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Simple Summary: In this study, we aimed to investigate the use of deep learning for classifying
whole-slide images of urine liquid-based cytology specimens into neoplastic and non-neoplastic
(negative). To do so, we used a total of 786 whole-slide images to train models using four different
approaches, and we evaluated them on 750 whole-slide images. The best model achieved good
classification performance, demonstrating the promising potential of use of such models for aiding
the screening process for urothelial carcinoma in routine clinical practices.

Abstract: Urinary cytology is a useful, essential diagnostic method in routine urological clinical
practice. Liquid-based cytology (LBC) for urothelial carcinoma screening is commonly used in
the routine clinical cytodiagnosis because of its high cellular yields. Since conventional screening
processes by cytoscreeners and cytopathologists using microscopes is limited in terms of human
resources, it is important to integrate new deep learning methods that can automatically and rapidly
diagnose a large amount of specimens without delay. The goal of this study was to investigate the use
of deep learning models for the classification of urine LBC whole-slide images (WSIs) into neoplastic
and non-neoplastic (negative). We trained deep learning models using 786 WSIs by transfer learning,
fully supervised, and weakly supervised learning approaches. We evaluated the trained models
on two test sets, one of which was representative of the clinical distribution of neoplastic cases,
with a combined total of 750 WSIs, achieving an area under the curve for diagnosis in the range of
0.984–0.990 by the best model, demonstrating the promising potential use of our model for aiding
urine cytodiagnostic processes.

Keywords: urothelial carcinoma; urine; liquid-based cytology; deep learning; cancer screening;
whole slide image

1. Introduction

For routine clinical practices, clinicians obtain urinary tract cytology specimens for
the screening of urothelial carcinoma [1,2]. Urine specimens play a critical role in the
clinical evaluation of patients who have clinical signs and symptoms (e.g., haematuria and
painful urination) suggestive of pathological changes within the urinary tract [3]. Urothelial
carcinoma is the most common malignant neoplasm detected by urine cytology. The most
common site of origin of urothelial carcinoma is bladder. According to the Global Can-
cer Statistics 2020 [4], bladder cancer is the tenth most commonly diagnosed cancer with
573,278 of new cases and 212,536 of new deaths worldwide in 2020. Most of the blad-
der cancers are urothelial in origin (approximately 90% of bladder cancers) and primary
adenocarcinoma of the bladder is rare [3,5,6]. Bladder cancer often presents insidiously.
Haematuria is the most common presentation of bladder cancer, which is typically inter-
mittent, frank, painless and at times present throughout micturition [3]. Delayed diagnosis
of urothelial carcinoma is associated with high grade muscle invasion which has the po-
tential to progress rapidly and cancer metastasis [3]. Of course, cystoscopy with a biopsy
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is the gold standard for diagnosis of urothelial carcinoma in clinical practice; however, it
is aggressive and relatively inconvenient as a follow-up monitoring approach [7]. It has
been reported that 48.6% of biopsy proven low-grade urothelial carcinomas had a urine
cytodiagnosis of atypical or neoplastic suspicious, which could conclude that existing urine
cytology screening and surveillance systems are accurate in diagnosing urothelial carci-
noma [8]. Therefore, cytological urothelial carcinoma screening in urine specimens plays a
key role in early stage cancer detection and treatment in routine clinical practices [9,10].

Liquid-based cytology (LBC) was developed as an alternative to conventional smear
cytology in the 1990s [11]. LBC has several advantages in preparation and diagnostic
process compared with conventional smear [12–15]. The LBC technique preserves the
cells of interest in a liquid medium and removes most of the debris, blood, and exudate
either by filtering or density gradient centrifugation [16,17]. LBC provides automated and
standardized processing techniques that produce a uniformly distributed and cell-enriched
slide [18–20]. Moreover, residual specimens can be used for additional investigations (e.g.,
immunocytochemistry) [21–23]. ThinPrep (Hologic, Inc., Marlborough, MA, USA) and
SurePath (Becton Dickinson, Inc., Franklin Lakes, NJ, USA) for LBC specimen preparation
have been approved by the US Food and Drug Administration (FDA). Compared to the
conventional smear cytology, LBC has lower background elements, provides better cell
preservation, and has a higher satisfaction rate [24]. As for the sensitivity, it has been
reported that LBC achieved at 0.58 (CI: 0.51–0.65) and conventional smear achieved at
0.38 [7,11]. It is understandable that the efficiency of diagnosis employing the LBC is high
because of the cell collection rate. It was shown that the accuracy of diagnoses made
employing the LBC method can be increased by understanding the characteristics of the
cell morphology in suspicious cases (e.g., high-grade urothelial carcinoma and low-grade
urothelial carcinoma [25], and in other malignancies [26,27]). LBC specimens performed
significantly better in urinary cytology when evaluating malignant categories especially
high-grade urothelial carcinoma (HGUC), which facilitate a more accurate diagnosis than
conventional preparations [15]. Moreover, from the standpoint of rationality, preparation
and screening times were 2.25 and 1.33–2.00 times greater when using LBC (ThinPrep)
compared with cytocentrifugation (conventional smear cytology) [28]. Therefore, computa-
tional screening (cytodiagnostic) aids for urine LBC specimens would be a great benefit for
urothelial carcinoma screening as medial image analysis.

Whole-slide images (WSIs) are digitisations of the conventional glass slides obtained
via specialised scanning devices (WSI scanners), and they are considered to be comparable
to microscopy for primary diagnosis [29]. It has been reported that evaluation of WSI
is generally equivalent to using conventional glass slides under microscopy [30]. The
use of WSI has to some degree met the goals of saving pathologists working time and
providing high quality pathological images with convenient access and easily navigable
viewing online based software which saves resources and costs by eliminating slide glass
shipping expenses [30]. The advent of WSIs led to the application of medical image analysis
techniques, machine learning, and deep learning techniques for aiding pathologists in
inspecting WSIs [31]. Importantly, a routine scanning of LBC slides in a single layer
of WSIs would be suitable for further high throughput analysis (e.g., automated image
based cytological screening and medical image analysis) [20]. Indeed, deep learning
approaches and its clinical application to classify cytopathological changes (e.g., neoplastic
transformation) were reported in the recent years [32–41].

In this study, we trained deep learning models based on convolutional neural networks
(CNN) using a training dataset of 786 urine LBC (ThinPrep) WSIs. We evaluated the model
on two test sets with a combined total of 750 WSIs, achieving ROC area under the curve
(AUC) for WSI neoplastic classification in the range of 0.984–0.990.
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2. Materials and Methods
2.1. Clinical Cases and Cytopathological Records

In this retrospective study, a total of 1556 LBC ThinPrep Pap test (Hologic, Inc.) con-
ventionally prepared cytopathological slide glass specimens of human urine cytology were
collected from a private clinical laboratory in Japan after routine cytopathological review of
those glass slides by cytoscreeners and pathologists. The private clinical laboratory in Japan
that provided urine LBC specimen glass slides in the present study was anonymized due to
the confidentiality agreement. The LBC specimens were selected randomly to reflect a real
clinical settings as much as possible. We have also collected LBC specimens so as to compile
test sets with an equal balance and a clinical balance of negative and neoplastic. The equal
balance test set consisted of 50% negative and 50% neoplastic urine LBC cases (Table 1).
The clinical balance test set consisted of a ratio of 10 (negative) to 1 (neoplastic) urine LBC
cases based on a real clinical setting which was reported by the Japanese Society of Clinical
Cytology as the statistics on cytodiagnosis in 2016 to 2021 (https://jscc.or.jp/, accessed on
27 January 2022). Prior to the start of the experiments, the cytoscreeners and pathologists
excluded inadequate LBC specimens (n = 21) which had inadequate cellularity or had
significant artifacts like dust or ink markings. All WSIs were scanned at a magnification
of ×20 using the same Leica Aperio AT2 Digital Whole Slide Scanner (Leica Biosystems,
Tokyo, Japan) and were saved in the SVS file format with JPEG2000 compression. Each
WSI was observed by at least two cytoscreeners or pathologists to confirm the diagnosis,
with the final checking and verification performed by a senior cytoscreener or pathologist.
We have confirmed that cytoscreeners and pathologists were able to classify (Table 1) from
the visual inspection of the LBC ThinPrep Pap test (Hologic, Inc.) stained WSIs alone.

Table 1. Datasets.

Training Validation Test (Equal Balance) Test (Clinical Balance) Total

Negative 724 10 100 500 1334

Class I 360 5 50 250 665
Class II 364 5 50 250 669

Neoplastic 62 10 100 50 222

Class III 38 4 48 20 110
Class IV 11 3 23 14 51
Class V 13 3 29 16 61

Total 786 20 200 550 1556

In this study, we have classified urine LBC WSIs into two classes: one is negative
and the other is neoplastic (Table 1). Negative WSIs were diagnosed as Class I or Class II
and neoplastic WSIs were diagnosed as Class III, Class IV, or Class V in routine clinical
cytodiagnosis (Table 1) (Class I: negative for HGUC; Class II: negative for HGUC with
reactive urothelial epithelial cells; Class III: atypical urothelial epithelial cells and suspicious
for LGUC; Class IV: LGUC and suspicious for HGUC; Class V: HGUC). The cytoscreeners
and pathologists had to agree whether the output class was negative or neoplastic on each
urine LBC WSI.

2.2. Annotation

A cohort of 62 training cases and 10 validation cases were manually annotated by
experienced pathologists (Table 1). Coarse manually drawing polygonal annotations were
obtained by free-hand drawing in-house online tool developed by customising the open-
source OpenSeadragon tool at https://openseadragon.github.io/ (accessed on 25 July
2021) which is a web-based viewer for zoomable images. On average, the cytoscreeners
and pathologists manually annotated 180 cells (or cellular clusters) per WSI. Annotated
neoplastic WSIs consisted of Class III, Class IV, and Class V cytodiagnostic classes except

https://jscc.or.jp/
https://openseadragon.github.io/
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for Class I and Class II (Table 1). We set three annotation labels for neoplastic urothelial
epithelial cells: atypical cell, low-grade urothelial carcinoma (LGUC) cell, and high-grade
urothelial carcinoma (HGUC) cell (Table 2 and Figure 1). For example, on the Class III
(Figure 1A,B), Class IV (Figure 1C,D), and Class V (Figure 1E,F) WSIs, cytoscreeners and
pathologists performed annotations around the atypical cells (Figure 1A,B), LGUC cells
(Figure 1C,D), and HGUC cells (Figure 1E,F) based on the representative neoplastic urothe-
lial epithelial cell morphology (e.g., hyperchromatism, irregular chromatin distribution,
abnormalities of nuclear shape, increased nuclear/cytoplasmic ratio, irregular nuclear
distribution, nuclear enlargement, abnormal cytoplasm, prominent nucleolus, cellular and
nuclear polymorphism). If the WSIs were classified as Class V, for example, it would be
possible to have atypical cell, LGUC cell, and HGUC cell annotations in a WSI. In contrast,
the cytoscreeners and pathologists did not annotate areas where it was difficult to cyto-
logically determine that the cells were neoplastic. The negative subset of the training and
validation sets (Table 1) was not annotated and the entire cell spreading areas within the
WSIs were used. The average annotation time per WSI was about 90 min. Annotations
performed by the cytoscreeners and pathologists were modified (if necessary) and verified
by a senior cytoscreener.

Figure 1. Representative manually drawing annotation image for neoplastic labels on urine liquid-
based cytology (LBC) whole slide images (WSIs). The atypical urothelial cells (A,B) were annotated as
atypical cell label. The suspected low grade urothelial carcinoma (LGUC) cells (C,D) were annotated
as LGUC cell label and high grade utorhelial carcinoma (HGUC) cells (E,F) were annotated as HGUC
cell label. The three labels (atypical cell, LGUC cell, and HGUC cell) were grouped as neoplastic label
for fully supervised learning. Scale bars are 50 µm.
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Table 2. Annotation labels and numbers of annotation.

Annotation Label Number of Annotation

Atypical cell 9950
Low-grade urothelial carcinoma (LGUC) cell 1646
High-grade urothelial carcinoma (HGUC) cell 1611

Total 13,207

2.3. Deep Learning Models

We performed training using transfer learning with fine-tuning using two different
weight initialisations: ImageNet (IN) and pre-training on a uterine cervix (UC) neoplastic
(×10, 1024) dataset from a previous study [35]. We used two different approaches for
training during fine-tuning: fully supervised (FS) and weakly supervised (WS) learning.
We used a modified version of EfficientNetB1 (ENB1) [42] with a tile size of 1024 × 1024 px.
This resulted in a total of four models, all trained at magnification ×10 and tile size
1024 × 1024 px: ENB1-UC-FS+WS, ENB1-UC-WS, ENB1-IN-FS+WS, and ENB1-IN-WS.
In addition, for comparaison with other model architectures, we trained models using
ResNet50V2 [43], DenseNet121 [44] and InceptionV3 [45]. For these models we trained
uisng FS + WS method and with initialisation from ImageNet, as we did not have access to
models trained with these architecture on uterine cervix. We performed the fine-tuning
of the models using the partial fine-tuning approach [46], which consists of only fine-
tuning the affine parameters of batch-normalization layers and the final classification layer
(Figure 2). starting with pre-trained weights on ImageNet.

Figure 2 shows an overview of the training method and trained deep learning models.
The training methodology that we used in the present study was exactly the same as
reported in our previous studies [47].

Figure 2. Training method and deep learning models overview. We performed training using two
different weight initialisations: ImageNet (IN) and pre-training on a uterine cervix (UC) neoplastic
(×10, 1024) dataset from a previous study. We used two different approaches for training: fully
supervised (FS) and weakly supervised (WS) learning. This resulted in a total of four models,
all trained at magnification ×10 and tile size 1024 × 1024px: ENB1-UC-FS+WS, ENB1-UC-WS,
ENB1-IN-FS+WS, and ENB1-IN-WS.

We performed slide tiling by extracting square tiles from tissue regions of the WSIs. We
started by detecting the tissue regions in order to eliminate most of the white background.
This was conducted by performing thresholding on a grayscale version of the WSIs using
Otsu’s method [48]. For the CNN, we have used the EfficientNetB1 architecture [42] with a
modified input size of 1024 × 1024 px to allow a larger view; this is based on cytologists’
input that they usually need to view the neighbouring cells around a given cell in order to
diagnose more accurately. We used the partial fine-tuning approach [46] for the tuning the
CNN component.
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For training and inference, we then proceeded by extracting 1024 × 1024 px tiles from
the tissue regions. We performed the extraction in real-time using the OpenSlide library [49].
To perform inference on a WSI, we used a sliding window approach with a fixed-size stride
of 512 × 512 px (half the tile size). This results in a grid-like output of predictions on all
areas that contained cells, which then allowed us to visualise the prediction as a heatmap of
probabilities that we can directly superimpose on top of the WSI. Each tile had a probability
of being neoplastic; to obtain a single probability that is representative of the WSI, we
computed the maximum probability from all the tiles.

During fully supervised learning, we maintained an equal balance of positively and
negatively labelled tiles in the training batch. To do so, for the positive tiles, we extracted
them randomly from the annotated regions (annotation label: atypical cell, LGUC cell, and
HGUC cell) of neoplastic WSIs, such that within the 1024 × 1024 px, at least one annotated
cell was visible anywhere inside the tile. For the negative tiles, we extracted them randomly
anywhere from the tissue regions of negative WSIs (Table 1). We then interleaved the
positive and negative tiles to construct an equally balanced batch that was then fed as
input to the CNN. In addition, to reduce the number of false positives, given the large size
of the WSIs, we performed a hard mining of tiles, whereby at the end of each epoch, we
performed full sliding window inference on all the negative WSIs in order to adjust the
random sampling probability such that false positively predicted tiles of negative were
more likely to be sampled.

During weakly supervised learning, to maintain the balance on the WSI, we oversam-
pled from WSIs to ensure that the model trained on tiles from all WSIs in each epoch. We
then switched to hard mining tiles. To perform hard mining, we alternated between training
and inference. During inference, the CNN was applied in a sliding window fashion on all
the tissue regions in the WSI, and we then selected the k tiles with the highest probability
for being positive. This step effectively selects tiles that are most likely to be false positives
when the WSI is negative. The selected tiles were placed in a training subset, and once that
subset contained N tiles, training was initiated. We used k = 8, N = 256, and a batch size
of 32.

During training, we performed real-time augmentation of the extracted tiles using
variations of brightness, saturation, and contrast. We trained the model using the Adam
optimisation algorithm [50], with the binary cross entropy loss, beta1 = 0.9, beta2 = 0.999,
and a learning rate of 0.001. We applied a learning rate decay of 0.95 every 2 epochs.
We used early stopping by tracking the performance of the model on a validation set,
and training was stopped automatically when there was no further improvement on the
validation loss for 10 epochs. The model with the lowest validation loss was chosen as the
final model.

2.4. Software and Statistical Analysis

The deep learning models were implemented and trained using the open-source
TensorFlow library [51]. AUCs were calculated in python using the scikit-learn package [52]
and plotted using matplotlib [53]. The 95% CIs of the AUCs were estimated using the
bootstrap method [54] with 1000 iterations. The ROC curve was computed by varying
the probability threshold from 0.0 to 1.0 and computing both the TPR and FPR at the
given threshold.

3. Results
3.1. Insufficient AUC Performance of Whole Slide Image (WSI) Neoplastic Evaluation on Urine
LBC WSIs Using Existing Series of LBC Cytopathological Model

Prior to training urine LBC neoplastic screening models, we applied existing LBC
uterine cervix neoplastic screening model [35] and histopathological classification models
and evaluated their AUC performances on urine LBC test sets (Table 1). This is summarised
in Table 3.
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Table 3. ROC-AUC and log-loss scores for existing deep learning models to classify liquid-based
cytology (LBC) and histopathology whole slide images (WSIs).

Existing Models ROC-AUC Log Loss

Liquid-based cytology (LBC)
Uterine cervix Neoplastic (×10, 1024) 0.836 [0.775–0.885] 0.778 [0.620–0.989]

3.2. High ROC-AUC Performance of Urine LBC WSI Evaluation of Neoplastic Urothelial
Epithelial Cell Screening

We trained four deep learning models ([ENB1-UC-FS+WS], [ENB1-UC-WS], [ENB1-IN-
FS+WS], and [ENB1-IN-WS]) using transfer learning (TL) with fine-tuning [47] with fully
supervised (FS) learning [35,55], and weakly supervised (WS) learning [56] approaches
as described elsewhere. These models are all based on the EfficientNetB1 convolutional
neural network (CNN) architecture. To compare transfer learning models’ performance
([ENB1-UC-FS+WS] and [ENB1-UC-WS]), we trained two models using EfficientNetB1
architecture at a same magnification of ×10 and tile size (1024 × 1024 px). To train deep
learning models, we used a total of 62 neoplastic (with annotation) and 724 negative
(without annotation) training set WSIs and 10 neoplastic (with annotation) and 10 negative
(without annotation) validation set WSIs (Table 1). This resulted in four different models:
(1) ENB1-UC-FS+WS (×10, 1024), (2) ENB1-UC-WS (×10, 1024), (3) ENB1-IN-FS+WS (×10,
1024), and (4) ENB1-IN-WS (×10, 1024). We evaluated these four different trained deep
learning models on equal balance and clinical balance test sets (Table 1). For each test set
(equal and clinical balance), we computed the ROC-AUC, log-loss, accuracy, sensitivity,
and specificity and summarized in Table 4 and Figure 3 and 4. Overall, four different
trained deep learning models achieved equivalent ROC-AUC, log-loss, accuracy, sensitivity,
and specificity at whole-slide level (WSI evaluation) in both equal and clinical balance
test sets (Table 4, Figure 3). However, heatmap image appearances were different among
four trained deep learning models (Figure 4). The localization patterns of predicted tiles
were approximately same among four trained deep learning models (Figure 4). Looking
at heatmap images of the same urine LBC WSIs (WSI-1 and WSI-2) (Figure 4) that were
correctly predicted (true-positive) as neoplastic WSI using four different trained models,
all models could predict tiles with neoplastic urothelial epithelial cells (Figure 4A–D,M–P)
satisfactorily (Figure 4E–L,Q–X). However, probabilities in each neoplastic predicted tiles
were totally different among four trained models (Figure 4). Among the four trained
model, ENB1-UC-FS+WS exhibited the best tile prediction overall based on inspection
of the heatmap images (Figure 4E,F,Q,R). Therefore, our results show that the ENB1-UC-
FS+WS model is the best model for urine LBC neoplastic urothelial epithelial cell screening
(Table 4 and Figure 4). Figures show representative WSIs of true positive (Figure 5), true
negative (Figure 6), false positive (Figure 7), and false negative (Figure 8) from using the
model [ENB1-UC-FS+WS].

3.3. True Positive Prediction

The model ENB1-UC-FS+WS satisfactorily predicted neoplastic urothelial epithelial
cells in urine LBC WSIs (Figure 5). Cytopathologically, Figure 5A exhibited atypical
urothelial epithelial cells (Figure 5B) and was diagnosed as Class III. Figure 5E showed
low grade urothelial carcinoma (LGUC) cells (Figure 5F) and was diagnosed as Class
IV. Figure 5I showed high grade urothelial carcinoma (HGUC) cells (Figure 5J) and was
diagnosed as Class V. These three WSIs should be classified as neoplastic in this study. The
heatmap images show true positive predictions of atypical utorhelial cells (Figure 5C,D),
LGUC cells (Figure 5G,H), and HGUC cells (Figure 5K,L) which were confirmed by a
cytoscreener and a cytopathologist by viewing original WSIs and predicted heatmap
images. In contrast, in low probability tiles (light blue and blue background) (Figure 5), two
independent cytoscreeners confirmed there were no neoplastic urothelial epithelial cells.
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Table 4. ROC AUC, log loss, accuracy, sensitivity, and specificity results on the equal balance and
clinical balance test sets.

Test Set

Equal Balance Clinical Balance

ENB1-UC-FS+WS (×10, 1024)
ROC-AUC 0.984 [0.969–0.995] 0.990 [0.982–0.996]

Log-loss 0.180 [0.123–0.259] 0.223 [0.181–0.284]
Accuracy 0.945 [0.905–0.970] 0.946 [0.924–0.962]

Sensitivity 0.960 [0.920–0.990] 0.940 [0.861–1.000]
Specificity 0.929 [0.862–0.972] 0.946 [0.924–0.964]

ENB1-UC-WS (×10, 1024)
ROC-AUC 0.990 [0.985–0.999] 0.990 [0.981–0.997]

Log-loss 0.251 [0.178–0.295] 0.098 [0.081–0.119]
Accuracy 0.955 [0.935–0.985] 0.940 [0.920–0.960]

Sensitivity 0.950 [0.911–0.990] 0.980 [0.933–1.000]
Specificity 0.960 [0.931–1.000] 0.936 [0.915–0.958]

ENB1-IN-FS+WS (×10, 1024)
ROC-AUC 0.982 [0.957–0.996] 0.986 [0.963–0.998]

Log-loss 0.225 [0.156–0.321] 0.082 [0.063–0.106]
Accuracy 0.950 [0.910–0.975] 0.936 [0.918–0.956]

Sensitivity 0.930 [0.863–0.971] 0.960 [0.894–1.000]
Specificity 0.970 [0.930–1.000] 0.934 [0.914–0.955]

ENB1-IN-WS (×10, 1024)
ROC-AUC 0.980 [0.960–0.997] 0.995 [0.990–0.998]

Log-loss 0.258 [0.185–0.289] 0.128 [0.114–0.144]
Accuracy 0.960 [0.940–0.990] 0.944 [0.924–0.960]

Sensitivity 0.970 [0.945–1.000] 1.000 [1.000–1.000]
Specificity 0.950 [0.914–0.990] 0.938 [0.915–0.956]

ResNet50V2-IN-FS+WS (×10, 1024)
ROC-AUC 0.962 [0.919–0.986] 0.972 [0.935–1.000]

Log-loss 0.238 [0.145–0.357] 0.085 [0.050–0.124]
Accuracy 0.916 [0.865–0.955] 0.915 [0.884–0.950]

Sensitivity 0.888 [0.812–0.937] 0.949 [0.874–1.000]
Specificity 0.945 [0.895–0.993] 0.914 [0.875–0.950]

DenseNet121-IN-FS+WS (×10, 1024)
ROC-AUC 0.945 [0.905–0.977] 0.957 [0.922–0.988]

Log-loss 0.233 [0.152–0.345] 0.185 [0.146–0.224]
Accuracy 0.919 [0.867–0.962] 0.925 [0.887–0.958]

Sensitivity 0.919 [0.835–0.977] 0.921 [0.846–0.971]
Specificity 0.957 [0.905–1.000] 0.906 [0.869–0.945]

InceptionV3-IN-FS+WS (×10, 1024)
ROC-AUC 0.959 [0.923–0.983] 0.978 [0.940–1.000]

Log-loss 0.239 [0.151–0.354] 0.186 [0.177–0.198]
Accuracy 0.912 [0.857–0.955] 0.924 [0.895–0.959]

Sensitivity 0.898 [0.820–0.957] 0.956 [0.878–1.000]
Specificity 0.954 [0.895–0.995] 0.906 [0.868–0.941]
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Figure 3. ROC curves on the test sets. (A) transfer learning (TL) from uterine cervix liquid-based
cytology (LBC) model and fully and weakly supervised learning model, magnification at ×10 and
tile size at 1024 × 1024 px (ENB1-UC-FS+WS (×10, 1024)); (B) TL from uterine cervix LBC model and
weakly supervised learning model, magnification at ×10 and tile size at 1024 × 1024 px (ENB1-UC-WS
(×10, 1024)); (C) EfficientNetB1 based fully and weakly supervised learning model, magnification at
×10 and tile size at 1024 × 1024 px (ENB1-IN-FS+WS (×10, 1024)); (D) EfficientNetB1 based weakly
supervised learning model, magnification at ×10 and tile size at 1024 × 1024 px (ENB1-IN-WS
(×10, 1024)).
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Figure 4. Neoplastic prediction comparison. Comparison of neoplastic predictions in the repre-
sentative two neoplastic urine liquid-based cytology (LBC) whole-slide images (WSIs) (WSI-1 and
WSI-2) of four trained deep learning models (ENB1-UC-FS+WS, ENB1-UC-WS, ENB1-IN-FS+WS, and
ENB1-IN-WS). According to the cytopathological diagnostic (Dx) reports, WSI-1 (A–L) was diagnosed
as Class III and WSI-2 (M–X) was diagnosed as Class IV—both were classified in the neoplastic class
in this study. (A–D,M–P): LBC cytopathological images for WSI-1 (A–D) and WSI-2 (M–O); heatmap
prediction images for ENB1-UC-FS+WS model in WSI-1 (E,F) and WSI-2 (Q,R); heatmap prediction
images for ENB1-UC-WS model in WSI-1 (G,H) and WSI-2 (S,T); heatmap prediction images for
ENB1-IN-FS+WS model in WSI-1 (I,J) and WSI-2 (U,V); heatmap prediction images for ENB1-IN-WS
model in WSI-1 (K,L) and WSI-2 (W,X). The localization of predicted tiles in neoplastic WSIs (WSI-1
and WSI-2) were almost same in four models (ENB1-UC-FS+WS, ENB1-UC-WS, ENB1-IN-FS+WS,
and ENB1-IN-WS). However, the model pre-trained from uterine cervix LBC model with fully and
weakly supervised learning (ENB1-UC-FS+WS) showed the highest neoplastic probabilities (F,R) in
neoplastic tiles (B–D,N–P) as compared to other models (G–L,S–X). The heatmap uses the jet color
map where blue indicates low probability and red indicates high probability.
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Figure 5. Representative examples of true positive prediction. Neoplastic true positive prediction
outputs on urine liquid-based cytology (LBC) whole-slide images (WSIs) from test sets using the
ENB1-UC-FS+WS model. According to the cytopathological diagnostic (Dx) reports, (A) was diag-
nosed as Class III with atypical urothelial epithelial cells (B), (E) was diagnosed as Class IV with
suspected low grade urothelial carcinoma (LGUC) cells (F), and (I) was diagnosed as Class V with
suspected high grade utorhelial carcinoma (HGUC) cells (J). The heatmap images (C,D,G,H,K,L)
show true positive predictions of neoplastic urothelial epithelial cells (D,H,L), which correspond,
respectively, to atypical (B), suspected LGUC (F), and HGUC (J) cells. The heatmap uses the jet color
map where blue indicates low probability and red indicates high probability.
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Figure 6. Representative examples of true negative prediction. Two representative examples of
neoplastic true negative prediction outputs on urine liquid-based cytology (LBC) whole-slide images
(WSIs) from test sets using ENB1-UC-FS+WS model. According to the cytopathological diagnostic
(Dx) reports, (A) was diagnosed as Class I and (B) was Class II, which were negative for urothelial
neoplastic epithelial cells. Cytopathologically, (A) was pyuria which consisted of infective fluid (pus)
with small number of non-atypical epithelial cells (B). (D,E) included urothelial epithelial cells with
slight nuclear enlargement. The heatmap images (C,F) show true negative prediction of neoplastic
epithelial cells. The heatmap uses the jet color map where blue indicates low probability and red
indicates high probability.

Figure 7. Representative example of false positive prediction. A representative example of neoplastic
false positive prediction outputs on urine liquid-based cytology (LBC) whole-slide images (WSIs)
from test sets using the ENB1-UC-FS+WS model . According to the cytopathological diagnostic
(Dx) report, (A) was diagnosed as Class I and consisted of metaplastic squamous epithelial cells and
non-atypical (non-neoplastic) urothelial epithelial cells with inflammatory cells (B). The heatmap
images (C,D) show false positive predictions (D) which correspond, respectively, to (B). The heatmap
uses the jet color map where blue indicates low probability and red indicates high probability.
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Figure 8. Representative example of false negative prediction. A representative example of neoplastic
false negative prediction outputs on urine liquid-based cytology (LBC) whole-slide images (WSIs)
from test sets using the ENB1-UC-FS+WS model. According to the cytopathological diagnostic (Dx)
report, (A) was diagnosed as Class III and included clusters of atypical urothelial epithelial cells (B,C).
The heatmap images (D–F) show false negative predictions (E,F) which correspond, respectively, to
(B,C). The heatmap uses the jet color map where blue indicates low probability and red indicates
high probability.

3.4. True Negative Prediction

The model ENB1-UC-FS+WS satisfactorily predicted negative cases (cytopathologi-
cally as Class I and Class II) in urine LBC WSIs (Figure 6). The heatmap images show true
negative predictions of neoplastic urothelial epithelial cells (Figure 6C,F). In zero probability
tiles (blue background color) (Figure 6C,F), there are no neoplastic urothelial epithelial cells
in pyuria (cytodiagnosed as Class I) (Figure 6A) which consisted of infective fluid with
small number of non-neoplastic epithelial cells (Figure 6B) and urothelial epithelial cells
with slight nuclear enlargement (Figure 6D,E) (cytodiagnosed as Class II).

3.5. False Positive Prediction

A cytopathologically diagnosed negative (Class I) case (Figure 7A) consisted of meta-
plastic squamous epithelial cells and non-neoplastic urothelial epithelial cells (Figure 7B)
was false positively predicted for neoplastic urothelial epithelial cells by our model [ENB1-
UC-FS+WS ]. The heatmap image (Figure 7C) shows false positive predictions of neoplastic
urothelial epithelial cells with high probability tiles (Figure 7D). Cytopathologically, there
are non-neoplastic urothelial epithelial cells with a slightly increased nuclear cytoplasmic
(N/C) ratio and metaplastic squamous epithelial cells (Figure 7B), which could be a major
cause of false positive.

3.6. False Negative Prediction

According to the cytodiagnosis report and additional cytoscreener and cytopathol-
ogist’s review, in this urine LBC WSI (Figure 8A), there were cellular clusters of atypical
(neoplastic) urothelial epithelial cells (Figure 8B,C) with high nuclear cytoplasmic ratio,
indicating this WSI (Figure 8A) should be classified as neoplastic (Class III). However,
our model [ENB1-UC-FS+WS ] did not predict or very low level predicted neoplastic
urothelial epithelial cells (Figure 8D–F). It would be speculated that neoplastic urothe-
lial epithelial cellular clustering could be a possible cause of false negative due to the
overlapping morphology.

4. Discussion

In this study, we trained deep learning models for the classification of neoplastic
urothelial epithelial cells in WSIs of urine LBC specimens. The best model (ENB1-UC-
FS+WS) achieved overall a good performance with ROC-AUCs of 0.984 (CI: 0.969–0.995)
on equal balance and 0.990 (CI: 0.982–0.996) on clinical balance test sets and low log-loss
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values of 0.180 (CI: 0.123–0.259) on equal balance and 0.223 (CI: 0.181–0.284) on clinical
balance test sets, which reflects the clinical setting based on the statistics on cytodiagnosis
in 2016 to 2021 by the Japanese Society of Clinical Cytology (https://jscc.or.jp/ accessed on
13 January 2022). Both equal and clinical balance test sets (Table 1) were collected based on
the cytodiagnoses, reviewed by two independent cytoscreeners or cytopathologists, then
verified by a senior cytoscreener or cytopathologist. We ensured that we had consensus
on the diagnoses of the test set WSIs. Our best model (ENB1-UC-FS+WS) also achieved
high accuracy (0.945–0.946), sensitivity (0.940–0.960), and specificity (0.929–0.946) in WSI
level. It has been reported that at urine LBC (ThinPrep) WSI level, the deep learning
model predicted neoplastic (positive) WSI at 0.842 (accuracy), 0.795 (sensitivity), and 0.845
(specificity) [57]. Our latest reported uterine cervix LBC (ThinPrep) model demonstrated
accuracy at 0.907, sensitivity at 0.850, and specificity at 0.911 at WSI level [35]. In this
study, we have trained total four deep learning models (ENB1-UC-FS+WS, ENB1-UC-WS,
ENB1-IN-FS+WS, and ENB1-IN-WS) using two different weight initialisation: ImageNet
and pre-trained uterine cervix neoplastic LBC model from a previous study [35] (Figure 2).
At WSI level, these four models showed almost comparable ROC-AUC, log-loss, accuracy,
sensitivity, and specificity (Table 4 and Figure 3). However, there was wide variety of tile
level prediction as visualized by the heatmap images between the four models (Figure 4).
Based on the WSI and tile level (heatmap) evaluations, we have concluded that the model
(ENB1-UC-FS+WS) which was trained using the pre-trained uterine cervix LBC model [35]
weight initialisation, performed best. As for the false-negative prediction outputs in the
urine LBC WSI which was cytodiagnosed as Class III (Figure 8A), the model (ENB1-UC-
FS+WS) could not predict neoplastic atypical urothelial epithelial cell cluster (Figure 8B–F)
in which neoplastic urothelial epithelial cells were overlapping and nuclear shapes and
structures were hard to determine in the WSI (Figure 8B,C). The model (ENB1-UC-FS+WS)
could predict true negative urine crystal and cell debris precisely. False negative prediction
outputs were most likely due to neoplastic urothelial epithelial cell clusters that mimicked
urine crystal or cell debris.

According to the annual statistics on cytodiagnosis by the Japanese Society of Clinical
Cytology (https://jscc.or.jp/, accessed on 13 January 2022), in 2021, there were 2,041,547
urine cytodianosis reports in Japan. In 2021, the total number of cytodiagnosis in Japan was
7,157,413. Therefore, the population of urine cytodiagnosis was approximately 28.5%. In
Japan, urine cytology was the second most common cytology in 2021, as cervical cytology
was the most common (3,289,877 cases, 50.0%) (https://jscc.or.jp/, accessed on 13 January
2022). LBC of urine specimens is commonly used in cytology laboratories throughout
the world and various processing methods, such as ThinPrep and SurePath, have been
reported [58,59]. The LBC technique preserves the cells of interest (e.g., urothelial epithelial
cells) in a liquid medium and removes most of the debris, blood, and exudate either by
filtering or density gradient centrifugation. The efficiency of diagnosis employing the
LBC is high because of the cell collection rate. It was demonstrated that the accuracy of
diagnoses made employing the LBC method can be increased by understanding the charac-
teristics of the urothelial epithelial cell morphology in suspicious cases [25]. Following the
appropriate LBC specimen preparation steps, cell morphology (structure) is satisfactorily
preserved, which allows more accurate diagnosing of LBC slides as shown by the significant
concordance between cytological and histological diagnosis (92%), the significant number
of LGUC (20.5%) revealed by urinary cytology and validated by histology, and the low
rate (8%) of misjudgement of cytological diagnosis [60]. In addition, the leftover urine
LBC material can be used for other techniques such as immunocytochemistry, molecular
biology and flow cytometry [61]. Therefore, LBC has been applied with good results in
urine cytology and can be regarded as an appropriate substitute for conventional smear
urine cytology. LBC techniques opens new possibilities for a systemic urothelial carcinoma
screening by integrating digital pathology WSI technique and deep learning model(s),
resulting a standardised high-quality readout (e.g., classification).

https://jscc.or.jp/
https://jscc.or.jp/
https://jscc.or.jp/
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One limitation of this study is that it primarily included urine LBC (ThinPrep) WSIs
(both training and test sets) from a single private clinical laboratory in Japan. Therefore, the
deep learning models could potentially be biased to such specimens. Validations on a wide
variety of specimens from multiple different origins (both clinical laboratories and hospitals)
and other LBC method(s) (e.g., SurePath) would be essential for ensuring the robustness
of the models. Another potential validation study should involve the comparison of the
performance of the models against cytoscreeners and cytopathologists in a clinical setting.

5. Conclusions

In the present study, we trained deep learning models for the classification of neoplastic
urine LBC WSIs. We have evaluated the models on two test sets (equal and clinical balance)
achieving ROC-AUCs for diagnosis in the range of 0.984–0.990 by the best model (ENB1-UC-
FS+WS). At WSI level, the model (ENB1-UC-FS+WS) achieved high accuracy (0.945–0.946),
sensitivity (0.940–0.960), and specificity (0.929–0.946). Not only at WSI level, the model
(ENB1-UC-FS+WS) satisfactorily predicted neoplastic urothelial epithelial cells (atypical,
LGUC, and HGUC cells) by the heatmap images. Therefore, our model (ENB1-UC-FS+WS)
can infer whether the urine LBC WSI is neoplastic (Figure 5) or negative (Figure 6) by
inspecting model prediction outputs easily at WSI level as well as heatmap image, which
makes it possible to use a deep learning model such as ours as a tool to aid in the urine
LBC screening process in the clinical setting (workflow) for ranking cases by order of
priority. Cytoscreeners and/or cytopathologists will need to perform full screening and
subclassification (e.g., negative, atypical cells, suspicious for malignancy, and malignant)
after the primary screening by our deep learning model, which could reduce their working
time as the model would have highlighted the suspected neoplastic regions, and they
would not have to perform an exhaustive search throughout the entire WSI.
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