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Simple Summary: The poor tumor characterization and the lack of prognostic biomarkers hinder
the efficacy and the personalization of treatments for Sacral Chordomas (SC), for which Carbon
Ion Radiotherapy (CIRT) is one of the most promising therapeutic options. The aim of this work
is to apply, for the first time, a dosiomics approach to biological dose and dose-averaged Linear
Energy Transfer (LETd) maps, towards the identification of possible prognostic factors and the
future integration of decision supportive tools in CIRT workflows. We conducted a time-to-event
analysis on a pool of 50 SC patients, investigating the performances of regularized Cox models
(r-Cox) and survival Support Vector Machines (s-SVM) in predicting Local Recurrence (LR). LETd

distributions confirmed their important role for patient stratification into high/low-risk groups for
recurrencies in high-dose regions, showing a potential as a possible source of prognostic factors for
CIRT applied to SC.

Abstract: Carbon Ion Radiotherapy (CIRT) is one of the most promising therapeutic options to reduce
Local Recurrence (LR) in Sacral Chordomas (SC). The aim of this work is to compare the performances
of survival models fed with dosiomics features and conventional DVH metrics extracted from relative
biological effectiveness (RBE)-weighted dose (DRBE) and dose-averaged Linear Energy Transfer
(LETd) maps, towards the identification of possible prognostic factors for LR in SC patients treated
with CIRT. This retrospective study included 50 patients affected by SC with a focus on patients
that presented a relapse in a high-dose region. Survival models were built to predict both LR and
High-Dose Local Recurrencies (HD-LR). The models were evaluated through Harrell Concordance
Index (C-index) and patients were stratified into high/low-risk groups. Local Recurrence-free
Kaplan–Meier curves were estimated and evaluated through log-rank tests. The model with highest
performance (median(interquartile-range) C-index of 0.86 (0.22)) was built on features extracted
from LETd maps, with DRBE models showing promising but weaker results (C-index of 0.83 (0.21),
0.80 (0.21)). Although the study should be extended to a wider patient population, LETd maps
show potential as a prognostic factor for SC HD-LR in CIRT, and dosiomics appears to be the most
promising approach against more conventional methods (e.g., DVH-based).
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1. Introduction

Sacral Chordoma (SC) is a rare, locally aggressive and slow growing malignant tumor
that develops at the level of sacrococcygeal region, in close proximity to different organs
at risk (OARs, e.g., neurovascular structures connecting to the digestive and reproductive
systems). This complex scenario makes the macroscopic surgical resection the most com-
mon approach to treat SC, while concurrently being a very delicate and not always possible
choice (surgery-unfit patients) that may lead to motor deficits and bowel dysfunction [1].
Therefore, SC treatment typically involves a partial surgical resection followed by adjuvant
radiotherapy; however, SC is one of the most challenging tumors to treat because of its
critical anatomical location, high tendency to recur, and its recognized resistance to the
effects of chemotherapy and radiation [2–6]. Given these limitations, Carbon Ion Radio-
therapy (CIRT) has been proposed as a promising alternative for SC treatment, thanks to
its high geometrical selectivity and relative biological effectiveness (RBE) with respect to
photon radiotherapy (RT), allowing an improved accuracy in the dose delivery and sharper
dose gradients [7,8]. Nonetheless, the tendency to recur remains high: given the insidious
location of SC, the treatment planning and optimization phase is the most challenging,
with the prescribed dose not always being delivered to the Clinical Target Volume (CTV)
because of stringent dose constraints on OARs. Moreover, the poor tumor characterization
and the lack of prognostic biomarkers do not allow improving the treatment outcome [2].

Different approaches have been proposed for the identification of effective signatures
and biomarkers that would efficiently help in patient stratification and characterization
of tumors, towards a personalized treatment [9–11]. Beside patient stratification based on
clinical features, the radiomics approach is spreading and gaining interest in the medical
field. Radiomics is a machine-learning based method to extract quantitative features from
medical images (typically describing shape, intensity, and texture) that can be used to
build predictive and prognostic models [12–15]. Dosiomics represents an extension of
radiomics applied to three-dimensional RT dose distributions aiming at extracting useful
features for predicting RT treatment outcome [16–18]. Indeed, the identification of posi-
tive/negative prognostic factors is still an open challenge, especially for complex tumors
such as chordomas treated with CIRT. Recently, a dosiomics study applied to skull base
chordomas treated with CIRT showed how features describing dose heterogeneity were
strongly associated with an adverse outcome [19]. In addition, the dose-averaged Linear
Energy Transfer (LETd) of carbon ions has been found to correlate with local recurrence
in chondrosarcomas [20] and SC [21], increasing interest towards a combined RBE- and
LET-based treatment optimization. In this context, dosiomics could be useful to identify
possible quantitative prognostic factors, and eventually predict local control to support
the treatment planning and optimization. In this regard, the treatment planning phase
is still not standardized worldwide, with European facilities exploiting the local effect
model version I (LEM I) as the RBE model, while Japanese facilities use the modified
microdosimetric kinetic model (mMKM) [22,23]. These models differently correlate with
LETd and may offer different performances in terms of local control prediction [21].

Finally, several studies demonstrated that adopting dosiomics features, with their
three-dimensional radiation dose information, substantially improve the prediction of
RT-induced effects compared with models based on more conventional parameters such as
dosimetric parameters derived from the Dose–Volume–Histogram (DVH) [17,24–26].

This study focuses on dosiomics, investigating the role of biological dose maps (i.e.,
LEM I- and mMKM-based doses, DLEM and DMKM) and LETd distributions as sources
of prognostic factors, towards a more efficient and personalized treatment optimization
for CIRT applied to SC. To the authors’ best knowledge, no dosiomics study has been
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conducted on biological dose and LETd maps in SC; this study wants to enlarge and inspect
the fields of applicability of dosiomics, towards the identification of prognostic factors for
SC treated with CIRT.

2. Materials and Methods
2.1. Data Collection and Elaboration

Fifty-two patients affected by non-metastatic SC and consecutively treated with
CIRT at the National Centre for Oncological Hadrontherapy (CNAO) between 2013 and
2018 were retrospectively analyzed. All the patients were treated with CIRT after macro-
scopical surgical resection or biopsy alone. None of these received adjuvant conventional
RT. Inclusion criteria were: (i) a prescription dose of 70.4 Gy (RBE) or 73.6 Gy (RBE) de-
livered in 16 fractions, following a sequential boost scheme with target shrinkage after
9 fractions; (ii) any surgical resection degree (macroscopic complete or only biopsy); (iii) a
12-months minimum follow-up; (iv) the availability of complete clinical and dosimetric
data. Detailed characteristics of the patient cohort are reported in supplementary materials
Section S1.

Treatment plans were optimized with the Syngo RT planning (Siemens AG Healthcare,
Erlangen, Germany) treatment planning system (TPS) based on the LEM I radiobiological
model, with α/β = 2 Gy. The dose was prescribed to the Low-Dose Clinical Target Volume
(CTVLD) for the first 9 fractions, and on the High-Dose CTV (CTVHD) for the following 7.

Starting from the 3D physical dose distribution maps, DLEM and DMKM biological dose
maps were calculated using LEM-I and mMKM models, respectively. In addition, maps
of LET distribution were calculated for each patient. All the calculations were performed
using FRoG, a GPU-based dose evaluation engine [27]. DLEM and DMKM maps from the
9 and 7 fractions were summed to obtain the overall biological doses, while LET maps
were combined into a dose-averaged LET map (LETd) following the approach suggested
by Matsumoto et al. [20].

CTVHD contours, manually delineated on treatment planning CT scan, were collected
as volume of interest (VOI) for this work, being the target volume of the whole treatment
(9+7 fractions) [28,29].

The treatment outcome was recorded at follow-up in terms of local control (LC) and
local recurrence (LR), classifying a local disease-free survival as LC (favorable event), while
a recurrence or disease progression in the target volume (clinically assessed on radiological
imaging) as LR (adverse event). After a median follow-up time of 42.6 months, a LR was
found in 26 patients (52%, median time-to-recurrence = 29.2 months), while 24 patients
(48%) were included in the LC group (median follow-up time = 36.7 months).

Among LR patients, two radiation oncologists and a medical physicist classified the
recurrencies as “in-field”, “field-edge” or “out-of-field”, depending on the location of occur-
rence with respect to the dose coverage [21]: LR patients (26) included 2 field-edge and 24 in-
field recurrencies. Moreover, the in-field recurrencies were classified as High dose (HD-LR)
or Low-dose (LD-LR), depending on the dose coverage on the site of recurrence: HD-LR
were located in a region of acceptable dose coverage (CTVHD DLEM|95% ≥ 95% of the pre-
scribed dose), while LD-LR were placed in an underdosed region (CTVHD DLEM|95% < 95%
of the prescribed dose), respectively. In this context, 13 in field recurrencies were classified
as HD-LR, while 11 as LD-LR because of a suboptimal dose coverage of the target due to
OARs constraints [21].

The study was approved by the local Ethical Review Board and the informed consent
(CNAO OSS 24/2021) signed by all patients. The dataset was the same as that used by
Molinelli et al. [21].

2.2. Feature Extraction and Selection

A total of 107 dosiomics features (14 shape, 18 first-order and 75 texture features)
were extracted from DLEM, DMKM and LETd maps (Figure 1) using PyRadiomics (v3.0.1),
following the guidelines of the Image Biomarker Standardization Initiative [9]. The features
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were extracted in 3D from the original maps, without applying filters or normalization or
resampling. Texture features were extracted from gray level co-occurrence matrix (GLCM,
n = 24), gray level run length matrix (GLRLM, n = 16), gray level size zone matrix (GLSZM,
n = 16), gray level dependence matrix (GLDM, n = 14), and neighboring gray tone difference
matrix (NGTDM, n = 5). Details of the dosiomics features used in this study are reported in
supplementary materials Section S2.
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Figure 1. The proposed workflow. Dosimetric parameters and dosiomics features were extracted
from DLEM, DMKM and LETd maps. Mann–Whitney U test (MW) and Least Absolute Shrinkage and
Selection Operator (LASSO) were used as selection routines for dosiomics features. Survival models
based on r-Cox and s-SVM were both used to build DVH-based and dosiomics-based models for LR
and HD-LR prediction. A stratified 5-fold cross-validation was performed to evaluate the models
through C-index, Kaplan–Meier survival curves and Mann–Whitney U test.

Feature extraction was performed with a specific bin width for each map. Specifically,
the Freedman–Diaconis rule [30,31] was applied to find, for each map, the optimal bin
width for its specific distribution of values in the histogram. Therefore, separately for each
map, the median value of the optimal bin width calculated among all patients was chosen,
which was found to be 0.10, 0.25 and 0.50 for DLEM, DMKM and LETd, respectively.

Two different feature selection methods were compared and applied on dosiomics fea-
tures, to reduce data redundance and avoid overfitting (Figure 1): (i) Mann–Whitney U test,
and (ii) least absolute shrinkage and selection operator (LASSO) were used (independently)
to select the most useful features. Specifically, the Mann–Whitney U test was applied to
select statistically significant features with a p-value < 0.05 (MW-routine, [32–34]). In addi-
tion, to decrease the high dimensionality of the dosiomics features, LASSO regression, an
effective dimensionality reduction method, was applied (encapsulated in a repeated 5-fold
cross-validation routine), and the 10 best features were selected for each map (LASSO-
routine, [25,32,34,35]).

In addition to the dosiomics features, dosimetric parameters extracted from the DVH
were considered, in order to compare the performance of dosiomics models with those
obtained with more conventional parameters. Similarly to Molinelli et al. [21], D95 (i.e.,
the highest dose received by 95% of the object volume), D50, D2 and structure volume
(i.e., CTVHD) were extracted from the DLEM and DMKM maps. As suggested by Mat-
sumoto et al. [8], the dosimetric parameters extracted on LETd maps were the volume
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receiving at least 50 keV/µm (V50keV/µm), the LETd given to 1 mL of CTVHD (L1mL), the
median LETd (LETd|50%) and the structure volume. Dosimetric features did not undergo
any feature selection.

2.3. Model Building

In order to investigate and compare the prognostic power of dosiomics features
and dosimetric parameters, survival models based on (i) linear survival support vector
machine (s-SVM, scikit-survival v.0.18) and (ii) conventional Cox proportional hazard
model regularized with an elastic-net penalty (r-Cox, scikit-survival v.0.18) were considered.

Before model building, dosiomics features and dosimetric parameters were normalized
using z-score and L2-norm for s-SVM and r-Cox, respectively. Survival models were then
independently built from the selected dosiomics features (i.e., dosiomics-based models) and
the dosimetric parameters extracted from the DVH (i.e., DVH-based models) investigating
the ability to correctly discriminate patients with LC (n = 24) from those with LR (n = 26).
In addition, in agreement with Molinelli et al. [21] who preliminarily investigated the
differences between LC and HD-LR (n = 13) patients, LC vs. HD-LR survival models were
built. Indeed, Molinelli et al. [21] showed interest in investigating treatment failure in
patients with HD-LR as they presented a relapse in a high-dose region. Differently, for
patients with LD-LR, the relapse was attributable to an underdosage due to proximity
to OARs. As such, the two architectures (i.e., s-SVM and r-Cox) were both employed to
build dosiomics-based and DVH-based models aiming at assessing their performance in
predicting LR and HD-LR.

In the model building phase, the hyper-parameters were tuned through a cross-
validated (repeated 5-fold cross-validation) grid-search, by maximizing the Harrell Concor-
dance index (C-index). Specifically, the regularization parameter alpha, the rank ratio and
the optimizer were tuned for s-SVM, while the l1-ratio and the penalty factors for r-Cox
(supplementary materials Section S3, Table S2).

2.4. Model Evaluation

In order to evaluate and compare the prognostic power of the dosiomics-based and
DVH-based models, a stratified 5-fold cross-validation routine was randomly repeated
10 times, obtaining 50 different survival models for each setting (e.g., dosiomics-based
s-SVM model for LR prediction) producing 10 outcome predictions for each patient. Specif-
ically, the outcome prediction and thus the stratification of each patient into low/high
risk was obtained starting from the raw output of the model by setting the stratification
cut-off to the median value of the model’s output on the training set. Then, to evaluate the
performance of the model downstream of the repeated cross-validation, the 10 outcome
predictions of each patient were pooled together through majority-voting to obtain a single
low/high risk prediction for each patient. From the low/high-risk stratifications thus
obtained, Kaplan–Meier (KM) survival curves were estimated, investigating the usefulness
of this approach for predicting the recurrence-free survival probability.

Finally, the performance of the constructed models was quantified: (i) the median
value and the interquartile range (IQR) of the C-indices were calculated to evaluate the
performance of repeated cross-validations, (ii) Mann–Whitney U test (α = 0.05) was applied
on parameters and features between the low- and high-risk classes, defined according to
the model output, (iii) log-rank tests (α = 0.05) were performed between the Kaplan–Meier
estimated survival functions.

3. Results

The r-Cox architecture outperformed the s-SVM in predicting both outcomes (i.e., LR
and HD-LR), for both types of models (i.e., DVH-based and dosiomics-based). Therefore, in
this section the results related to r-Cox will be presented, while those obtained with s-SVM
are reported in supplementary materials Section S4 (Table S3).
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3.1. Dosiomics-Based Models Predicting Overall Recurrence

The Mann–Whitney U test (MW) was applied to select dosiomics features with statisti-
cally significant differences between LC and LR patients. Specifically, three shape features
(i.e., Elongation, Flatness and Sphericity) were found to be statistically significant (lower
values for LR patients). By definition, shape features are independent from the map content
but only depend on the volume on which they are calculated (i.e., CTVHD). Thus, since they
are the same regardless of which map we consider, they were selected by the significance
test (i.e., MW-routine) for all the maps. In addition to shape features, First-Order-Kurtosis
and First-Order-Skewness were selected for LETd, while the GLCM-Correlation for DMKM.
Differently, no significant features were found in the DLEM except for the three shape
features. The features set obtained with MW was therefore considered null for DLEM (i.e.,
n.a. in Table 1), since a shape-only set would not be representative of the performance of
DLEM map content, but instead of the CTVHD contours. The median values of the C-indices
obtained on the models built from the MW-routine were 0.71 and 0.70 for LETd and DMKM,
respectively (Table 1, top-left). Statistically significant differences were also found in fea-
tures between low- and high-risk patients as stratified downstream of the r-Cox survival
model for LETd and DMKM (supplementary materials Section S5, Figure S1). However, no
significant differences emerged between the low- and high-risk Kaplan–Meier curves, with
p-values of 0.0937 (LETd) and 0.1826 (DMKM) (Figure S3). For results related to models built
including shape features only, please refer to supplementary materials Section S6.

Table 1. C-indices corresponding to the r-Cox models with different settings. Results are shown in
terms of median/IQR. Best values for each map are highlighted with the symbol *.

Dosiomics-Based DVH-Based

Selection LETd DLEM DMKM LETd DLEM DMKM

LC vs. LR
MW 0.71/0.19 n.a. 0.70/0.19

0.58/0.29 0.45/0.12 0.45/0.17LASSO 0.71/0.18 0.70/0.18 0.69/0.15

LC vs.
HD-LR

MW 0.80/0.21 0.80/0.22 0.76/0.32
0.61/0.18 0.65/0.38 0.64/0.39LASSO 0.86/0.22 * 0.83/0.22 * 0.80/0.21 *

Concerning LASSO feature selection, the 10 best features were selected for each
map (supplementary material, Figure S2). Among the survival models built from these
feature sets, the LETd map achieved the highest C-index (0.71), against DLEM and DMKM
(0.70 and 0.69, respectively, Table 1, top-left). However, only these two maps resulted
in a significant patient stratification on Kaplan–Meier curves: the p-values were 0.0553,
0.0201 and 0.0111 for LETd, DLEM and DMKM, respectively. Figure 2 shows standardized
dosiomics features between patients at low- (blue) or high-risk (red) of developing a LR
are reported for LETd, DLEM, DMKM models. Specifically, stratifications obtained from
all three maps showed that high risk of LR was associated with lower values of shape
Elongation, Flatness, and Sphericity. In addition, from the stratification obtained from the
LETd (Figure 2, top), high-risk patients were associated with lower values of first-order
Kurtosis, Skewness and Minimum. Finally, from the stratification obtained with DLEM,
higher values of GLCM Correlation and MCC (i.e., Maximal Correlation Coefficient) were
associated with high-risk of LR (Figure 2, middle). Kaplan–Meier survival curves estimated
for LETd, DLEM and DMKM from this stratification are reported in Figure 3.

3.2. Dosiomics-Based Models Predicting in-Field Recurrence

When investigating the prognostic power in differentiating LC from HD-LR patients,
the MW selection routine allowed the identification of 5, 4 and 10 significant features
in LETd, DLEM and DMKM, respectively, and, among these, only one shape feature was
included (i.e., Elongation) in all the sets (supplementary materials, Figure S6 top-row).
The median C-index values were 0.80 (LETd), 0.80 (DLEM) and 0.76 (DMKM). However,
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when feature differences between the risk groups as stratified by the survival model were
investigated, except for shape Elongation, no significant differences were found in any map
(supplementary materials, Figure S6 bottom-row). The survival curves analyses, instead,
showed a significant difference between the two stratified groups for LETd (p = 0.0060) and
DLEM (p = 0.0174) but not for DMKM (p = 0.1076, supplementary materials Figure S7).
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With the LASSO feature selection, the 10 best features for predicting HD-LR were
selected for each map (supplementary materials, Figure S8) and the analyses showed that
these LASSO-derived sets achieved peak performance for all maps, yielding a median
C-index of 0.86, 0.83 and 0.80 for LETd, DLEM and DMKM, respectively. Statistically sig-
nificant differences were also found in features between low- and high-risk patients as
stratified downstream of the survival model for all the maps, but, unlike LETd, in DLEM and
DMKM these were only shape features (Figure 4). Specifically, from the LETd distribution,
statistically significant differences between the two classes of estimated risk were found
for the first-order features Median, Mean, Root Mean Squared, 10Percentile and Minimum.
The first three were also statistically different in the two classes of treatment outcome in
input to the model (LC and HD-LR, supplementary material Figure S8, top), while the
10Percentile and Minimum, despite showing the same trend, became significant only down-
stream of the survival model (Figure 4, top). In addition, also the survival curves achieved
peak performance, showing significant differences in estimated probabilities between the
two risk groups, with p-values of 0.0009, 0.0075 and 0.0072 for LETd, DLEM and DMKM
(Figure 5).
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Figure 3. Kaplan–Meier survival curves for patients at high-(red) and low-risk (blue) of an LR
as stratified by r-Cox using LETd (left) DLEM (middle), DMKM (right) features selected by LASSO.
Shaded areas show curves confidence intervals and the p-values obtained from the comparison
between high- and low- risk patients are reported in the legend. Censored events are highlighted
with the symbol ‘+’. Below the plot, the number of patients belonging to each risk group at specific
time points (months) is reported.

3.3. DVH-Based Models

In case of LC vs. LR, the DVH-based models trained with dosimetric parameters
(supplementary materials, Figure S4) achieved lower performance in terms of both C-index
(Table 1, top-right) and survival curves separation (with p-values always above the signifi-
cance threshold, supplementary materials, Figure S5) than dosiomics models. In particular,
the highest C-index was obtained with LETd reaching a maximum of 0.58 (0.45 was instead
obtained with both DLEM and DMKM).

Similarly, even in the case of HD-LR prediction, the dosimetric parameters employed
to build the DVH-based models (supplementary materials, Figure S9) achieved a worst
performance than dosiomics models, with C-indices of 0.61 (LETd), 0.65 (DLEM) and
0.64 (DMKM). Kaplan–Meier curves for all maps also showed no statistically significant
differences in recurrence-free survival probabilities between low- and high-risk patients
(supplementary materials, Figure S10).
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Figure 4. Standardized dosiomics features (LASSO-routine, LETd, DLEM, DMKM from top to bottom)
as stratified by r-Cox according to the risk (low-risk in blue, high-risk in red) of HD-LR. Features
highlighted in bold showed statistically significant differences between the two classes (Mann–
Whitney U test (α = 0.05)) and the obtained p-values are reported in brackets. Each label in the
boxplot is structured as feature type (i.e., ‘shape’ for shape features, ‘firstorder’ for first order features
and matrix name (e.g., ‘glcm’) for texture features) followed by the specific feature name according to
PyRadiomics convention. Refer to supplementary materials Section S2 for more details.
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Figure 5. Kaplan–Meier survival curves for patients at high-(red) and low-risk (blue) of HD-LR
as stratified by r-Cox using LETd (left) DLEM (middle), DMKM (right) features selected by LASSO.
Shaded areas show curves confidence intervals and the p-values obtained from the comparison
between high- and low-risk patients are reported in the legend. Censored events are highlighted with
the symbol ‘+’. Below the plot, the number of patients belonging to each risk group at specific time
points (months) is reported.

4. Discussion

With this work we aimed at training two survival models (i.e., r-Cox and s-SVM)
with dosiomics features and DVH-based parameters extracted from RBE-weighted dose
(i.e., DLEM and DMKM) and LETd maps, with the final goal of predicting LR for patients
affected by SC and treated with CIRT, stratifying them in high- and low-risk groups. The
models, tuned through a repeated 5-fold cross-validation, were evaluated through C-index,
log-rank test on KM curves and MW test downstream of the stratification. In particular, we
investigated those cases affected by local relapses in a region of high dose (i.e., HD-LR), to
exploit potential prognostic factors for a better characterization of the treatment in those
regions. Low-dose relapsed cases (LD-LR) instead were not singularly investigated because
the region of interest did not receive the necessary prescribed dose because of constraints
on OARs, thus affecting the treatment outcome [21].

In general, r-Cox models trained with dosiomics features to predict HD-LR always
resulted in an improved performance with respect to those predicting LR. This could be
related to the fact that the sub-optimal dose distribution in LD-LR patients may have intro-
duced a bias in the LR class in which they were included (LR = HD-LR + LD-LR), hindering
the actual association between prognostic characteristics present in dose distributions and
the probability of LR.

4.1. Dosiomics-Based Models Predicting Overall Recurrence

Elongation, Sphericity and Flatness were selected both from MW- and LASSO-routine
for LC vs. LR patients, suggesting that the shape of the CTVHD was significantly different in
the two groups, with a more irregular and flatter shape in LR patients. This is in accordance
with most of literature studies that present the volume and shape of the lesion to be some
of the most relevant negative prognostic factors [7,36,37].

In addition to these common features, MW-routine highlighted first-order Skewness
and Kurtosis on LETd maps as relevant and statistically different features between LC
and LR. This observation suggests that the LC group described a distribution of LETd
values concentrated towards a spike close to the mean value and with a longer tail on
high LETd values, while the distribution was wider and values were more spread along
the tails in the case of LR patients. These two features were selected also by the LASSO-
routine and kept their significance also in the high/low-risk stratification, suggesting a
possible role in risk assessment. Specifically, these results seem to suggest that, although
LETd values are on average comparable inside the CTVHD (i.e., non-significant differences
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in mean/median/maximum values), a more heterogeneous distribution of LETd values
within the target is associated with a higher probability of a local treatment failure (i.e.,
LR). However, these considerations should be evaluated in light of the small dataset under
analysis (i.e., 50 patients), which is not completely representative of the population, and
does not allow us to draw firm conclusions. In this context, survival curves were not
statistically significant (Figure 2, left), weakening the overall performance of LETd maps
for LR prediction. Similarly, the DMKM-based model built with significative features only
could not significantly stratify the two risk groups (Figure 2, right), possibly because of the
low number of features considered.

On the other hand, the results obtained with the DLEM-based model built with LASSO-
selected features showed patients at high-risk of LR to be associated with high values of
GLCM Correlation and MCC, both indicating the presence of periodic patterns within the
dose map. The values of these features, however, were not statistically different between
the two classes in input to the model (i.e., LC ad LR, supplementary materials, Figure S2,
middle), becoming significant only when compared between the two risk output classes.
Since the estimated risk classes were statistically different in terms of recurrence-free
survival probability (p = 0.0201, Figure 2), this can suggest a potential prognostic role for
these texture features, which from our analyses, can be considered as the most promising
in the LR prediction. Indeed, despite all dosiomics models showing comparable results
among them in terms of C-index (i.e., C-indices were, 0.71, 0.70, 0.69 for LETd, DLEM, DMKM,
respectively), only DLEM- and DMKM-based models described significantly different KM
curves (p-values were 0.02 and 0.01, respectively), with DLEM maps being the only showing
texture features with relevant roles. This, however, seems a reasonable result since all
patients were treated with a plan optimized with a LEM-I RBE model.

4.2. Dosiomics-Based Models Predicting in-Field Recurrence

The promising results obtained for LR analyses were outperformed by the models
predicting HD-LR, both in terms of median C-index, with the peak values of 0.86, 0.83 and
0.80 for LETd-, DLEM- and DMKM-based models, and in terms of KM curves.

In this case, MW-routine selected multiple features including shape, first-order, and
texture (supplementary materials, Figure S6, top). Considering this restricted dataset
(i.e., LC vs. HD-LR), Elongation was the only significant shape feature between the two
groups, indicating a more irregular and non-spherical shape of the lesion in HD-LR patients.
This feature was always selected also from LASSO-routine, and significantly separated
downstream patient stratification. This confirms what was also found in LC vs. LR analyses
and is in agreement with most literature studies reporting tumor volume and shape as
some of the most relevant negative prognostic factors [7,36,37].

Concerning LETd maps, LC patients were characterized by a significative higher Mean,
Median, Root Mean Squared and 90Percentile (supplementary materials, Figure S6, top-
left), along with the findings by Molinelli et al. [21] who recognized a significantly lower
median LETd in HD-LR patients.

Texture features were instead selected in DLEM and DMKM biological maps: GLDM
Gray Level Variance, along with the first-order Mean Absolute Deviation and Variance in
DLEM (supplementary materials, Figure S6, top-center), while nine significant first-order
and texture features in DMKM maps (supplementary materials, Figure S6, top-right). How-
ever, comparing each map, of the MW-selected features downstream patient stratification in
high- and low-risk, none were shown to be statistically significant except shape Elongation,
suggesting that the patient stratification in MW-based models was mainly guided by shape
features, while first-order and texture ones did not have a strong impact. In support of this
consideration and to better quantify the impact of shape features on the performance, we
decided to add in supplementary materials Section S6 (Figures S11 and S12) evaluations on
a model built with only shape features.

In line with this, LASSO did not select any other statistically significant feature except
for Elongation in DLEM and DMKM maps, while all the significant features (i.e., Median,
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Mean and Root Mean Squared, supplementary materials Figure S8) were picked in the case
of LETd maps. In this context, the LETd-based model reached the peak performance, with
a median C-index of 0.86 and KM curves highly separated (p = 0.0009). These significant
features were found to be statistically significant even downstream of the stratification
(Figure 4, top). In addition, patients at high-risk of HD-LR were significantly associated
also with lower values of 10Percentile and Minimum (Figure 4, top).

Overall, the excellent stratification in low/high-risk obtained with the LASSO-selected
features set leads to the conclusion that lower values of LETd within the CTVHD are highly
predictive of an in-field local recurrence (i.e., HD-LR).

In contrast, similarly to what was achieved for MW-based models for HD-LR, the
performance of DLEM and DMKM, although optimal, were mainly driven by the information
of shape features (Figure 4), weakening the actual contribution of the maps content itself.
While in the case of LR the DLEM was found to be the most predictive, this decreased its
prognostic abilities in discriminating LC patients from those with HD-LR in favor of LETd
map, which emerged to be the most informative one for predicting HD-LR.

Overall, we assume that the ability of the DLEM map in predicting LR was probably
influenced by the presence of patients with a sub-optimal LEM-based plan (i.e., under-
dosage of the CTVHD on 13 out of 26 relapsed patients). Nevertheless, results in HD-LR (i.e.,
patients that received an optimal dose coverage) do not include any bias due to the presence
of recurrencies in low-dose regions and confirmed that LETd maps can be considered as a
promising source of prognostic factors.

4.3. DVH-Based Models and General Considerations

Finally, DVH-based models could not efficiently discriminate the two groups of pa-
tients, with a best-case C-index close to randomness for LETd-, DLEM- DMKM-based models
and none of the KM curves being significantly discerned (p-value > 0.05), thus attesting
the potential of a dosiomics analysis for LR and HD-LR prediction. Indeed, both the
promising C-indexes and the significative separation of KM curves in most cases support
the improved performance of the dosiomics features against conventional DVH metrics
in accordance with the literature [17,24–26], with LETd-based model being the most pre-
dictive. This also supports the generalization of our procedure as LETd does not strongly
depend on radiobiological models adopted at different facilities, as for biological doses.
In addition, the most predictive LETd features were those of the first-order type: this
further strengthens the generalization of these potential predictors that do not depend
on the choice of the discretization parameters, resulting more robust and repeatable than
texture features [38–40]. Nonetheless, the limited dataset available and the lack of a test
set represent two major limitations of this study and hinder its generalization. In addi-
tion, the limited dataset employed for this work did not allow a detailed analysis on the
reproducibility of features, the segmentation routine and other factors that influence the
extraction of dosiomics features [38–41]. Moreover, considering the slow-growth progres-
sion of chordomas, the follow-up time of the patient cohort is relatively short: on average
it is shorter in the control group (i.e., 37 months, supplementary materials Table S1) than
in the relapsed group (i.e., 49 months), probably affecting the results. However, since
the median time-to-recurrence (i.e., 29 months) was below the median follow-up times of
both the groups, the follow-up time is probably appropriate and sufficient for the patient
cohort under investigation. Nevertheless, the possibility of extending these analyses to
longer follow-up times would allow for more robust and generalizable results.Despite
these limitations, we believe that these results are promising and put forward to further
studies on the application of dosiomics to CIRT.

5. Conclusions

LETd, DLEM and DMKM maps were, for the first time, integrated into a dosiomics-based
time-to-event analysis to predict the risk of developing recurrence in SCs treated with CIRT.
DLEM maps showed to be the most promising source of possible prognostic factors in the
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case of local recurrence (LR), but the presence of recurrencies due to an underdosage of the
target could have affected the results. Nevertheless, the analysis performed on a subset of
patients (i.e., HD-LR) were instead more representative, with LETd maps leading to the best
performance. Although further analysis is needed, the dosiomics features extracted from
the maps, and in particular from LETd, showed very promising results pushing towards
the identification of possible prognostic factors for SC treated with CIRT.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15010033/s1, Figure S1: Z-standardized features as stratified
according to the risk of showing a LR. The models are built with dosiomics features from LETd and
DMKM, after MW feature selection; Figure S2: Z-standardized features as stratified according to the
of showing a LR. The models are built with dosiomics features from LETd, DLEM and DMKM maps
after LASSO feature selection; Figure S3: Kaplan-Meier survival curves for patients at high- and
low-risk of a LR as stratified by r-Cox using LETd and DMKM features after MW selection; Figure
S4: Z-standardized features as stratified according to the risk of showing a LR. The models are
built with dosimetric features from LETd, DLEM and DMKM maps; Figure S5: Kaplan-Meier survival
curves for patients at high- and low-risk of a LR as stratified by r-Cox using LETd, DLEM and DMKM
dosimetric features; Figure S6: Z-standardized features as stratified according to the real class and
the risk of showing a HD-LR. The models are built with dosiomics features from LETd, DLEM and
DMKM maps, after MW feature selection; Figure S7: Kaplan-Meier survival curves for patients at
high- and low-risk of a HD-LR as stratified by r-Cox using LETd, DLEM and DMKM features after MW
selection; Figure S8: Z-standardized features as stratified according to the risk of showing HD-LR.
The models are built with features from LETd, DLEM and DMKM maps, after LASSO feature selection;
Figure S9: Z-standardized features as stratified according to the of showing a HD-LR. The models
are built with dosimetric features from LETd, DLEM and DMKM maps; Figure S10: Kaplan-Meier
survival curves for patients at high- and low-risk of a HD-LR as stratified by r-Cox using LETd, DLEM
and DMKM dosimetric features. Figure S11: Z-standardized features as stratified according to the
risk of showing a LR or HD-LR. The models are built with LASSO-selected shape features. Figure
S12: Kaplan-Meier survival curves for patients at high- and low-risk of a LR or HD-LR as stratified
by r-Cox using LASSO-selected shape features; Table S1: Relevant clinical information on relapsed
and control patients cohorts; Table S2: Possible values for each Hyperparameter during grid-search
optimization; Table S3: Results of the s-SVM models with different settings.
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