796–1.6829,
p < 0.01) comparing the clinical model and combined model, while the NRI was 1.0691
(0.5958–1.5424, p < 0.01) comparing the radiomic model and combined model (Figure 6).
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4. Discussion

PNI is a histological phenomenon in which cancer cells surround and invade nerves
in the tumor microenvironment and play a role in development and regeneration of cancer
cells. Nerves and cancer cells communicate bidirectionally to each other, providing a
mechanism that could induce cancer invasion and spread. Studies have shown that the
sympathetic nervous system in cancer can regulate pathological gene expression, leading
to DNA damage repair inhibition and oncogene activation to increase cancer cell metastasis
and tumorigenesis [14,15]. On the other hand, cancer cells can secrete neurotrophic growth
factors or chemokines, such as CCL2 and CXCL12, to promote development of neural
progenitors, causing nerve growth [16,17]. PNI in cancer is associated with poor prognosis,
likely because neoplastic cells hidden in the perineural space cannot be removed during
tumor resection and cause recurrence.

In 1999, the College of American Pathologists published a consensus statement on
prognostic factors for PCa in which PNI was classified as category III for risk of recur-
rence and needed additional study [6]. In multivariate analysis, PNI on biopsy showed
significance for recurrence. The presence of PNI on target-biopsy associated with worse
histopathologic features on RP and poorer outcomes might thus be useful for risk stratifica-
tion [18]. As primary treatment decisions are often based on biopsy results, the additional
PNI information may be relevant for optimal patient care [19]. PNI found on prostate
biopsies has been shown to be an independent predictor of high-grade disease associated
with a higher mean PSA, adverse pathologic features of higher GS, and extra-prostatic
extension [20,21]. In our study, 54 PNI (+) patients among 183 high-grade PCa patients had
higher GG and GS than PNI (−) patients, and the outcome was consistent with these stud-
ies. PCa patients with PNI positivity showed an increased risk of biochemical recurrence
after prostatectomy or radiotherapy and worse survival outcomes, which have important
implications for treatment decision-making and management of PCa [22–24].

The slowly progressive nature of nerve involvement can often make PNI difficult to
diagnose, and PNI is always detected based on the pathological results of the biopsy and
prostatectomy specimens of PCa patients. As not all PCa cases are diagnosed at the initial
biopsy, PNI as an independent prognostic factor remains difficult to quantitatively measure
in pathological samples because of its heterogenous presentations and the multifocal nature
of RP specimens [25]. Recent research has shown that the distribution of nerves within
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the tumor-infiltrating microenvironment is not homogeneous. The neural density was
significantly higher in the cancer periphery close to cancer infiltration than in the cancer
core area, which suggests that nerves may drive tumor progression and invasion [26].
Many factors may influence the true pathological positive rate of PNI, such as the needle
core number of biopsy and the processing method of RP specimen tissues [27]. Thus, the
prognostic value of PNI evaluation in pathological analysis should be further assessed
and a better method should be developed to provide a detailed spatial representation
of heterogeneity.

MRI is a noninvasive diagnostic tool that can acquire entire anatomical images of the
prostate for cancer staging, such as extra-prostatic extension. This is important for urologists
to determine a treatment plan before surgery, such as preservation of the neurovascular
bundle (NVB) [28]. In the era of high-resolution imaging, extra-prostatic extension on
MR images already has a better ability to predict locally advanced-stage PCa than PNI
positivity on biopsy [29]. Whether PNI, as a predominant mechanism and a predictor of
PCa progression to an advanced stage, can be directly assessed on imaging measures needs
further study to develop a visualization method. Jonathan J. Stone retrospectively reviewed
the data of 3733 PCa patients from a medical database who had undergone both MRI and
PET before surgery to identify direct radiological evidence of PNI. Fifteen patients who had
perineural spread found on MRI presented enlargement of the spinal nerves, lumbosacral
plexus, sciatic nerve on T1-weighted sequences, hyperintensity on T2-weighted sequences,
and/or abnormal nerve enhancement after gadolinium administration [30]. Salvatore
Siracusano evaluated a new MRI modality called diffusion tensor imaging (DTI), which
can provide sharp depiction of peripheral nervous fibers to detect changes in peri-prostatic
neuro-vasculature (PNF) before and after RP. DTI was able to detect quantitative changes
in the number, length, and fractional anisotropy values of the PNF, and they observed that
the fiber number in MRI images can serve as a recovery indicator of erectile dysfunction
in nerve-sparing prostatectomy [31]. However, PNI is a microscopic-level finding in PCa.
Huijuan You combined MRI and magnetic particle imaging involving superparamagnetic
iron oxide nanoparticles to precisely distinguish high and low nerve densities of the PCa
tissue microenvironment in a mouse model. Their method could visualize the nerve
density, and they observed a positive correlation with the aggressiveness of PCa cancer
cells, which can be a novel strategy for discovering biomarkers for neural tissue and tumor
aggressiveness in PCa [32].

Although MR plays an important role in detecting and accurately evaluating PCa,
image outcome reporting depends on the subjective judgment of radiologists, which causes
high inter-reader variability. Recently, the quantitative analysis method based on machine
learning techniques called radiomics was shown to automatically obtain high-throughput
imaging features to overcome the above limitations and assess tumor biology characteristics.
Several studies have reported use of MR-based radiomics to detect clinically significant
PCa and assess aggressiveness and tumor staging [33]. Shuai Ma developed and validated
a radiomics model that contains 17 stable radiomics features extracted from 1619 features
based on T2WI to predict ECE in PCa. The AUC was 0.883 in the validation cohort, and
the model was more sensitive than the radiologists’ interpretations, especially for apical
tumors, which would influence a nerve-sparing surgical plan [34]. PNI is a predominant
mechanism of ECE in PCa; to the best of our knowledge, there is no radiomics model based
on MRI for preoperatively predicting this histopathological phenomenon.

In our study, we constructed a model derived from clinical and imaging data, in-
cluding radiomic features from T2WI and DWI, based on computer-aided analysis to
evaluate the PNI status in high-grade PCa. Our best radiomics model contained three
GLDM features, one GLRLM feature, two NGTDM features, three GLSZM features, two
GLCM features, one first-order feature, and one shape feature from T2WI and DWI im-
ages, which have the best predictive ability for PNI status in high-grade PCa. Our results
demonstrated that the NGTDM feature had the greatest weight of the features in the T2WI
model, while, in the DWI model, it was the GLCM feature, which is associated with tu-
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mor invasion and is a predictor of PCa aggressiveness, consistent with recently published
findings concerning risk stratification for Pca. This finding suggests that invading nerves
in the tumor microenvironment may affect the homogeneous texture features and that
these radiomics features associated with PNI positivity may provide some additional in-
formation related to Pca aggressiveness, as previous studies reported [35,36]. The feature
with the greatest weight in the T2WI + DWI model was the higher-order feature GLDM;
this feature describes the gray level intensity within the ROI between the PNI positive
and PNI negative groups and is used to highlight local heterogeneity information. This
texture feature was rarely mentioned in previous radiomics studies for Pca, but, for other
tumors, such as rectal cancer and cervical cancer, GLDM was thought to be associated with
locally advanced tumors and poor prognosis in recent studies [37,38]. Similar to those
in nontumor tissues, the GLDM metrics were found to be significantly different among
peritumoral fat between high-grade and low-grade clear cell renal carcinoma and urothelial
carcinoma [39,40]. Therefore, whether radiomics feature GLDM could be a biomarker for
predicting the heterogeneity of interstitial composition in urologic cancers requires more
research. Similar to the study of B. De Santi, which showed that a difference in voxel
intensity distribution could distinguish cancerous and normal prostatic tissues [41], our
model led to the conclusion that differences in heterogeneity between PNI positive and PNI
negative samples can be detected and, therefore, can help depict the tissue microstructure
as PNI positive or PNI negative before surgery.

Our clinical–radiomics prediction model, which integrates clinical characteristics
and the Rad-score derived from MRI, had good sensitivity (0.944) and good specificity
(0.865) in the test cohort, indicating that it is superior to all the above-mentioned models
for predicting PNI status. Comparing the AUC values in the independent test cohort,
our clinical–radiomics prediction model (AUC 0.947; 95% CI 0.884–1) performed better
than the radiomics model alone (AUC 0.908; 95% CI 0.821–0.996) and the clinical model
alone (AUC 0.823; 95% CI 0.712–0.933). Decision curve analysis showed that the clinical–
radiomics model had a better ability to predict PNI than the other two models at any
given threshold probability. This finding confirms that assessment of PNI with clinical or
radiomic information alone will not be comprehensive.

Several limitations should be noted when considering this study. First, we included
GGs of high-grade patients only; those with GS ≤ 7 patterns were excluded, especially
patients with GS 4 + 3 who have a much worse prognosis, and their PNI status was not
assessed. Second, some GS values were based on biopsy rather than on RP in our study,
possibly causing sampling error. Third, there was a lack of spatial co-registration of the
histopathology slides and MR images, which may cause a mismatch in delineating the ROIs
directly on the T2WI and DWI images. Fourth, FAE software can be used conveniently for
binary classification, but it has not yet provided an integrated UI for multilabel classification
and regression problems. Fifth, this study was a single-institutional retrospective study
design without external validation.

5. Conclusions

In our study, the results showed that MRI-derived radiomic features can be indepen-
dent predictors of PNI in high-grade PCa. The combination of radiomic features extracted
from T2WI and DWI maps produced higher diagnostic power to predict PNI than a single
pattern. Additionally, our clinical–radiomics model was superior to a single radiomics
model and a clinical model, suggesting that, combined, the radiomic features and clini-
cal pathology information may have considerable value in predicting PNI in high-grade
PCa, which can aid clinicians in choosing appropriate treatment options and estimating
prognoses for such patients.
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Appendix A

Rad-score = −0.6252 + T2_wavelet.HLH_gldm_SmallDependenceHighGrayLevelEmphasis × 0.9473 +
T2_wavelet.HLH_glrlm_RunPercentage × (−0.5091) + T2_wavelet.HLL_ngtdm_Coarseness × 0.7033 +

T2_wavelet.LHH_gldm_DependenceNonUniformityNormalized × 0.8344 +
T2_wavelet.LHH_glszm_SizeZoneNonUniformityNormalized × 0.5365 +

T2_wavelet.LHH_ngtdm_Contrast × 0.3040 + T2_wavelet.LHL_firstorder_RootMeanSquared × 0.3430 +
DWI_original_glszm_SizeZoneNonUniformityNormalized × 0.2708 +

DWI_original_shape_SurfaceArea × (−0.8964) + DWI_wavelet.HHH_glcm_DifferenceEntropy × 0.6870 +
DWI_wavelet.HLH_glcm_MaximumProbability × (−0.4943) +

DWI_wavelet.HLL_gldm_LargeDependenceLowGrayLevelEmphasis × 0.3766 +
DWI_wavelet.LHH_glszm_ZoneEntropy × (−0.1266)
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