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Simple Summary: Ovarian cancer is the eighth most common cancer among women and has a 5-year
survival of only 30–50%. The survival is close to 90% for patients in stage I but only 20% for patients
in stage IV. The presently available biomarkers have insufficient sensitivity and specificity for early
detection and there is an urgent need to identify novel biomarkers. The aim of our study was to
broadly measure protein biomarkers to find tests for the early detection of ovarian cancer. We found
that combinations of 4–7 protein biomarkers can provide highly accurate detection of early- and
late-stage ovarian cancer compared to benign conditions. The performance of the tests was then
validated in a second independent cohort.

Abstract: Background: Ovarian cancer is the eighth most common cancer among women and has a
5-year survival of only 30–50%. The survival is close to 90% for patients in stage I but only 20% for
patients in stage IV. The presently available biomarkers have insufficient sensitivity and specificity
for early detection and there is an urgent need to identify novel biomarkers. Methods: We employed
the Explore PEA technology for high-precision analysis of 1463 plasma proteins and conducted a
discovery and replication study using two clinical cohorts of previously untreated patients with
benign or malignant ovarian tumours (N = 111 and N = 37). Results: The discovery analysis identified
32 proteins that had significantly higher levels in malignant cases as compared to benign diagnoses,
and for 28 of these, the association was replicated in the second cohort. Multivariate modelling
identified three highly accurate models based on 4 to 7 proteins each for separating benign tumours
from early-stage and/or late-stage ovarian cancers, all with AUCs above 0.96 in the replication
cohort. We also developed a model for separating the early-stage from the late-stage achieving an
AUC of 0.81 in the replication cohort. These models were based on eleven proteins in total (ALPP,
CXCL8, DPY30, IL6, IL12, KRT19, PAEP, TSPAN1, SIGLEC5, VTCN1, and WFDC2), notably without
MUCIN-16. The majority of the associated proteins have been connected to ovarian cancer but not
identified as potential biomarkers. Conclusions: The results show the ability of using high-precision
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proteomics for the identification of novel plasma protein biomarker candidates for the early detection
of ovarian cancer.

Keywords: ovarian cancer; protein biomarkers; early detection

1. Introduction

Early detection of ovarian cancer improves the 5-year survival rate, from close to
90% in stage I compared to only 20% when the cancer is discovered in stage IV [1].
Ovarian cancer is the eighth most common cancer among women today and kills over
200,000 women per year, worldwide [2]. Today, no molecular test that is accurate enough
justify population-wide screening exists. The largest running ovarian cancer screening
study, the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) [3],
has evaluated multi-modal screening in post-menopausal women based on indications of
elevated MUCIN-16 (Cancer antigen-125/CA125) followed by transvaginal ultrasound
(TVU). A recent evaluation of the long-term results from the study [4] concluded that
although a clear increase could be seen in early-stage cancer discovery, no clear improve-
ment could be seen in reduced mortality rates in the screened group as compared to the
un-screened group. These results have since been compared with the Normal Risk Ovarian
Screening Study (NROSS) study which employed the same strategy but found a larger shift
towards early discovery and more promising results [5]. One remaining issue with the
multi-modal approach is the lower sensitivity of the biomarkers which are used, while a
higher specificity is obtained with TVU [5]. Therefore, biomarkers with a higher sensitivity
for early-stage detection are needed. At present, the discovery of ovarian cancer is usually
symptom-driven, resulting in less than a third of the cases being discovered early, i.e.,
in stage I or II [1]. Women who experience pelvic symptoms are typically examined by
available molecular biomarker analysis, TVU, or computer tomography, and when these
indicate an adnexal ovarian mass, surgery is used for the final diagnosis. Today, in Sweden,
close to four out of five women that undergo surgery for adnexal tumours are diagnosed
with benign cysts, not cancer [6]. Access to more specific preoperative tools for separating
benign and malignant conditions could therefore reduce unnecessary surgery and thus
avoid associated complications and induced premature menopause. A few molecular
biomarkers are clinically used today to complement imaging examinations, but none have
sufficient accuracy to be used in the screening/early detection or for diagnostic purposes.
MUCIN-16 was first suggested as a biomarker for ovarian cancer in 1983 [7] and is currently
the best single biomarker used for diagnosis in post-menopause women and treatment
management [8]. MUCIN-16, however, has a low sensitivity for early-stage cancer and a
high rate of false positive indications in many benign gynaecological conditions in younger
women, such as infections, pregnancies, and endometriosis [8]. MUCIN-16 has also been
reported to be elevated above the clinically indicative cut-off for ovarian cancer (35 U/mL)
in 5.1% of heart failures among elderly women [9] and in 45.7% of women with acute
pancreatitis [10]. Additional biomarkers such as the WAP four-disulfide core domain 2
(WFDC2 or HE4) has been shown to increase the specificity in detection of ovarian cancer,
especially in fertile women [11]. A combination of MUCIN-16 and WFDC2 is used in the
ovarian malignancy risk algorithm (ROMA) index, which uses two different risk score
calculations and cut-offs for pre- and post-menopausal women. The ROMA index, as origi-
nally described, achieved a sensitivity of 0.92 and a specificity of 0.75 in post-menopausal
women, and a sensitivity of 0.77 and a specificity of 0.75 in pre-menopausal women [12].
A recent meta-analysis of the ROMA index in both pre- and post-menopausal women
indicates that the overall sensitivity is in the range of 0.88 to 0.93 and the specificity is
between 0.89 and 0.94 [13]. Apart from MUCIN-16 and WFDC2, which are used in the
ROMA index, studies have indicated that additional protein biomarkers can be informative,
e.g., for early diagnosis or screening. Russel and colleagues [14] combined MUCIN-16,
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Vitamin K-dependent protein Z (PROZ), phosphatidylcholine-sterol acyltransferase (LCAT)
and C-reactive protein (CRP), into a multiplex biomarker panel that, when compared with
a patient’s own baseline, showed promising performance in detecting ovarian cancer as
early as 1–2 years prior to current diagnostic methods. We have previously presented a
risk score based on 11 proteins that separate benign conditions from ovarian cancer (stage
I–IV) at a sensitivity of 0.85 and a specificity of 0.93, regardless of menopausal state [15].
For early stages (stage I–II), the model achieved a sensitivity of 0.68 at a specificity of 0.93,
compared to an optimized model based on MUCIN-16 and WFDC2, which reached a
sensitivity of 0.56 and a specificity of 0.98 in the same set of samples [15]. Our model with
11 proteins included both MUCIN-16 and WFDC2 and was selected from a larger set of
593 proteins using the proximity extension assay (PEA). Our previous results motivate a
broader search for novel biomarkers, using new technologies for large-scale plasma protein
analyses. Our results also indicate that the proteins considered should not be restricted by
prior knowledge of their involvement in ovarian cancer, nor by the need to attain univariate
significance in order to be included in the multivariate modelling.

With this in mind, we have now used the novel PEA Explore technology to measure
levels of 1472 proteins in plasma from two clinical cohorts (N = 111 and N = 37) and
conducted both univariate and multivariate analyses to identify biomarker candidates for
ovarian cancer.

2. Materials and Methods
2.1. Samples

Plasma samples of women with benign and malignant ovarian tumours were collected
from the U-CAN collection [16] at Uppsala Biobank, Uppsala University, Sweden and
the Gynaecology tumour biobank [17] at Biobank West, Sahlgrenska University Hospital,
Göteborg, Sweden. All samples from the biobanks were included based on either primary
ovarian cancer diagnosis or suspicion of ovarian cancer diagnosis but surgically diagnosed
benign condition. Samples from patients that had begun neoadjuvant treatment prior to
surgery were excluded. The samples from U-CAN were collected between 2012 and 2018
and the samples in the gynaecology tumour biobank were collected from 2016 to 2018.
All tumours were examined by a pathologist specializing in gynaecologic cancers for his-
tology, grade, and stage, according to the International Federation of Gynaecology and
Obstetrics (FIGO) standards. All plasma samples were frozen and stored at−80 ◦C. In total,
148 unique patient samples were analyzed with 75% in the discovery cohort (111 patient
samples from the Göteborg collection) and 25% in the replication cohort (37 patient samples
from the Uppsala U-CAN collection). In the discovery cohort, 2/3 malignant and 1/3 be-
nign samples were randomly selected from all available samples in the cohort. The samples
in the replication cohort were randomly selected though preserving the malign/benign
fraction and age distribution in the discovery cohort. Since the distribution of individual
protein abundance levels in the samples was unknown, no univariate power calculations
were carried out. Basic statistics for the samples used are presented in Table 1. Among the
Göteborg collection, the benign histologies were, ordered by frequency: stromal (29.3%),
mucinous (29.3%), serous (14.6%), teratoma (12.2%), simple (7.3%), endometriosis (4.9%)
and myoma (2.4%). In the malignant samples, 75.7% were high-grade serous carcinoma
(HGSC), 9.5% low-grade serous carcinoma (LGSC), 9.5% mucinous, 2.7% endometroid,
and 2.7% clear cell cancer. In the U-CAN collection, the benign histologies were stro-
mal (28.6%), mucinous (21.4%), endometriosis (21.4%), teratoma (14.3%), myoma (7.1%),
and simple (7.1%). In the malignant samples, 52.2% were HGS, 21.7% LGS, 4.3% mucinous,
4.3% clear cell, and 4.3% were carcinosarcomas. Written consent was obtained from all
participants before the samples used here were deposited in the biobanks. The study was
approved by the Regional Ethics Committee in Uppsala (Dnr: 2016/145) and Göteborg
(Dnr: 201-15).
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Table 1. Cohort characteristics.

Cohort All Benign Ovarian Cancer

I II III IV

No. of samples Discovery 111 37 10 9 35 20
Replication 37 14 4 0 10 9

Age at diag. a Discovery 60.1 (13.2) 56.2 (15.1) 62.0 (12.2) 66.4 (6.2) 60.6 (12.5) 62.4 (12.4)
Replication 57.4 (14.4) 49.9 (14.9) 70.4 (15.6) 60.2 (6.8) 60.3 (14.9)

Age diff p-value b 0.21 0.11 0.36 0.52 0.83

CA125 (U/mL) c Discovery 263
(358.8)

41.5
(40)

67
(65.2)

240
(213.5)

594
(551.5)

1358
(1693.1)

Replication 189
(255)

28.5
(24.5)

189
(235.7)

640
(763.5)

340
(315.8)

CA125 diff p-value b 0.64 0.46 0.48 0.76 0.31
a Reported as mean (standard deviation) age in the group. b Two-sided Wilcoxon ranked test of difference between
the two cohorts. c Reported as median (median absolute deviation) CA125 in the group.

2.2. Protein Measurements

The samples were analysed using the Olink Proteomics proximity extension assay
(PEA) [18] Explore [19] at the SciLifeLab Explore Lab in Uppsala, Sweden. The samples were
analyzed in two separate runs, where four of the benign samples from the Göteborg cohort
were analysed in quadruplets in each. The detailed protocol for PEA Explore has been
detailed previously by Wik and colleagues [19]. In brief, Olink’s PEA Explore technology is
based on pairs of antibodies equipped with single-stranded DNA oligonucleotide reporter
molecules, probes, that bind to their respective target if present in the sample. Target
binding by both probes in a pair in close proximity generates double-stranded DNA
amplicons. The PEA Explore assay is built upon four separate 384-plex panels focussing
on inflammation, oncology, cardiometabolic and neurology proteins, corresponding to a
total of 1472 human proteins. Three proteins (CXCL8, IL-6 and TNF) were included on
each of the four separate 384-plex panels. After the initial probe-based immune reaction
step in the PEA Explore workflow, the amplicons were extended and amplified in a two-
step process where individual sample index sequences were added during the second
step. After sample pooling, the libraries were prepared and sequenced on a NovaSeq
6000 instrument (Illumina, San Diego, CA, USA). The raw BCL files were transformed
into count files, which in turn were translated into normalized protein expression (NPX)
values through a quality control (QC) and normalization process built around internal
and external controls, as specified by the manufacturer. The NPX data are on a log2 scale
and in the logarithmic phase of the curve, one increase of the NPX value corresponds
to a doubling of the protein content. A high NPX value corresponds to a high protein
concentration. Each of the measured proteins has a lower limit of detection (LOD) which
is determined at run time. The initial QC performed by the manufacturers’ proprietary
analysis labels each specific assay and individual measurement with a warning. Here,
nine specific protein assays were labelled with a warning and excluded from the analysis
(Cardiometabolic panel, IL-19 and CST3; Neurology, SERPINB1 and MPO; Inflammation,
CXCL8 and MMP1; Oncology, LYAR, KLK14 and DEFB4A/DEFB4B). Note that CXCL8
passed QC on the remaining three sub-panels and these measurements were kept. On the
two plates, 7128 and 9696 corresponding to 5.5% and 7.5% of individual measurements
were labelled with a QC warning and excluded from the analysis. No replacement or
filtering of measurements under the specified limits of detection was done. On the two
plates, 11,253 and 6482 of the individual measurements passing QC, corresponding to 8.7%
and 5.0% of the total measurements, respectively, were under the LOD. After quality control,
per-protein inter-plate normalization was carried out by adjusting the measurements with
the mean difference of the 16 (four samples in quadruplets on each plate) biological and
technical replicates. After the inter-plate normalization, one of the technical replicates
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was kept and the data from the two plates was merged. The final dataset consisted of
1463 proteins in 148 samples.

2.3. Statistical Analysis

All calculation were carried out using R [20] (version 4.0.3). Pairwise inter- and
intra- plate-correlations were calculated with Pearson’s method using the ‘cor.test’-function.
Beeswarm-plots were made using the R-package ‘beeswarm’ (0.4.0) [21]. Functional enrich-
ment analysis was done using the DAVID tool [22] based on UniProt identifiers. Overlaps
with TCGA [23] were studied based on the lists with UniProt ids available from the Hu-
man Protein Atlas (HPA) [24,25]. The original TCGA lists consists of genes with elevated
expression that were associated with favourable/unfavourable outcomes and is provided
as curated lists of UniProt ids at HPA. The literature search was conducted by searching
PUBMED (https://pubmed.ncbi.nlm.nih.gov/ (accessed on the 6 December 2021)) for
‘ovarian cancer’ and (i) the protein short-name, (ii) the protein full name, and (iii) the
name of the encoding gene. The multivariate models were selected and trained using the
‘cv.glmnet’ function from the ‘glmnet’ R-package (version 4.1.2) [26] using a three-fold
cross validation, alpha set to 1, optimizing lambda in the range of 0.001 to 1 in steps
of 0.001, and evaluated using receiver operating characteristics (ROC) and the area under
the curve (AUC) as final error measure. The training data were first pruned to contain only
non-missing observations across the protein, by stepwise removal of either individuals or
proteins (highest proportion of missing values) until no missing values remained. The first
set of models predicting separate cancer stages from benign conditions were trained starting
from the set of proteins with univariate nominal significance as evaluated in the discovery
set while the two disjunct models were trained using all proteins (first of the two) and then
all except those in the first model. For all trained models, the final model coefficients were
extracted from the cv-stage at a λ within one standard error of the minimum (‘lambda.1se’
in ‘cv.glmnet’). Outputs from the resulting linear model were transformed to a risk score in
0 to 1 using a link function: f (x) = ex/(ex + 1). After the models were trained, both the
discovery and replication datasets were re-pruned to contain only non-missing values but
considering only proteins present in a specific model. Performance of the model was then
evaluated in the discovery and replication data. No samples from the replication data were
used in training or optimization of the models. ROC plots, point estimates, confidence
intervals of AUC, sensitivities, specificities, and cut-off for malignancy were calculated
using the R-package ‘pROC’ (version 1.18.0) [27].

3. Results
3.1. Protein Measurements

One hundred and forty-eight (148) plasma samples from two separate clinical cohorts
with women diagnosed with benign or malignant ovarian tumours were analysed using
the PEA [18] Explore [19] technology. The first set of samples (N = 111, Table 1, discovery
cohort) were from a cohort collected in Göteborg, Sweden and the second (N = 37, Table 1,
replication cohort) were from the U-CAN biobank in Uppsala, Sweden (see Methods for
details, including the distribution of histologies). The samples were analysed across two
plates and four samples from the discovery cohort were analysed in quadruplets on both.
From these four samples we calculated intra- and inter-plate correlations. All correlation
estimates were found to be significant (p < machine precision (2.2× 10−16)), with intra-plate
correlations ranging from 0.94 to 0.99 and inter-plate correlations ranging from 0.87 to 0.95
(Supplementary Figure S1). After quality control and plate normalization (Methods), the
final dataset consisted of 1463 proteins measured in 148 individuals.

3.2. Replicated Single Valued Biomarkers for Ovarian Cancer

A univariate case/control analysis was carried out comparing the protein concentrations
between benign diagnoses with malignant, independent of cancer stage. Using strict adjust-
ment for multiple hypothesis testing (Wilcoxon ranked test, p < 0.05/1463 = 3.4 × 10−5) and
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a minimum mean unsigned NPX difference between cases and controls of 1, corresponding
to half/double the concentration on the log2 scale, we found 32 proteins that fulfilled these
requirements in the discovery cohort (Figure 1A, Supplementary Table S1). All 32 proteins
had higher concentrations in cases, when compared to controls (Figure 1A, Supplementary
Table S1). The 32 proteins were brought forward to a replication phase where the same
requirements on absolute difference in mean concentration and multiple hypothesis adjust-
ment of statistical significance were used (p < 0.05/32 = 1.5 × 10−3). Using these settings,
87.5% (28 of 32) of the biomarkers were replicated (Figure 1A, Supplementary Table S1).
The four non-replicated proteins were all nominally significant in the replication data, with
p-values ranging from 1.5 × 10−2 to 2.9 × 10−3, with the same direction of change in cases
compared to controls (the mean differences ranged from 0.90 to 2.0). Individual protein
levels stratified on cancer stage for the top three proteins are shown in Figure 1B–D. In each
of the three illustrated cases, a trend was observed between higher concentrations of the
plasma proteins with higher cancer stage.

The PEA Explore technology broadly groups the proteins based on previously assigned
function. Out of the 32 proteins found to be significant in the discovery cohort, 15 belonged
to the Oncology panel, including the clinically used biomarkers WFDC2 and MUCIN-16,
eight were found on the inflammation panel, seven on the neurology panel and two on the
cardiometabolic panel. We further investigated if there was any enrichment of functional
annotation, such as molecular function and biological process, among the significant
proteins in the discovery analysis, using the gene ontology (GO) and enriched pathways
such as KEGG. Using the complete set of the 1463 proteins analysed, we found no statistical
enrichment of neither GO terms nor pathways in the group of 32 proteins, as compared
to the background. This did not change when the entire human genome was used as the
background. We next investigated the overlap with genes where their elevated expression
is associated either favourably or unfavourably to ovarian cancer survival, using the results
from the Cancer Genome Atlas (TCGA). Among the 1463 proteins, 41 overlapped in total,
and in our list of 32 proteins, one protein (CXCL9) was found to overlap with the TCGA
list. Given the total number of overlapping genes in the assay and the complete TCGA list,
this is not a significant overlap (p = 0.60, binomial test). We found no trend relating the
division of higher gene expression in tumour tissue being favourable/unfavourable (as
reported by TCGA) with higher concentrations of circulating plasma proteins, as studied
here (Supplementary Figure S2). A brief literature search (Methods), however, identified
published connections on either genetic, transcriptional or protein levels with ovarian
cancer in 26 of the 32 proteins (Supplementary Table S2).
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Figure 1. Univariate results in the discovery cohort. (A) Mean differences in NPX (controls–cases) are
shown on the x-axis and p-values (−log10, two-sided Wilcoxon ranked test) on the y-axis. Proteins
plotted in red were significantly different in the discovery data (q < 0.05, Bonferroni adjusted, and a
foldchange of at least 1 NPX). Light grey dashed lines represent cut-offs for p-value and foldchange.
Proteins marked with a ‘+’ were also found to be significant (q < 0.05, Bonferroni adjusted, foldchange
of at least 1 NPX) in the replication data. The five proteins with the lowest p-values in the discovery
data are labelled. (B) Beeswarm plots of individual protein measurements for WFDC2 in the discovery
cohort. The top and bottom of the overlayed boxplots represents the 25th and 75th percentile and
the band inside the box the median value. Outliers were omitted from the boxplots. The samples
are divided by diagnoses: B—benign (coloured grey), I, II, III and IV—ovarian cancer FIGO stage
(coloured yellow to red). (C) As (B), but for KRT19. (D) As (B), but for FOLR1.

3.3. New Multivariate Models Outperform Previous Biomarkers

We next proceeded to build multivariate predictive models separating benign from
malignant tumours, starting from proteins (N = 175) with a nominal significance (p < 0.05,
Wilcoxon ranked test) and a minimum mean NPX difference of 0.5 between the cases
and controls in the discovery cohort. Four multivariate models were built: benign vs.
stage I–IV, benign vs. stage I–II, benign vs. stage III–IV and finally stage I–II vs. stage
III–IV. Each model was trained using the discovery cohort only and evaluated using the
replication data. The model reports a risk score in the range of 0 to 1, and ROC (receiver
operating characteristics) for all models in the replication and discovery cohorts are shown
in Figure 2A–D. All models differentiating between benign and malignant conditions had
an AUC of at least 0.96 in both discovery and replication, while the model separating early
stages (I–II) from late stages (III–IV) achieved an AUC of 0.78 and 0.81 in the two cohorts
(Table 2). None of the models showed a statistical difference between the discovery and
replication cohorts (all p-values > 0.17, DeLong’s test, Table 2). For each of the models, a
risk-score cut-off for malignancy was developed using the discovery cohort and defined
as the point on the ROC curve closest to a perfect classification (best-point). We found
no statistical difference in neither the achieved sensitivity nor specificity between the
discovery and replication cohorts at the pre-defined cut-offs (Table 2), suggesting a robust
performance of the models. The models consisted of three to seven proteins, with a total of
eleven proteins across all models (Figure 2E). The model for early-stage detection (benign
vs. I–II) consisted of seven proteins (ALPP, IL6, KRT19, P29460, SIGLEC5, TSPAN1, and
WFDC2), the model for late-stage detection (benign vs. III–IV) of four proteins (DPY30,
PAEP, VTCN1 and WFDC2), the model for all stages (benign vs. I–IV) of five proteins (IL6,
KRT19, PAEP, SIGLEC5 and WFDC2) and the model separating early-stage from late stage
(I–II vs. III–IV) consisted of three proteins (CXCL8, KRT19 and PAEP). None of the eleven
proteins overlapped with the TCGA gene list for ovarian cancer. Two of the eleven proteins
(KRT19 and WFDC2) overlapped with our previously published 11 biomarker panel for
ovarian cancer [15]. Our multivariate models showed consistently higher AUC for all
comparisons between benign and malignant samples in comparison to clinically measured
MUCIN-16 in the patients in our two cohorts (Figure 2A–C, Supplementary Table S3). In
comparison to clinically measured MUCIN-16, we specifically found statistically significant
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higher AUCs (Bonferroni adjusted q < 0.05, DeLong’s test) in both cohorts when comparing
the benign to the early stages (stage I and II) and when comparing benign to all stages
(Stage I–IV). There was, however, no statistically significant difference when comparing
benign to late-stage cancers (stage II–IV, all p < 0.33).
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Figure 2. Results from multivariate modelling using the univariate significant biomarkers. (A) ROC
curve from validation (solid line) and training (dotted line) for separating benign controls from
ovarian cancer stages I–IV. The combined performance of clinically measured MUCIN-16 (CA125)
in the same cohorts is shown in dashed blue and the performance of the previously developed
11-biomarker panel [15] is shown as a long-dashed black line. In each ROC curve, the point estimate
of sensitivity and specificity at a cut-off (‘best-point’ for multivariate models, 35 U/mL for clinical
MUCIN-16) is indicated by a red dot. (B,C) As (A), but for separating benign controls from stages
I–II (B) and stages III–IV (C). (D) As (A), but for separating ovarian cancer stages I–II from stages III–
IV. (E) Graphical illustration of the proteins (rows) included in each of the models in A–D (columns).
A green box indicates inclusion.

We also compared the performance of the multivariate models developed here with our
previously described 11-protein biomarker model [15] and found that the new models had
higher AUCs when comparing benign to both early stage (I–II) and all stages (stage I–IV).
This difference was statistically significant in the replication cohort (Bonferroni adjusted
q < 0.05, DeLong’s test) but not in the discovery cohort. In the comparison between benign
and late-stage (stages III–IV), our previous 11-protein biomarker model showed higher
AUCs when compared to the multivariate models developed here (0.977 vs. 0.962 and
0.958 in the discovery and replication cohort, respectively), However, this difference was not
statistically significant (Figure 2C, all p > 0.42, DeLong’s test). There was also no statistical
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difference in the AUC estimates when separating late-stage (III–IV) from early stage (I–II)
cancer (Figure 2D, all p > 0.68, DeLong’s test). Lastly, we compared the sensitivity and
specificity in the replication cohort at the ‘best-point’ cut-off with a similarly defined cut-off
in our previously developed 11-protein biomarker model [15]. The new model showed
higher sensitivity and specificity for early detection (stage I–II) and overall detection (stage
I–IV), but lower sensitivity and specificity for late-stage detection (stage III–IV). None of
these differences were statistically significant (Figure 2A–C, all p > 0.11, Fisher’s exact
test). All point estimates of performance measures and statistical evaluations are given in
Supplementary Table S3.

Table 2. Results of multivariate modelling based on proteins with nominal univariate significance.

AUC a Sens b Spec b

B vs. I–IV Discovery 0.98 (0.95–1.00) 0.91 (0.83–0.98) 0.96 (0.87–1.00)
Replication 1.00 (0.99–1.00) 0.75 (0.55–0.95) 1.00 (1.00–1.00)

p-value c 0.17 0.11 1.00

B vs. I–II Discovery 0.96 (0.90–1.00) 1.00 (1.00–1.00) 0.92 (0.79–1.00)
Replication 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

p-value c 0.22 1.00 0.53

B vs. III–IV Discovery 0.96 (0.92–1.00) 0.90 (0.81–0.98) 0.96 (0.89–1.00)
Replication 0.96 (0.90–1.00) 0.72 (0.50–0.89) 0.92 (0.77–1.00)

p-value c 0.92 0.11 1.00

I–II vs. III–IV Discovery 0.78 (0.61–0.95) 0.98 (0.93–1.00) 0.60 (0.33–0.80)
Replication 0.81 (0.51–1.00) 0.81 (0.62–1.00) 0.75 (0.25–1.00)

p-value c 0.85 0.054 1.00
a Numbers for discovery and replication are given as a point estimate and 95% confidence intervals. b The point
estimate and 95% confidence interval is given at a cut-off defined in the discovery cohort at the point on the ROC
(receiver operating characteristics) curve closest to perfect classification. c p-values for difference in AUCs were
calculated using the DeLong’s method. For differences of sensitivity and specificity, a Fisher’s exact test was used.
B—Benign. Roman numerals specify ovarian cancer stage.

3.4. High Performance Models Are Not Unique

We reasoned that not only proteins showing univariate significance could be predictive
in multivariate models and subsequently built a model predicting malignancy (benign
vs. stage I–IV) using the complete set of 1463 proteins studied. Using the same frame-
work as above (Methods), a first model (m1) consisting of ten proteins (ALPP, GFOD2,
IFNG, IL6, KIR3DL1, KRT19, MEP1B, PAEP, SIGLEC5, and WFDC2) was developed. The
model achieved an AUC of 0.98 with the discovery data and 1.00 with the replication data
(Figure 3A, Table 3). Similar to the models based on univariately significant proteins, there
was no statistical difference in neither the sensitivity nor specificity between the cohorts
at the pre-defined cut-off developed in the discovery cohort (Table 3). We then repeated
the model-generating process excluding the ten proteins included in the first model (m1)
from the possible selections and built a second (m2) model predicting malignancy (benign
vs. stage I–IV). The second model (m2), with FOLR1, KLK10, KLK1, DPY30, MUCIN-16,
CES3, VTCN1, SCGB3A2, AGR2 and BRK1, achieved an AUC of 0.94 with the discovery
data and 0.95 with the replication data (Figure 3B, Table 3). There was no statistically
significant difference in the specificity between the cohorts at a pre-defined cut-off de-
veloped in the discovery cohort, although a significantly lower sensitivity was observed
(p = 0.00073, Fisher’s exact test, Table 3). Even though the two models were based on
entirely different sets of biomarkers, the individual risk scores were highly correlated both
for the discovery (Figure 3C, Spearman’s Rho = 0.90, p < machine precision = 2.2 × 10−16)
and the replication cohorts (Spearman’s Rho = 0.87, p < 1.4 × 10−6). As above, we also
compared the performance of the two models generated from the full protein dataset
with our previously (Figure 3C) developed eleven-biomarker model [15] and with clini-
cally measured MUCIN-16 (Figure 3A,B) in the patient samples analysed here. Based on
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the replication cohort, we found that the first ten-protein model (m1) had a statistically
higher AUC (all p < 7.6 × 10−4, DeLong’s test, Supplementary Table S3) than the previous
eleven-biomarker model [15]. The second model (m2) also showed a higher AUC than
the eleven-biomarker model, although the differences were not statistically significant (all
p > 0.85, DeLong’s test, Supplementary Table S3). At the ‘best-point’ cut-off, both new
models showed a non-significant higher specificity (Figure 3A,B, p = 1.0, Fisher’s exact
test, Supplementary Table S3), as compared to the previously developed eleven-biomarker
model. The first model (m1) had a non-significant lower sensitivity (p = 0.49, Fisher’s
exact test, Supplementary Table S3), while a significantly lower sensitivity (p = 3.6 × 10−3,
Fisher’s exact test, Supplementary Table S3) was observed for the second model (m2). There
was no statistical difference in neither AUC, sensitivity, nor specificity when comparing the
two models to each other (Supplementary Table S3).
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Figure 3. Comparison of two disjunct multivariate models based on all proteins. (A) ROC curve
for the first model (‘m1′, including ALPP, GFOD2, IFNG, IL6, KIR3DL1, KRT19, MEP1B, PAEP,
SIGLEC5, and WFDC2) in the validation (solid line) and training (dashed line) cohorts for separating
benign controls from ovarian cancer stages I–IV. The combined performance of clinically measured
MUCIN-16 (CA125) in the same cohorts is shown as a dashed blue line and the performance of the
previously developed eleven-biomarker panel [15] is shown as a long-dashed black line. In each
ROC curve, the point estimate of sensitivity and specificity at a cut-off (‘best-point’ for multivariate
models, 35 U/mL for clinical MUCIN-16) is indicated by a red dot. (B) As (A), but for the second
model (‘m2′, including AGR2, BRK1, CES3, DPY30, FOLR1, KLK1, KLK10, MUCIN-16, SCGB3A2,
and VTCN1). (C) Comparison of risk scores for each individual in the training cohort (circles) and
validation cohort (crosses) for the two models. Benign samples are illustrated in blue and malignant
samples are illustrated in red. The dashed light-grey lines correspond to the cut-off for malignancy in
the two models: 0.599 for the first model (y-axis) and 0.606 for the second (x-axis). (D) Univariate
results for the proteins in the first model. The x-axis indicates mean differences between cases and
controls in the discovery cohort and the y-axis represents the statistical significance of this difference
(in −log10). The two horizontal lines indicate nominal significance levels and those adjusted for
multiple hypothesis testing and is also indicated by the colours of the bars. (E) As (D), but for the
second model.
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Table 3. Results from the multivariate modelling using all proteins.

AUC a Sens b Spec b

Model 1 Discovery 0.98 (0.96–1.00) 0.93 (0.82–1.00) 0.95 (0.85–1.00)
Replication 1.00 (1.00–1.00) 0.78 (0.56–0.94) 1.00 (1.00–1.00)

p-value c 0.16 0.19 1.00

Model 2 Discovery 0.94 (0.89–0.99) 0.87 (0.76–0.96) 0.96 (0.87–1.00)
Replication 0.95 (0.89–1.00) 0.53 (0.32–0.74) 1.00 (1.00–1.00)

p-value c 0.78 0.0073 1.00
a Numbers for discovery and replication are given as point estimates and 95% confidence intervals. b The point
estimate and 95% confidence interval is given at a cut-off defined in the discovery cohort at the point on the
ROC (receiver operating characteristics) curve closest to perfect classification. c p-values for difference in AUCs
was calculated using the DeLong’s method. For the differences of sensitivity and specificity, a Fisher’s exact test
was used.

Four of the proteins (IL-6, KRT19, PAEP, and WFDC2) in the first model (m1) were
present in the 32 proteins that showed univariate significance after multiple hypotheses
adjustment, and an additional two (ALPP and SIGLEC5) were among the 175 proteins
that were nominally significant (Figure 3D). In the second model (m2), six proteins (BRK1,
DPY30, FOLR1, KLK10, MUCIN-16, and VTCN1) overlapped with the 32 proteins with uni-
variate significance (Figure 3E). No additional proteins overlapped with the 175 nominally
significant proteins. None of the proteins in either model overlapped with the TCGA gene
lists for ovarian cancer. Both models each had two proteins (KRT19, WFDC2 and FOL1R,
MUCIN-16, respectively) overlapping with our previously published 11-biomarker panel
for ovarian cancer [15].

4. Discussion

We investigated a large set of proteins for their ability to identify women with ovarian
cancer and found novel combinations of biomarkers that outperform both our previous
biomarker panel [15] and clinically measured MUCIN-16 in the cohorts used here. We
also showed that it is possible to define multiple, completely disjointed models, that have
similar performances in terms of separating benign and malignant conditions. It is likely
that future studies with additional proteins could identify similar or better performing
multivariate models for ovarian cancer prediction. There is, however, a strong need to
identify biomarkers that can aid in the early detection of ovarian cancer to increase survival.
Today, none of the available biomarkers are accurate enough to identify early-stage ovarian
cancers (high sensitivity) without also including a considerable fraction of false positives
(low specificity). False positives lead to unnecessary anxiety in women until a benign
condition has been confirmed; it also leads to costly examinations, additional burden
to the health care system, unnecessary surgery, and risks of increased morbidity and
infertility. Moreover, preoperative rupture of ovarian cancer decreases patients’ survival;
thus, diagnostic biopsies of suspected ovarian cancer adnexal lesions should be avoided. A
biomarker, single-valued or multivariate, can be tuned by choosing the most suitable cut-off
to prioritize between sensitivity and specificity. For a given model, increased sensitivity
comes at the cost of lowering specificity. Apart from TVU, molecular biomarkers, such
as the analysis of circulating tumour DNA (ctDNA), have been shown to have very high
specificity for cancer detection in general, particularly ovarian cancer [28,29]. A test based
on multiple types of biomarkers could potentially be developed that shows both high
sensitivity and specificity. The interval of testing in relation to sensitivity and specificity has
also been evaluated by previous studies and intervals as short as three [30] and four [31]
months have been suggested to improve the accuracy of MUCIN-16 by comparing the
individuals’ own baseline over time. Although shorter intervals of testing provide a good
basis for the early detection of changes in an individuals’ baseline, such strategies put
high demands on health providers, individual long-term compliance, and the cost and
throughput requirements of the tests used.
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The majority of the proteins showing univariate differences between cases and controls
in our analyses have previously been connected to ovarian cancer in the literature, either
in terms of protein levels or gene expression levels, based on either cell line studies or
patient cohorts. In contrast, and in accordance with our previous study of plasma protein
biomarkers for ovarian cancer [15], many of the proteins included in the multivariate
models do not reach univariate significance when adjusted for multiple hypothesis testing,
nor have they been clearly connected to ovarian cancer in the existing literature. In our
first set of four models for separating benign tumours from ovarian cancer (all stages,
early stages or late stages) and early stage from late stage, a total of eleven proteins was
included. A first selection was performed based on univariate nominal significance and
of the eleven proteins, six (DPY30, IL6, KRT19, PAEP, VTCN1, and WFDC2) were among
the 32 also showing significance after multiple hypothesis adjustment, but five (ALPP,
CXCL8, IL12A/B, TSPAN1, and SIGLEC5) did not. Apart from the well-documented
WCDF2, which is a clinically used biomarker for ovarian cancer today, several of the ten
proteins in the multivariate model have been specifically associated with ovarian cancer
in the literature. VTCN1 (V-set domain containing T cell activation inhibitor 1), has been
suggested as a possible target for treatment, as its overexpression has been linked to viability
and metastasis in ovarian cancer [32]. Higher expression of glycodelin A (PAEP) in ovarian
cancer tumours is associated with both a lower overall patient survival and a shorter relapse-
free survival time [33]. A recent study reported higher plasma levels of interleukin 6 (IL6)
in patients with high-grade serous ovarian cancer compared to benign tumours and healthy
controls [34]. DPY30 is suggested as an oncogene for ovarian cancer and high expression of
DPY30 is associated with reduced survival in patients [35]. Experimental evidence suggests
that a higher expression of CXCL8 in ovarian cancer cells is associated with metastasis and
angiogenesis [36,37]. TSPAN1 is reported to be overexpressed in both ovarian cancer tissue
and cell lines [38]. Keratin 19 (KRT19) is reported to be upregulated in response to the
overexpression of the kallikrein related peptidase 4 (KLK4), with suggested a downstream
increase of malignancy by lower sensitivity to paclitaxel treatment in ovarian cancer [39].
Both proteins were upregulated and nominally statistically significant (Supplementary
Table S1) in both our cohorts, but only the difference of KRT19 remained significant after
adjustment for multiple hypothesis testing. The expression pattern in tumour tissue of
the glycosylphosphatidylinositol (GPI)-anchored placental alkaline phosphatase (ALPP) is
suggested as a complementary biomarker to MUCIN-16 and WFDC2 for early detection
in serous ovarian carcinoma [40]. We found no direct link between IL12A/B with ovarian
cancer, although pre-activation with IL-12 in ovarian cancer cell lines is shown to improve
the efficacy of natural killer cell immunotherapy [41]. Finally, SIGLEC5 is suggested as
a prognostic marker for colorectal cancer [42] but we found no previously published
association with ovarian cancer.

The strengths of our study are that we analysed a large set of proteins with and
without prior association to ovarian cancer in two separate cohorts. The two cohorts were
used strictly as discovery and replication cohorts both for the univariate and multivariate
analyses. Both included cohorts contained a distribution of histology diagnoses both among
the malignant and benign samples and in both the univariate and multivariate analyses,
the obtained results were largely replicated. Our study is limited by the sample size, firstly
by the size of the replication cohort, which may not be large enough to enable statistical
significance in the replication steps, and secondly by restricting us from stratified analyses
of different histologies or stages. The current study also only included samples collected at
the time of diagnosis, and we are unable to analyse when the proposed biomarkers models
would signal malignancy, in relation to diagnose by current methods.. Compared with
the highly expressed genes associated with either favourable or unfavourable outcomes as
indicated by the TCGA, we found a small overall overlap with the proteins studied here.
There was also no clear relationship between elevated protein expression and classification
as favourable or unfavourable for cancer development. However, TCGA is based on
analysis of gene expression in biopsies from high-grade serous cancer only, while our study
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is based on circulating protein levels in plasma from a distribution of ovarian tumour
histologies.

5. Conclusions

Recent advances in the throughput of ultra-high sensitivity proteomics technologies,
such as PEA Explore, have enabled characterization of an increasingly large fraction
of the plasma proteome using very small quantities of input material. Coupling such
sensitive analysis technologies with machine learning approaches to detect combinations
of biomarkers with robust predictive power, is a powerful approach to break new ground
and enable progress beyond the current knowledge. The PEA Explore technology can be
applied not only to liquid plasma samples, but also to other clinical sample matrices, such
as dried blood spots [43,44]. This opens the possibility to establish screening programs
based on self-collected clinical samples, coupled with highly sensitive analysis of precise
molecular biomarkers, as a cost-efficient solution for the early detection of ovarian cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14071757/s1, Figure S1: Correlations in technical replicates;
Figure S2: Univariate results of genes implicated as unfavourable or favourable in relation to high
RNA expression in tumour tissue as reported in TCGA (The Cancer Genome Atlas); Table S1: Results
from univariate analysis; Table S2: Previous literature connections; Table S3: Results from the
multivariate modelling.
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Abbreviations

AGR2—Anterior gradient protein 2 homolog, ALPP—Alkaline phosphatase, placental type,
BRK1—Protein BRICK1, CES3—Carboxylesterase 3, CST3—Cystatin-C, CXCL8—Interleukin-8, DEFB4A/B—
Beta-defensin 4A/B, DPY30—Protein dpy-30 homolog, FOLR1—Folate receptor alpha, GFOD2—
Glucose-fructose oxidoreductase domain-containing protein 2, IFNG—Interferon gamma, IL12—
Interleukin 12, IL19—Interleukin-19, IL6—Interleukin-6, KIR3DL1—Killer cell immunoglobulin-like
receptor 3DL1, KLK1—Kallikrein-1, KLK10—Kallikrein-10, KLK14—Kallikrein-14, KRT19—Keratin,
type I cytoskeletal 19, LYAR—Cell growth-regulating nucleolar protein, MEP1B—Meprin A sub-
unit beta, MMP1—Interstitial collagenase, MPO—Myeloperoxidase, MUC16—Mucin-16, PAEP—
Glycodelin, SCGB3A2—Secretoglobin family 3A member 2, SERPINB1—Leukocyte elastase inhibitor,
SIGLEC5—Sialic acid-binding Ig-like lectin 5, TNF—Tumor necrosis factor, TSPAN1—Tetraspanin-1,
VTCN1—V-set domain-containing T-cell activation inhibitor 1, WFDC2—WAP four-disulfide core
domain protein 2.
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