
Citation: Dai, D.; Liu, L.; Guo, Y.;

Shui, Y.; Wei, Q. A Comprehensive

Analysis of the Effects of Key

Mitophagy Genes on the Progression

and Prognosis of Lung

Adenocarcinoma. Cancers 2023, 15, 57.

https://doi.org/10.3390/

cancers15010057

Academic Editors: Claudio Luparello

and Rita Ferreira

Received: 1 November 2022

Revised: 17 December 2022

Accepted: 17 December 2022

Published: 22 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

A Comprehensive Analysis of the Effects of Key
Mitophagy Genes on the Progression and Prognosis
of Lung Adenocarcinoma
Dongjun Dai † , Lihong Liu †, Yinglu Guo, Yongjie Shui and Qichun Wei *

Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine,
Hangzhou 310009, China
* Correspondence: qichun_wei@zju.edu.cn
† These authors contribute to this work equally.

Simple Summary: Dysfunction and dysregulation of mitochondrial dynamics are implicated in
tumorigenesis. To avoid mitochondrial dysfunction, a quality control mechanism called mitophagy
is developed in cells. A series of mitophagy-related genes were identified to be associated with
lung cancer. However, there was no comprehensive genetic and transcriptional analysis of all key
mitophagy genes in lung adenocarcinoma (LUAD) progression, prognosis and therapeutics. Here,
we performed a comprehensive analysis of the gene expression, copy number variation and mutation
of key mitophagy genes in the tumor progression of LUAD. The clustering analysis identified two
groups of LUAD with a significantly different prognosis. Further analyses of gene mutation, genome
profile, immune cell infiltration and drug sensitivity were performed between these two groups. We
also constructed a mitophagy related signature that could predict the prognosis of LUAD, which
was validated in external database. This study was valuable for LUAD prognostic prediction and
treatment decision.

Abstract: The aim of our study was to perform a comprehensive analysis of the gene expression, copy
number variation (CNV) and mutation of key mitophagy genes in the progression and prognosis
of lung adenocarcinoma (LUAD). We obtained the data from The Cancer Genome Atlas (TCGA).
Clustering analysis was performed to stratify the mitophagy related groups. The least absolute
shrinkage and selection operator (LASSO) based cox model was used to select hub survival genes.
An independent validation cohort was retrieved from Gene Expression Omnibus database. We found
24 out of 27 mitophagy genes were aberrantly expressed between tumor and normal samples. CNV
gains were associated with higher expression of mitophagy genes in 23 of 27 mitophagy genes. The
clustering analysis identified high and low risk mitophagy groups with distinct survival differences.
The high risk mitophagy groups had higher tumor mutation burden, stemness phenotype, total
CNVs and lower CD4+ T cells infiltration. Drugs targeted to high risk mitophagy groups were
identified including the PI3K/AKT/mTOR inhibitor, HDAC inhibitor and chemotherapy agents such
as cisplatin and gemcitabine. In addition, the differentially expressed genes (DEGs) were identified
between mitophagy groups. Further univariate Cox analysis of each DEG and subsequent LASSO-
based Cox model revealed a mitophagy-related prognostic signature. The risk score model of this
signature showed a strong ability to predict the overall survival of LUAD patients in training and
validation datasets. In conclusion, the mitophagy genes played an important role in the progression
and prognosis of LUAD, which might provide useful information for the treatment of LUAD.

Keywords: lung adenocarcinoma; mitophagy; TCGA; GEO; immunotherapy; prognosis

1. Introduction

Lung cancer is the leading cause of cancer related death worldwide [1]. In the United
States, the 5-year lung cancer survival rate was about 20% [2]. Nearly 80–85% lung can-
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cer cases are non-small cell lung cancer (NSCLC) [3,4]. Lung adenocarcinoma (LUAD),
accounts for nearly 40% of the NSCLC, is the most common type of lung cancer that occurs
in never smokers and with more heterogenous genetic alterations [5]. Recently, with the
increased understanding of the genetic basis, the development of immunotherapy and
targeted therapy agents dramatically improved the prognosis of NSCLC patients, especially
for LUAD [3,6].

Mitochondria provides basic materials for tumor anabolism, which is engaged in
several biological processes such as tumor cell redox, transcription regulation, cell death
control and host immune system [7]. Dysfunction and dysregulation of mitochondrial
dynamics are implicated in tumorigenesis [8]. To avoid mitochondrial dysfunction, a
quality control mechanism called mitophagy is developed in cells, which is a specific
autophagy to clear damaged mitochondria [7]. Defects of mitophagy are associated with
impaired mitochondrial function in multiple cancers, which promote oncogenesis and
affects anti-cancer therapies [8].

Recently, a series of mitophagy related genes were identified to be associated with
lung cancer [9]. For example, PINK1 depletion altered energetic metabolism and confers
sensitivity to agents that inhibited glycolysis in NSCLC [10]. Depletion of ATG5 reduced
tumor growth in RAS mutation lung cancer cell line [11]. Pro-apoptotic compound fluorizo-
line was identified to inhibit PRKN-dependent mitophagy and lower the viability of lung
cancer cell line [12]. However, there was no comprehensive genetic and transcriptional
analysis of all key mitophagy genes in LUAD progression, prognosis and therapeutics.

Here, we performed a comprehensive analysis of the gene expression, copy number
variation and mutation of key mitophagy genes in the tumor progression of LUAD by using
the data from The Cancer Genome Atlas (TCGA). The clustering analysis identified two
groups of LUAD with a significantly different prognosis. Further analyses of gene mutation,
genome profile, immune cell infiltration and drug sensitivity were performed between
these two groups. We also constructed a mitophagy related signature that could predict the
prognosis of LUAD, which was validated in Gene Expression Omnibus (GEO) database.

2. Materials and Methods
2.1. Data Collection

The transcription and copy number variation data of TCGA-LUAD was obtained from
Xena database [13]. The mutation data was obtained by R package “TCGAmutation”. The
transcriptional counts data was normalized by “TMM” method [14] and transformed by
“voom” method from “limma” R package [15]. The key mitophagy genes were selected
by referring to a previous study which identified the mitophagy genes from Reactome
database [16]. The selected 28 mitophagy genes comprised ATG12, ATG5, CSNK2A1,
CSNK2A2, CSNK2B, FUNDC1, MAP1LC3A, MAP1LC3B, MFN1, MFN2, MTERF3, PGAM5,
PINK1, PRKN, RPS27A, SQSTM1, SRC, TOMM20, TOMM22, TOMM40, TOMM5, TOMM6,
TOMM7, UBA52, UBB, UBC, ULK1 and VDAC1. We only included the 27 mitophagy genes
in the analysis since we discovered that the TOMM6 had 0 read counts in all samples.

The LUAD patients with RNA count data were randomized and stratified into a
training group (n = 332) and a validation group (n = 184). The prognostic analysis was
performed in the training group and validated by the TCGA-LUAD validation group, the
whole TCGA-LUAD group and an external dataset from GEO database (GSE72094) [17].

The R package “ConsensusClusterPlus” was used to stratify the mitophagy related
clusters [18]. The parameter settings were as follows: reps = 1000, pItem = 0.8, pFeature = 1,
and distance = Euclidean. The stratified mitophagy groups were then to be used in
next analyses.

2.2. The Association between Tumor Mutation Burden (TMB) and Mitophagy Groups

TMB was defined as the number of non-synonymous alterations per megabase (Mb)
of the genome, and we estimated the size of an exome to be 38 Mb [19]. The Wilcoxon
analysis was used to evaluate the difference between mitophagy groups.
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2.3. Evaluation of Cell Stemness in Mitophagy Groups

The mRNAsi score for the TCGA-LUAD samples was acquired from Malta et al. [20].
The mRNAsi score is a gene expression-based stemness index for assessing cancer cell
dedifferentiation, which ranges from 0 to 1. The difference of mRNAsi score between
mitophagy groups was assessed by Wilcoxon analysis.

2.4. Assessment of Immune Checkpoint Gene Expression in Mitophagy Groups

Violin plots were used to describe the expression levels of 8 immune-checkpoint genes
in the two mitophagy groups. The immune-checkpoint genes comprised CD274, cytotoxic
T-lymphocyte associated protein 4 (CTLA4), hepatitis A virus cellular receptor 2 (HAVCR2),
lymphocyte activating 3 (LAG3), programmed cell death 1 (PDCD1), programmed cell
death 1 ligand 2 (PDCD1LG2), sialic acid binding Ig like lectin 15 (SIGLEC15), and T cell
immunoreceptor with Ig and ITIM domains (TIGIT). The difference of immune-checkpoint
gene expression between mitophagy groups was assessed by Wilcoxon analysis.

2.5. Assessment of Tumor Immune Cell Infiltration in Mitophagy Groups

The ESTIMATE algorithm was used to compute the immune and stromal scores by
R package “estimate”. We also estimated the immune cell fractions between mitophagy
groups by R package “immunedeconv”, which included xCell, quanTIseq, EPIC and TIMER
algorithms. The Fragments Per Kilobase Million (FPKM) data were downloaded from Xena
database and transformed to Transcripts Per Million (TPM) value, which was utilized as
input for R package "immunedeconv".

2.6. Differentially Expressed Genes (DEGs) Screening

The DEGs screening between mitophagy groups was performed by R package “limma”.
DEGs were defined as genes having a fold change of more than 2 and a p-value less than
0.05. The volcano plot was created to visualize the DEGs results. Further analyses were
conducted using the calculated DEGs.

2.7. Functional Analyses of DEGs

The functional analyses of DEGs included the gene ontology (GO) analysis, Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis
(GSEA). These analyses were performed by R package “clusterProfiler”.

2.8. The Prognostic Model Construction

The univariate Cox analysis was applied to each DEG. The cutoff point was defined
as the median gene expression value. The survival related DEGs were defined as genes
with a p value less than 0.05. The selected survival related DEGs were then analyzed by a
least absolute shrinkage and selection operator (LASSO) analysis to identify hub survival
genes (10-fold cross-validation). A risk score prognostic model based on hub survival
genes was constructed by using the following formula: (βi × Expi) (i was the number of
hub survival-related genes). The KM method was applied to the risk score for the overall
survival (OS) of LUAD patients. The area under the receiver operating characteristic curve
(AUC) plots were drawn to estimate the reliability of the risk score. The validation was
performed in TCGA-LUAD testing cohort, whole TCGA-LUAD cohort and an external
dataset from GEO database (GSE72094).

A nomogram was constructed by R package “rms” to predict the 1-year, 2-year, and
3-year OS of patients with LUAD. The validation was performed internally by calibra-
tion curve.

2.9. Drug Identification Analysis

We further explored the potential drugs that might target to high risk mitophagy
group and assessed the drug response difference between mitophagy groups. The drug
identification was performed by utilizing Connectivity Map (CMap) analysis [21]. The
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CMap analysis was conducted by R package “DrInsight” [22]. The drug-response prediction
was assessed using R package “oncoPredict” [23]. The sensitivity scores were computed to
the drugs for LUAD patients, the lower score presented sensitive status and the high score
presented resistant status to a specific drug.

2.10. Statistical Analyses

All the statistical analyses were performed by R-4.1.3. The heatmap was plotted
by R package “pheatmap”. The KM method was performed by R package “survminer”.
LASSO analysis was performed by R package “glmnet”. AUC analysis was conducted by R
package “timeROC”. The KM plots, violin plots, volcano plots were all drawn by R package
“ggplot2”. For comparisons between two groups, Wilcoxon analysis was performed.

3. Results
3.1. The Landscape of Mitophagy Genes in LUAD

There were 555 LUAD samples with read counts data collected from TCGA. We
observed that ATG12, CSNK2A1, CSNK2B, FUNDC1, MFN1, MTERF3, PGAM5, RPS27A,
SQSTM1, SRC, TOMM20, TOMM22, TOMM40, TOMM5, ULK1, VDAC1 were upregulated
in tumor tissue while the MAP1LC3A, MAP1LC3B, MFN2, PINK1, PRKN, TOMM7, UBB,
UBC were downregulated in tumor tissue (Figure 1A,B). A heatmap was constructed
to show the relationships between mitophagy genes and the LUAD clinical factors that
comprised age, gender, T stage, M stage, N stage, tumor stage, and KRAS status (Figure 1C).
The details of the copy number alterations of mitophagy genes were listed in Figure 1D
and Table S1. The MAP1LC3B and VDAC1 showed a higher proportion of loss in CNVs
of LUAD patients while the MTERF3, MFN1, TOMM7 and CSNK2B showed a higher
proportion of gain in CNVs of LUAD patients (Figure 1D, the difference was wider than
5%). We discovered that 23 out of 27 mitophagy genes’ CNV increases had a very strong
correlation with higher gene expression (Except for MAP1LC3A, PRKN, TOMM7 and
VDAC1, Figure 2). Mitophagy regulators were rarely mutated; the frequency was 11.6%.
The mutation rate of each mitophagy gene ranged from 0.2% to 2%, with ULK1 and UBC
having the highest mutation rate (Figure S1, Table S2).

3.2. Associations between Mitophagy Genes Expression and Clinicopathological Features

We then evaluated associations between mitophagy gene expression levels and clini-
copathological features in LUAD. We found that the ATG12, CSNK2A2, MTERF3, PGAM5,
TOMM40, TOMM5 and VDAC1 were higher in stage III-IV LUAD than the stage I-II
LUAD (Figure 3A). We observed that the mitophagy gene might be associated with the
tumor stage locally and lymphatic metastasis but not with distant metastasis in LUAD
(Figure 3B–D). The survival analysis showed that higher expression of ATG12, ATG5,
CSKN2A2, CSKN2A2, CSNK2B, MTERF3, PGAM5, RPS27A, SQSTM1, SRC, TOMM20,
TOMM40, TOMM5, UBA52, UBC, ULK1 and VDAC1 were associated with inferior OS of
LUAD, while the higher expression of PRKN was associated with favorable OS of LUAD
(Figure 4).

3.3. Description of Mitophagy Subtypes in LUAD Patients

For the purpose of constructing a prognostic model in LUAD patients, we stratified
the LUAD patients with RNA counts data into a training group (n = 332) and a validation
group (n = 165). A clustering analysis of the training group produced two groups with
similar patterns of mitophagy gene expression. We discovered a significant prognostic
difference between these two mitophagy groups (Figure 5A). We therefore named the
two groups as high and low risk mitophagy groups. The detailed expression pattern of
mitophagy genes were listed in Figure 5B. To be noted, there were 10 genes upregulated in
high risk mitophagy group and in tumor tissues (CSKN2A1, CSKN2B, MFN1, MTERF3,
PGAM5, RPS27A, TOMM22, TOMM40, TOMM5 and VDAC1, Figures 1A,B and 5B) and 4
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genes downregulated in high risk mitophagy group and the tumor tissues (MAP1LC3A,
MAP1LC3B, PINK1 and PRKN, Figures 1A,B and 5B).

Figure 1. The landscape of gene expression and CNV of mitophagy genes in LUAD. (A) the heatmap
of the gene expression level of mitophagy genes between normal (N) and tumor (T) tissues of LUAD
in TCGA. (B) the violin plots which presented the expression of each mitophagy gene between
normal and cancer tissues of LUAD in TCGA. (C) the expression of mitophagy genes in LUAD
with clinicopathological features that comprises age, gender, T stage, M stage, N stage, tumor stage,
and KRAS status. (D) the CNV distribution of mitophagy genes in TCGA database. The asterisks
represented the statistical p value (* p < 0.05; ** p < 0.01; **** p < 0.0001, “ns” represents p value
over 0.05).

These two mitophagy groups were compared in a number of ways. We discovered
that compared to the low-risk group, the high risk mitophagy group had higher total CNVs,
mRNAsi scores, and TMB (Figure 5C–E). There was no association between mitophagy
groups and ESTIMATE-immune score and stromal score (Figure 5F,G). Further we esti-
mated the association between mitophagy groups and eight immune-checkpoint genes.
We found that the CD274, LAG3 and PDCD1 were significantly higher in the high-risk
mitophagy group (Figure 6). Moreover, we analyzed the immune cell fractions between
two mitophagy groups, we found that the CD4+ T cell was lower in high risk mitophagy
group by four different algorithms (Figure 7A–D).

3.4. The association between Mitophagy Groups and the Drug Response

We next try to explore the association between mitophagy groups and the drug
response. The CMap analysis showed that histone deacetylases (HDAC) inhibitors tricho-
statin A and vorinostat, PI3K-AKT-mTOR pathway inhibitors LY-294002, sirolimus and
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wortmannin were potential drugs that targeted for high risk mitophagy group (Table 1,
p-value < 0.05, FDR < 0.1). The “oncoPredict” package showed that the high risk mitophagy
group had a lower sensitive score than low risk mitophagy group in a series of drugs
(Table 1). To be noted, compared to low risk mitophagy group, the high risk mitophagy
was more sensitive to cisplatin and gemcitabine, which were often used in the treatment
of LUAD.

Figure 2. Relationship between CNV and mitophagy genes expression in LUAD by violin plots. The
“e” in the p value represents E-notation. The E-notation is written as mEn, which is equal to the
scientific notation that is written as m × 10n.

3.5. The DEGs Screening between Mitophagy Groups and the Related Functional Analyses

We then screened the DEGs between mitophagy groups. As shown by volcano plot
(Figure 8A), there were 457 upregulated genes and 987 downregulated genes (Table S3). We
subsequently used these DEGs to perform functional analyses. The GO and KGEE analysis
showed that nuclear division, chromosome segregation and cell cycle were associated with
mitophagy (Figure 8B). The GSEA analysis identified a series of cancer associated pathways
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that were upregulated in high risk mitophagy group, such as cell cycle, cellular senescence,
oocyte meiosis and p53 signaling pathways (Figure 8C,D).

Figure 3. The correlation between the expression of mitophagy genes and the TNM stage in the
TCGA LUAD cohort. The expression of mitophagy genes in different tumor stages (A), T stage (B),
T stage (C) and M stage (D). The asterisks represented the statistical p value (* p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001, “ns” represents p value over 0.05).
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Figure 4. The association between the gene expression of mitophagy genes and the OS of LUAD by
KM plots.
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Figure 5. The mitophagy clusters and their relationship with TMB, total CNVs, stem cell phenotype
and immune and stromal scores in LUAD. (A) the KM plot of the different mitophagy clusters.
(B) The expression pattern of mitophagy genes between the two mitophagy groups. The asterisks
represented the statistical p value (ns p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).
(C–G) the violin plots presented the association between mitophagy groups and TMB (C), total CNVs
(D), stem cell phenotype (E) and immune (F) and stromal scores (G) in TCGA-LUAD cohort. The “e”
in the p value of Figure (C–E) represents E-notation. The E-notation is written as mEn, which is equal
to the scientific notation that is written as m × 10n.

3.6. The Prognostic Signature Identification and Prognostic Model Construction

We next explored the potential mitophagy-related prognostic signature. We started
by performing univariate Cox analysis in each mitophagy related DEG. We discovered
235 genes linked to an inferior OS of LUAD and 309 genes linked to a favorable OS
of LUAD (Table S4). The selected survival related genes were then put into a LASSO-
based Cox analysis. There were 17 genes (CCR6, TESMIN, ABCC12, FAM83A, B3GALT2,
FOSL1, DUSP5P1, DPPA3P2, SEC14L6, AL031777.1, ATP5MC1P4, AC133963.1, AC037441.1,
BRD9P2, AP002478.1, AC087588.2 and AC004947.2) finally selected as hub survival genes,
as they had nonzero coefficient values by the LASSO analysis (Figure 9A and Table S5). The
detailed prognostic information of each hub gene was shown in a forest plot (Figure 9B).

A prognostic risk score model based on hub survival genes was created. According
to the KM method, a higher risk score was linked to a significantly lower OS in LUAD
(Figure 9C). The AUC plot showed that this prognostic signature had relatively high
ability to predict the OS of LUAD patients (AUC > 0.7 for 1-year, 2-year and 3-year predic-
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tion, Figure 9D). These conclusions were validated in the TCGA-LUAD validation group
(Figure 10A,B), total TCGA-LUAD group (Figure 10C,D), and an external GEO-LUAD
group (Figure 10E,F). Notably, when we conducted the predictive analysis, there were
only 5 genes (B3GALT2, CCR6, ABCC12, FOSL1, and FAM83A) in the GEO database. The
detailed prognostic information of those genes was listed in a forest plot (Figure 10G). We
further validated the prognostic results of these five genes by Kaplan–Meier plotter (KM-
PLOT) website [24], which showed consistent results as in the GEO database that the higher
expression of B3GALT2 and CCR6 were associated with better OS of LUAD and the higher
expression of FOSL1 and FAM83A were associated with worse OS of LUAD (Figure 10H).
Moreover, a nomogram was constructed to predict 1-, 2-, and 3-year OS probability among
individuals with LUAD, which comprised clinical features of age, gender, tumor stage,
KRAS status and prognostic risk score model (Figure 11A). The calibration plots showed
this nomogram had well prediction to the OS of LUAD patients (Figure 11B).

Figure 6. The expression of eight immune checkpoint family genes between two mitophagy groups
by violin plots.
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Figure 7. The association between infiltration level of immune cells and the mitophagy groups in
LUAD. The xCell analysis (A), quanTIseq (B), EPIC (C) and TIMER (D) analyses of the two mitophagy
groups. The x-axis is the mean cell fraction of a specific tumor immune contexture. The asterisks
represented the statistical p value (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

Table 1. The potential drugs that targeted to high risk mitophagy group.

CMap Analysis oncoPredict Analysis

Drug p value FDR Drug High Low p value

trichostatin A_MCF7 5.76 × 10−42 2.07 × 10−38 Cisplatin_1005 8.39 40.87 4.28 × 10−15
trichostatin A_PC3 4.31 × 10−31 7.72 × 10−28 VE821_2111 26.94 64.51 1.01 × 10−14
LY-294002_MCF7 6.34 × 10−12 7.58 × 10−09 Doramapimod_1042 122.65 78.78 1.45 × 10−14
sirolimus_MCF7 1.11 × 10−09 9.97 × 10−07 Savolitinib_1936 5.35 15.39 1.89 × 10−14

tanespimycin_HL60 1.09 × 10−08 7.77 × 10−06 AZD7762_1022 0.40 1.27 2.17 × 10−14
fulvestrant_MCF7 1.30 × 10−08 7.77 × 10−06 Gemcitabine_1190 0.22 0.89 4.53 × 10−14

tanespimycin_MCF7 1.38 × 10−07 7.09 × 10−05 BMS.754807_2171 3.55 1.09 4.82 × 10−14
LY-294002_PC3 2.31 × 10−07 9.35 × 10−05 Ribociclib_1632 61.55 41.47 3.18 × 10−13

trichostatin A_HL60 2.35 × 10−07 9.35 × 10−05 MK.1775_1179 0.64 1.82 6.37 × 10−13
sirolimus_PC3 5.95 × 10−07 2.13 × 10−04 AZD6738_1917 3.03 9.79 6.59 × 10−13
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Figure 8. The DEG identification and related functional analyses. (A) The volcano plot of DEGs
between mitophagy groups. (B) The GO and KEGG analyses of DEGs between mitophagy groups.
(C,D) The GSEA of DEGs by GO (C) and KEGG (D) category.
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Figure 9. The construction of risk score model for the OS of LUAD patients in training group. (A)
Selection of the mitophagy-related hub survival genes by LASSO Cox analysis. (B) The forest plot
containing the selected hub survival genes in TCGA database. (C) The KM plot of the high or low
risk score LUAD patients in TCGA. (D) The AUC plots of risk score to predict the 1-, 2-, and 3-year
OS of LUAD in TCGA training cohort.
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1 
 

 Figure 10. The validation of risk score model for predicting OS of LUAD. (A–F) The validations
of KM plot and AUC plot were constructed from the TCGA-LUAD validation group (A,B), total
TCGA-LUAD group (C,D), and GEO-LUAD group (E,F). (G,H) The forest plot containing the hub
genes in GEO database and KMPLOT database (B3GALT2, CCR6, ABCC12, FOSL1, and FAM83A).
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Figure 11. Construction and validation of the nomogram to predict OS in the TCGA LUAD co-
hort. (A) The multivariate Cox model-based nomogram of LUAD patients in TCGA training group.
(B–D) the calibration plots for the internal validation of nomogram, the x-axis represents the nomo-
gram predicted OS and the y-axis represents the actual OS of patients with LUAD.

4. Discussion

The mitophagy was found to be association with a series of process that related to
cancer, such as innate immunity [10], metabolism [10] and improvement of immunother-
apy [25]. However, most of the research focused on just one or two mitophagy-related
genes. A comprehensive analysis of multiple mitophagy genes in a cancer was required. To
our best knowledge, there was no previous study on the association between mitophagy
and LUAD. In our study, we found that the expression of 24 out of 27 mitophagy genes
were significantly different between tumor and normal samples. The LUAD patients with
distinct expression pattern of mitophagy genes showed significant prognostic difference.
Further prognostic analyses identified key survival related DEGs of mitophagy groups.
The risk score model based on key survival genes showed well prediction ability for the OS
of LUAD.

We found that the CNV gains were associated with higher expression of mitophagy
genes in 23 of 27 mitophagy genes. Moreover, we observed that the higher risk mitophagy
groups were associated with significant higher total CNVs, which was reported to be a
prognostic factor for cancer [26].

We discovered that there was a higher TMB in the high risk mitophagy group. Based
on data from over 10,000 patients who did not receive therapy with immunological check
point inhibitors (ICIs), higher TMB was found to be associated with worse survival in
many malignancies [27]. Higher TMB was linked to more oncogenic drivers or mutations
that could lead to therapeutic resistance [28], and higher intratumor genetic heterogeneity
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may have the potential to accelerate tumor growth in response to selective pressure [29].
However, it was found that higher TMB was associated with higher rates of treatment
response and longer survival among patients who received the treatment of ICIs, which
might attribute to higher numbers of potentially immunogenic neoantigens that may facili-
tate anti-tumor immune responses [30]. Furthermore, we found that the CD274 (Encode
PD-L1 protein), PDCD1 (Encode PD-L1 protein) and LAG3 (a foremost immune therapy
targets next to PD-1/PD-L1) were higher expressed in high risk mitophagy group. Previous
study found impaired PINK1 and PRKN expression could promote the degradation of
SLC25A37 and SLC25A28 and increase the mitochondrial iron accumulation, which lead
to AIM2-mediated HMGB1 release that further induced expression of CD274/PD-L1 in
tumor cells [31]. This result was consistent with ours, as the PINK1 and PRKN expression
were significantly lower in the high risk mitophagy group. Further association between
mitophagy and immune check points-related genes are required. In addition, we found
that the CD4+ T cells were lower in the high risk mitophagy group. Previous study showed
that PD-L1 inhibitor could induce expansion of tumor-infiltrating CD4+ and CD8+ T-cell
subsets [32]. The above results indicated that the patients with certain mitophagy gene
expression pattern as high risk mitophagy group might benefit from ICIs.

Cancer development, progression, and metastasis are significantly influenced by
cancer stem cells [33]. Cancer cell stemness is also a significant contributor to therapeutic
resistance [34]. We discovered that the high risk mitophagy group had a higher stemness
score, which may be one of the causes of this group’s poorer prognosis.

PI3K/Akt/mTOR pathway was found to regulate the proliferation, apoptosis, metas-
tasis of lung cancer, and various drugs that inhibit the PI3K axis are currently being tested
in a series of clinical trials [35]. The PI3K/AKT/mTOR inhibitors wortmannin, LY-294002,
and sirolimus could be possible treatments for the high risk mitophagy group, according
to the CMap analysis of our study. By inducing the deacetylation of histone proteins,
histone deacetylases (HDACs) play a crucial part in the regulation of transcription [36].
HDAC activation was widely proved to be associated with the resistance of chemotherapy,
targeted therapy, and ICI therapy in cancers [37]. HDAC inhibitors (HDACi) has shown
anti-proliferative activity in NSCLC cell lines [38]. A number of clinical studies showed
that combined vorinostat and other treatments for LUAD might improve the effectiveness
or reverse therapy resistance [37]. Our CMap analysis showed that HDACi trichostatin A
and vorinostat had a potential therapeutic effect on LUAD patients in high risk mitophagy
group. Furthermore, we also found that the high risk mitophagy group patients were
more sensitive to cisplatin and gemcitabine, which were frequently recommended by the
2022-NSCLC-NCCN guideline as general chemotherapy agents for LUAD patients. Our
drug sensitivity analysis provided new hints to assign the association between the systemic
therapy of LUAD and mitophagy.

We further explored the DEGs and made functional enrichment analysis between two
mitophagy groups. The KEGG analysis and GSEA analysis both revealed that cell cycle and
oocyte meiosis were associated with high risk mitophagy group. The activation of TBK1
at the mitochondria during mitophagy by PINK1 and PRKN was found to cause a delay
in mitosis because TBK1 was sequestered from its physiological function at centrosomes,
however, if PINK1 and PRKN were not present, the cell cycle continued to progress [39].
Meiotic factors were found to promote tumor maintenance and therapeutic resistance by
driving rapid tumor evolution [40]. Activation of the PRKN-mediated mitophagy pathway,
lead to defects in meiosis and the accumulation of damaged mitochondria in oocytes [41].
The above studies were consistent with our results that PINK1 and PRKN were significantly
lower in the high risk mitophagy group.

We further identified the mitophagy-related hub survival genes in LUAD. The con-
structed risk score model showed well predictive ability for LUAD OS and was validated
by GEO database. To be noted, the genes in GEO database were not equivalent to the
TCGA database. There were only five genes in the GEO database, which were B3GALB2,
CCR6, ABCC12, FOSL1 and FAM83A. Among them, the B3GALB2, CCR6, FOSL1 and
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FAM83A were observed to have consistent prognostic results in three different sources of
databases (TCGA, GEO and KMPLOT). CCR6 is the unique receptor for the chemokine
CCL20 [42]. The effects of CCR6 on tumor progression and prognosis were controversial.
Reports showed that the CCL20-CCR6 axis was associated with several cancers. It pro-
moted cancer progression by enhancing migration and proliferation of cancer cells and
remodeling the tumor microenvironment [43]. On the other hand, previous study showed
a consistent pattern of CCR6 down-regulation in the cell lines and tissues of metastatic
head and neck squamous cell carcinoma [44]. Additionally, transfection of Lewis lung
carcinoma cells with CCR6 caused local production of CCL20 in the lung and reduced
the metastatic possibility in mice [45]. In addition, a study with 84 patients of LUAD
showed that higher expression of CCR6 in tumor was an independent predictor of a better
prognosis in LUAD [46]. FOSL1 is a member of the FOS family, playing an important
role in cancer cell progression in several cell types [47]. KRAS oncogene-induced FOSL1
activation was found to promote increased expression of AREG, cyclin D1, BCL2, and
BCLXL, which were required for cell proliferation and cell survival [48]. Furthermore,
FOSL1 genetic inhibition was found to be detrimental to KRAS-driven cancers such as
LUAD and pancreatic adenocarcinoma [49]. Elevated FAM83A expression was observed to
predict a poorer clinical outcome in LUAD [50]. It was found that lncRNA FAM83A-AS1
increased FAM83A expression by enhancing FAM83A pre-mRNA stability and promoted
the tumorigenesis of LUAD [51]. FAM83A can inhibit GSK3β activity and increase the level
of active unphosphorylated β-catenin; active β-catenin then transports into the nucleus
and activates the Wnt signaling pathway in lung cancer cells [52]. B3GALT2 was found to
be upregulated by tumor suppressor TGF-β [53]. Rare research was conducted between
B3GALT2 and cancer. In summary, our study proved new insights between these genes
and mitophagy and the prognosis of LUAD.

Our study had certain limitations. First, the data source from our study were all
retrospectively designed, and with incomplete information such as the detail of therapy.
Second, there was a lack of validation to the hub survival genes in in vitro or in vivo studies
to explore the underlying mechanisms.

5. Conclusions

We first performed a comprehensive analysis of the landscape of 27 mitophagy genes
by evaluating the RNA expression, CNVs, mutation status and clinicopathological features
in LUAD. The expression pattern of mitophagy genes was significantly associated with
the prognosis of LUAD and might influence the strategy of LUAD therapy. A mitophagy-
related RNA signature was constructed and validated, which showed well predict ability
for the prognosis of LUAD patients. Future studies are required to confirm the association
between the hub survival genes and mitophagy and LUAD prognosis.
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TCGA. Each column represented individual patients. The upper barplot showed the number of
mutations per Mb, and the mutation rate of each gene was listed on the left. Table S1. The incidence
rate of CNVs of mitophagy genes in TCGA-LUAD cohort. Table S2. The incidence rate of mutations
of mitophagy genes in TCGA-LUAD cohort. Table S3. The DEGs identified between mitophagy
groups in TCGA-LUAD training cohort. Table S4. Survival-related DEGs in TCGA-LUAD training
cohort. Table S5. The coefficients of each survival-related DEG by LASSO analysis.
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