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Simple Summary: Basal cell carcinoma is the most common human cancer. Most BCCs are low-risk
and are easily treated; however, 1–2% are aggressive and highly destructive to the surrounding
skin, called advanced BCC. It was discovered that this subtype has a different immune profile than
routine BCC, and they contain a special type of stem cell population that helps them grow and
spread. There is currently no reliable laboratory model for advanced BCC, making it hard to further
study it and find new treatments. For these reasons, this project was conducted using genomic data
from 11,000 tumours coming from 33 non-BCC cancer types. Using computational biology, we have
compared the immune cell makeup of the tumour microenvironments to determine the top three
most similar cancers, which we will call BCC “relatives”. We will examine how these “relatives”
develop and grow, as well as current existing treatments and their response to such treatments.

Abstract: Basal cell carcinoma (BCC) is the most common form of skin cancer, contributing to nearly
a third of new cancer cases in Western countries. Most BCCs are considered low risk “routine”
lesions that can either be excised through surgery or treated with chemotherapeutic agents. However,
around 1–2% of BCC cases are locally aggressive, present a high risk of metastasis, and often develop
chemoresistance, termed advanced BCC. There currently exists no animal model or cell line that
can recapitulate advanced BCC, let alone intermediate-risk and high-risk early BCC. We previously
found that aggressive BCC tumours presented a Th2 cytokine inflammation profile, mesenchymal
stem cell properties, and macrophage-induced tumoral inflammation. In this study, we aimed to
identify potential BCC “relatives” among solid-organ malignancies who present similar immune
cell proportions in their microenvironment compositions. Using immune cell type deconvolution by
CIBERSORTx, and cell type enrichment by xCell, we determined three cancers with the most similar
tumour microenvironments as compared to BCC. Specifically, chromophobe renal cell carcinoma,
sarcoma, and skin cutaneous melanoma presented significance in multiple cell types, namely in
CD4+ T lymphocytes, gammadelta T lymphocytes, and NK cell populations. Consequently, further
literature analysis was conducted to understand similarities between BCC and its “relatives”, as well
as investigating novel treatment targets. By identifying cancers most like BCC, we hope to propose
prospective druggable pathways, as well as to gain insight on developing a reliable animal or cell
line model to represent advanced BCC.

Keywords: basal cell carcinoma; BCC; genomics; computational biology; tumour microenvironment;
CIBERSORT; xCell; TCGA; The Cancer Genome Atlas
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1. Introduction

Basal cell carcinoma (BCC) is the most common type of skin cancer and accounts for
roughly 80% of all skin cancers, with increased risk in older, fair-skinned individuals [1,2].
In particular, the risk of Caucasians being diagnosed with BCC reaches up to 40% [3]. Major
risk factors include age, UV exposure (particularly UVB), and immunosuppression. Current
understanding of BCC progression and tumorigenesis revolves around the Sonic hedgehog
(Shh) pathway, an important regulator of cell differentiation and tumorigenesis [4,5]. Its
constitutive activation, specifically through PTCH1 inactivation [6], has been shown to be
crucial for both sporadic and familial forms of BCC [7]. Small molecule inhibitors such
as vismodegib and sonidegib, which target SMO (Smoothened) in the Shh pathway, have
been FDA-approved for treatment of advanced BCC [8]; however, they are limited by their
severe side effects and failure of complete patient response [9].

Although most BCCs are considered “routine”, or low-risk, and are simple to treat,
around 1–2% of BCC cases are locally aggressive and present a high risk of metastasis [10].
These advanced cases are often resistant to the targeted therapies mentioned above. Cur-
rently, there exists no reliable lab models in either animal or cell lines to study advanced
BCC, owing to their lack of important features in experimental models [11], or their dif-
ficulty of manipulation [12], respectively. We recently determined that, in comparison to
non-advanced BCC, aggressive BCC tumours presented an inflammatory cytokine profile
that shifted to a Th2 cytokine inflammation profile, which is thought to be more tumour
permissive [13] and may include pathways such as Toll-like receptor, PDGFR, and extra-
cellular matrix remodeling [14]. Furthermore, advanced BCC had a higher enrichment for
mesenchymal stem cells [13].

Given the lack of reliable experimental models for BCC, especially more aggressive,
higher risk, or advanced disease, we aimed to use our findings related to tumour microen-
vironment to identify other cancers/cancer subtypes most resembling BCC. Hence, this
manuscript aims to identify non-BCC cancers that present comparable tumour microenviron-
ment features to that of BCC (“relatives”), in hopes to contribute to both the development of a
reliable model for advanced BCC and novel potential therapeutic avenues.

2. Materials and Methods
2.1. Data Acquisition and RNA-Seq Processing

Whole-genome RNA-sequencing data for 75 BCC samples was obtained and processed
as previously described [13,14]. Non-BCC whole-genome RNA-sequencing data was
extracted from all 33 cancer types in The Cancer Genome Atlas consortium, and processed
as similarly described [15].

2.2. Cell-Type Enumeration Using RNA Deconvolution

To identify the closest BCC “relatives”, RNA deconvolution in CIBERSORTx was
performed, using the standard LM22 leukocyte signature matrix obtained from 22 pure
immune cell lines [16] and 100 permutations, to estimate the relative number of each cell
subtype. The following analyses were performed: all B cells, all CD4+ T cells, CD8+ T cells,
Treg cells, all NK T cells, T γδ (gamma delta) cells, total lymphocytes, and total macrophages,
as previously performed [17]. Primary analyses were conducted using CIBERSORTx’s
standard relative score. xCell analysis was also performed to determine cell type abundance
scores using xCell’s standard 64 cell type signatures [18]. To consider relatedness of cancers,
we tested, for a specific feature, whether the distributions of scores for that feature were
similar between BCC and the non-BCC malignancy. We considered non-rejection of the
null hypothesis using asymptotic two-sample Kolmogorov–Smirnov test to compare and
validate significant distributions. The top three (if available) cancers with the highest
p-values over 0.05 were considered as a potential BCC “relative”. CIBERSORTx and xCell
scores were separately Bonferroni-corrected for multiple hypothesis testing. Figures were
generated using Graphpad Prism (violin plots) and Rtsne R package (tSNE plot).
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3. Results

We compared the microenvironment of 75 BCC samples to over 11,000 tumours
across 33 cancer subtypes from the TGCA using xCell (Figure 1) and CIBERSORTx
(Figure 2), with immune cell types selected according to previous findings [13]. Us-
ing these guiding cell type populations, we identified the top three most recurring
cancers. Chromophobe renal cell carcinoma (KICH) presented similar distributions in
its scores for CD4+ cells (p = 0.17), macrophages (p = 0.4904), Th2 cells (p = 0.151), and
Tgammadelta cells (p = 0.5525). Sarcoma (SARC) showed significant p-values in its total
lymphocyte (p = 0.2290), NK cells (p = 0.1979), Tgammadelta cells (p = 0.07291), and
CD4+ (p = 0.6344) cell populations. Bladder urothelial carcinoma (BLCA) demonstrated
significant distributions in its NK (p = 0.1718), CD4+ (p = 0.2715), and macrophage
(p = 0.3333) cell scores. Cholangiocarcinoma (CHOL) also showed high significance in
its Tgammadelta (p = 0.6099), NK (p = 0.05944), and CD4+ (p = 0.6959) cell populations
compared to BCC. Lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) presented
moderately significant p-values in scores for macrophages (p = 0.08976), Tgammadelta
(p = 0.08334), and NK cells (p = 0.1221). Glioblastoma multiforme (GBM) also demon-
strated high significance in its CD8+ (p = 0.2741), B cells (p = 0.2374), and Tgammadelta
(p = 0.244) cell populations to BCC. Kidney renal clear cell carcinoma (KIRC) showed sim-
ilar distributions for its NK (p = 0.2311), Th2 (p = 0.1368), and Tgammadelta (p = 0.2002)
cell populations. Skin cutaneous melanoma (SKCM) had significantly similar cell popu-
lations of MSCs (p = 0.3872), NK cells (p = 0.05057), and CD4+ cells (p = 0.5715) to BCC.
Finally, thyroid carcinoma (THCA) showed significance in its Tgammadelta (p = 0.7752),
CD4+ (p = 0.4649), and NK (p = 0.0512) cell populations compared to BCC.

Cancers 2023, 15, x  3 of 11 
 

 

testing. Figures were generated using Graphpad Prism (violin plots) and Rtsne R package 
(tSNE plot). 

3. Results 
We compared the microenvironment of 75 BCC samples to over 11,000 tumours 

across 33 cancer subtypes from the TGCA using xCell (Figure 1) and CIBERSORTx (Figure 
2), with immune cell types selected according to previous findings [13]. Using these guid-
ing cell type populations, we identified the top three most recurring cancers. Chromo-
phobe renal cell carcinoma (KICH) presented similar distributions in its scores for CD4+ 
cells (p = 0.17), macrophages (p = 0.4904), Th2 cells (p = 0.151), and Tgammadelta cells (p = 
0.5525). Sarcoma (SARC) showed significant p-values in its total lymphocyte (p = 0.2290), 
NK cells (p = 0.1979), Tgammadelta cells (p = 0.07291), and CD4+ (p = 0.6344) cell popula-
tions. Bladder urothelial carcinoma (BLCA) demonstrated significant distributions in its 
NK (p = 0.1718), CD4+ (p = 0.2715), and macrophage (p = 0.3333) cell scores. Cholangiocar-
cinoma (CHOL) also showed high significance in its Tgammadelta (p = 0.6099), NK (p = 
0.05944), and CD4+ (p = 0.6959) cell populations compared to BCC. Lymphoid neoplasm 
diffuse large B-cell lymphoma (DLBC) presented moderately significant p-values in scores 
for macrophages (p = 0.08976), Tgammadelta (p = 0.08334), and NK cells (p = 0.1221). Gli-
oblastoma multiforme (GBM) also demonstrated high significance in its CD8+ (p = 0.2741), 
B cells (p = 0.2374), and Tgammadelta (p = 0.244) cell populations to BCC. Kidney renal 
clear cell carcinoma (KIRC) showed similar distributions for its NK (p = 0.2311), Th2 (p = 
0.1368), and Tgammadelta (p = 0.2002) cell populations. Skin cutaneous melanoma 
(SKCM) had significantly similar cell populations of MSCs (p = 0.3872), NK cells (p = 
0.05057), and CD4+ cells (p = 0.5715) to BCC. Finally, thyroid carcinoma (THCA) showed 
significance in its Tgammadelta (p = 0.7752), CD4+ (p = 0.4649), and NK (p = 0.0512) cell 
populations compared to BCC.  

 
Figure 1. BCC vs. BCC “relatives”: xCell. In silico cell type enrichment scores obtained using xCell, 
comparing BCC (dark red) to other BCC “relatives” (white), with statistically similar cancers de-
noted (grey), with the top three in colour (dark blue, purple, violet) with their corresponding p-
values above. Truncated violin plots of Th2 immune cytokine (a), and mesenchymal stem cells 
(MSCs) (b) are shown in order of ascending median. BCC median, 1st quartile, and 3rd quartile are 
delineated in red (where applicable). 
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Figure 1. BCC vs. BCC “relatives”: xCell. In silico cell type enrichment scores obtained using xCell,
comparing BCC (dark red) to other BCC “relatives” (white), with statistically similar cancers denoted
(grey), with the top three in colour (dark blue, purple, violet) with their corresponding p-values above.
Truncated violin plots of Th2 immune cytokine (a), and mesenchymal stem cells (MSCs) (b) are
shown in order of ascending median. BCC median, 1st quartile, and 3rd quartile are delineated in
red (where applicable).

Given that seven cancers had three similarly distributed features compared to BCC
(BLCA, CHOL, DLBC, GBM, KIRC, SKCM, THCA), we favoured one of the three potential
close relatives over the others. SKCM and BCC both originate in the skin and are UV-driven.
A summary of the top three most similar cancers by cell type population is presented in
Table 1, with an expanded version in Supplementary Table S1. Nonlinear dimensional
reduction (tSNE) was used to visualize clustering results, using a perplexity of 50, depicted
in Figure 3. Uveal melanoma (UVM) and thyroid carcinomas (THCAs) cluster in close
spatial proximity.
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Figure 2. BCC vs. BCC “relatives”: CIBERSORTx. In silico immune cell fractions obtained using
CIBERSORTx, comparing BCC (dark red) to other BCC “relatives” (white), with statistically similar
cancers denoted (grey), with the top three in colour (dark blue, purple, violet) with their correspond-
ing p-values above. Truncated violin plots of total CD8 T cells (a), T gamma delta cells (b), total
B-cells (c), total lymphocytes (d), total macrophages (e), total NK cells (f), regulatory T cells (Treg) (g),
and total CD4+ cells (h) are shown in order of ascending median. BCC median, 1st quartile, and 3rd
quartile are delineated in red (where applicable).
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Table 1. Summary of the top three significant (if available) closest BCC “relatives” by cell type.

Cell Type BCC Score (Median),
Q1, Q3

BCC “Relatives”
Score (Median) Q1 Q3 p-Value

Th2 4.188 × 10−18, 0,
0.01980129

PRAD = 1.07 × 10−17 0 0.01706565 0.6102
KICH = 0.001056705 0 0.007381045 0.151

KIRC = 2.23 × 10−17 0 0.03051409 0.1368

MSC 0.188433346, 0.08336783,
0.28205374 SKCM = 0.16096867 0.07202425 0.25446426 0.3872

Total CD8+
0.00445073, 0,
0.043739228

GBM = 0.01048155 0 0.03021879 0.2741
LGG = 0 0 0.01996548 0.05719

Tgd 0, 0, 0.008231755
THCA = 0 0 0.008063912 0.7752
CHOL = 0 0 0.01282003 0.6099
LIHC = 0 0 0.006720286 0.5979

B-cells
0.04857795, 0.020757612,

0.086950544
THYM = 0.055183104 0.03108108 0.08455359 0.3715

GBM = 0.04815724 0.028318876 0.075344991 0.2374

Total Lymphocytes 0.39140159, 0.3132104,
0.4688854 SARC = 0.416998654 0.3124302 0.5153758 0.2290

Macrophages 0.25033106, 0.1763854,
0.3784326

ESCA = 0.2331247 0.1675734 0.3352133 0.5397
KICH = 0.276729 0.1843325 0.3949821 0.4904

BLCA = 0.2590653 0.16693727 0.33762817 0.3333

Total NK
0.0325587, 0.005046464,

0.053041073

THYM = 0.02682497 0.009408674 0.049124771 0.6696
ESCA = 0.02523973 0.01152386 0.04604726 0.4214
KIRP = 0.02878749 0.01382830 0.04874396 0.3381

Tregs 0, 0, 0
ACC = 0 0 0 0.9991

LAML = 0 0 0.00315034 0.3533

Total CD4+
0.15296126, 0.1031139,

0.2082608

CHOL = 0.156189 0.1321129 0.1952696 0.6959
SARC = 0.1562586 0.1154291 0.2083701 0.6334
SKCM = 1412604 0.08728384 0.19168763 0.5715Cancers 2023, 15, x  6 of 11 
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4. Discussion

Similar to advanced BCC, kidney tumours such as KICH carry a heterogeneous
microenvironment comprising both malignant and solid stromal cells, and a particularly
elevated number of macrophages, and a Th2 cytokine shift. In particular, tumour-associated
macrophages (TAMs), such as M2 macrophages, promote tumour growth through angio-
genesis, which is enhanced when Th2-associated cytokines such as IL-4 and IL-10 are
upregulated. Angiogenesis consists of the formation of new capillaries following ECM
degradation, aided by matrix metalloproteinases (MMPs) and urokinase-like plasminogen
activators (uPas) and their regulators. This process provides the tumour with oxygen,
nutrients, and a pathway into circulation to metastasize [19]. Another similarity with BCC
is that only a very low percentage of kidney chromophobe metastasizes: some studies
estimate the risk of distant spread in KICH as low as 1.3%, compared to 0.0028–0.55%
for BCC (average 0.04%) [20–22]. Thirdly, KICH differentiates itself from other kidney
tumour cancers through its high mutation rate in the TERT gene promoter, in PTEN, and in
TP53 [23]. TP53 is the second most commonly mutated gene in BCC after Sonic hedgehog
alterations such as PTCH1 loss of function [24]. Moreover, studies focusing on mutations
in the TERT promoter have been gaining much traction, with over 50% of BCC samples
harboring the genomic aberration, specifically with C > T or CC > TT changes, distinctive
for UV exposure [25–27]. BCC has the highest mutational burden of any human cancer, in
contrast to KICH which has a very low mutational burden [24,28].

Currently, there are no existing precision oncology therapies for metastatic kidney chro-
mophobe cancers due to its rarity and lack of genomic data [29]. However, it is particularly
interesting to observe how both advanced BCC and KICH show contributions from tumour-
associated macrophages (TAMs) and elevated Th1/Th2 immune cytokine scores [13,19].
Potential targeted therapies to reprogram or eliminate TAMs in KICH may also apply to
advanced BCC [19]. In the future, the relationships between large amounts of TAMs, low
metastatic rate, and mutations in TP53 and TERT promoter should be further examined.

Next on the list, sarcoma (SARC) was selected as the second BCC “relative”, specifically
regarding its total lymphocytes, Tgammadelta, NK, and CD4 cells scores. Sarcomas have
over 80 subtypes and comprise malignant tumours concerning non-epithelial connective tis-
sue [30]. Molecular findings across various types of sarcomas are quite heterogeneous [31].
For most subtypes, first-line management includes a combination of surgery and radiation
therapy, the latter either used adjuvantly and/or neoadjuvantly. Some sarcomas, such as
dermatofibrosarcoma protuberans (DFSP), have actionable targets. In the case of DFSP,
imatinib and other tyrosine kinase inhibitors can alter the overexpressed COL1A1-PDGFBB
fusion proteins resulting in constitutive activation of PDGFR signaling [32]. Unfortunately,
25–50% of sarcoma patients still develop recurrent and/or metastatic disease after the
surgery, which has prompted research to be focused on immunotherapy as a future treat-
ment, in the form of immune checkpoint inhibitors, adoptive T cell transfer, or cancer
vaccine [30].

Another common subtype of soft tissue sarcoma, myxofibrosarcoma, could be of great
interest to BCC given the peculiar fibromyxoid stroma characterizing BCC [33]. For BCC,
this stroma is believed to protect tumour cells and play a role in cancer promotion [34].
Myxofibrosarcoma tumour cells display complex karyotypes without a clear recurrent
structural variant and molecular events are still poorly understood. However, the most fre-
quent structural variation in this sarcoma is loss of chromosome arm 13q, which leads to the
loss of well-characterized tumour suppressor RB in sarcomatous cells [35]. Circumventing
dysfunctional Rb is a potentially actionable target [36].

The third “relative” from this analysis is skin cutaneous melanoma (SKCM), not
surprising given that cutaneous melanoma is also a skin cancer and shares similar risk
factors to BCC, such as ultraviolet radiation, fair skin complexion, familial history of skin
cancer, genetic susceptibility, and numbers of nevi (acquired common and atypical nevi).
Driver mutations of SKCM include mutations in BRAF, NRAS, and KIT oncogenes, and in
NF1, PTEN, and TP53 tumour suppressors, among others [37]. Some driver mutations are
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sex-specific, such as DDX3X in males [15]. The current standard of treatment is surgical
resection, followed by adjuvant treatment with immune checkpoint inhibitors (ICIs) or
targeted therapy drugs, depending on the tumour staging [38]. It has been shown that
BRAF mutations are often absent in non-melanoma skin cancers [39]; however, other less-
frequently occurring mutations may provide insight on BCC. Mutations in KIT, a known
tumour marker and proto-oncogene, accounts for about 3% of all melanomas, but are more
prevalent in melanomas on chronically sun-damaged skin [40]. There have been conflicting
results on whether c-KIT is implicated in BCC tumorigenesis, some in support [41–43], and
others proving otherwise [44,45]. Despite this, the use of tyrosine inhibitors on BCC remains
unfavourable, especially since its use in AML patients mainly caused BCC as a secondary
cancer [46]. A more promising, yet under-researched, target may be JNK. JNK signaling
is highly responsive to UV radiation and inflammatory cytokines, among others. Its
downstream effects include upregulating AP1, a JNK effector responsible for extracellular
matrix (ECM) remodeling [47]. In melanoma, JNK has been found to be implicated in
melanoma growth and progression, initiated through activation by IL-1β, whose receptors
are highly expressed on Th2 cells [48,49]. Concerning BCC, it has been reported that JNK
is a master mediator for numerous key pathways, such as Wnt, Shh, and YAP [50]. In
addition, the aforementioned involvement in the TERT promoter gene, which is mutated
in over 70% of melanoma cases, and over 50% in BCC, may be of interest as a therapeutic
target [51]. TERT mutations have been shown to be positively correlated with a higher
tumour mutational burden (TMB) value, neoantigen load, and tumour purity. Its expression
as a tumour-associated antigen has primed it to be an ideal target of immunotherapy, with
numerous studies and trials currently in development and underway [52]. As such, along
with its crucial role in melanoma resistance, more studies on JNK and TERT promoter in
BCC may uncover more information on advanced and treatment-resistant BCC.

Omics profiling has yielded important clues into tumour initiation, promotion, and
progression which resulted in development of targeted therapies [53]. For BCC, Sonic
hedgehog inhibitors that selectively inhibit SMO include vismodegib (Erivedge) [8] and
sonidegib (Odomzo) [54]. Vismodegib has been shown to lead to the recruitment of
cytotoxic T cells into the tumour microenvironment, with concurrent upregulation of type I
MHC in BCC tumour cells [55]. Treatment of SMO inhibitors leads to at least a partial
response in ~2/3 of advanced BCC patients, but >25% of patients discontinue therapy due
to frequent, hard-to-tolerate side effects such as alopecia, dysgeusia, and muscle spasms [9].
BCC tumour cells often acquire resistance to SMO inhibitors, which may result from a cell
identity switch towards a mesenchymal-stem-cell-like phenotype [56]. Despite its very
high tumour mutational burden, anti-PD-1 therapy such as cemiplimab fails in ~70% of
advanced BCC patients [57].

5. Conclusions

We have identified three potential BCC “relatives” sharing similar tumour microen-
vironment findings. We also reviewed underlying literature for current management
therapies and potential novel approaches in these three relatives which may apply to
advanced BCC patients. Kidney chromophobe particularly stood out as a promising BCC
“relative”, demonstrating strong similarities in TAM and Th2 cytokine profiles. Target-
ing the RB pathway in myxofibrosarcoma may be of interest regarding modulating the
fibromyxoid stroma of BCC, rendering it less suitable to promote BCC growth. Exploring
lesser-known contributors to melanoma, such as c-KIT and JNK, may also be of interest.
Although there still does not exist a definitive treatment for advanced BCC, new targeted
therapeutics used in other malignancies with closely related microenvironment changes
might provide novel management strategies to be studied and potentially employed in
the future.
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