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Simple Summary: Circular (circ)RNAs are closed RNAs able to influence a wide range of biological
systems at least in part by interacting with microRNAs. CircRNAs expressed in the hematopoietic
compartment have been progressively identified as modulators of the pathological features of hema-
tological cells. In particular, several circRNAs were found to enhance or inhibit tumor progression in
blood malignancies such as multiple myeloma. We discuss the usefulness of circRNAs as diagnostic
and prognostic markers and their potential value as therapeutic targets in multiple myeloma patients.

Abstract: Circular RNAs (circRNAs) are a novel type of covalently closed RNAs involved in several
physiological and pathological processes. They display tissue-specific expression and are constant,
abundant, and highly conserved, making them perfect markers for diagnosis and prognosis. Several
studies have proposed that circRNAs are also differentially produced in malignancies where they
have oncogenic effects. Furthermore, circRNAs affecting microRNAs modify the expression profile of
several transcription factors which play essential roles in tumors. CircRNAs within the hematopoietic
compartment were identified as modulators of mechanisms able to enhance or suppress tumor
progression in blood malignancies. Moreover, several circRNAs were suggested to confer resistance
to the conventional drugs employed in hematopoietic cancers. In this review, we highlight the
growing role and the controlling mechanisms by which circRNAs modify multiple myeloma genesis.
We propose that circRNAs can be considered as potential diagnostic and prognostic markers, can
induce chemoresistance, and might represent novel therapeutic targets for multiple myeloma.

Keywords: long non-coding RNA; circular RNA; multiple myeloma; chemoresistance; prognosis;
bortezomib; microRNA; gene expression; epigenetics

1. Introduction
General Considerations on circRNAs

In the human genome, only about 2% of the genes can be transformed into proteins,
while the remainder are represented by non-coding RNAs (ncRNAs), which are able to
control cellular functions including growth, differentiation and programmed cell death [1].
They are classified into short and long ncRNAs, corresponding to their extent, and circular
RNAs (circRNAs).

Short ncRNAs, such as microRNAs (miRNAs), and piwi-interacting RNAs, are ncR-
NAs 19–25 nucleotides long which control gene expression that affects the target mRNAs
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or suppresses translation [2–4]. Long ncRNAs (lncRNAs) can be detected by longer se-
quences and are broadly present in eukaryotic cells, with from about 5400 to more than
10,000 lncRNA transcripts in the human genome [5]. Finally, circRNAs are RNA molecules
covalently closed without 5′ or 3′ ends and a poly-A tail and have fundamental effects
in physiology and in several pathologic conditions. They were originally discovered in
an RNA virus in 1976 and afterwards in eukaryotes, with a number of the 413,657 types
having been described by 2020 [6].

According to their structure, circRNAs can be divided into several groups, such as
exonic circRNAs (ecircRNAs) made by exons, circular intronic RNAs (ciRNAs) made by
introns, and exon-intron circRNAs (EIciRNAs) made by both exons and introns [7]. In fact,
the majority of circRNAs include exons from genes that code proteins, but they also stem
from introns, untranslated regions, intergenic regions, and antisense transcripts of genes.
Furthermore, other forms of circRNAs have been identified, including fusion circRNA
(f-circRNAs), read-through circRNAs (rt-circRNAs), and mitochondria-encoded circRNA
(mecciRNAs) [8,9].

These different kinds of circRNA are located in various cell compartments and, al-
though circRNAs are produced in the nucleus, a large amount is generally located in the
cytoplasm [10,11], indicating particular procedures for their transportation and localiza-
tion [12]. Thus, ciRNAs and EIciRNA are located in the nucleus, ecircRNAs are abundant in
the cytoplasm and exosomes, f-circRNAs have been identified in all cellular compartments,
while mecciRNAs are located in the mitochondrial milieu [13]. The discovery of circRNAs
in the cytoplasm proposes an action in transcriptional and post-transcriptional control;
in fact, some circRNAs regulate gene expression through the modification of pre-mRNA
splicing and stability, and the modulation of transcription [14].

Several studies indicated that circRNAs have a specific genesis, which is different
from traditional splicing of linear RNA. In spite of general similarities, emerging data have
recognized distinctive characteristics of circRNA formation. CircRNAs are generated by
the precursor-mRNA-back-splicing of the exons of genes in eukaryotes. Back-splicing circu-
larization is a further form of alternative splicing. Recent findings have demonstrated that
back-splicing needs spliceosomal machinery and that the control of circRNA development
is regulated by both cis-regulatory elements and trans-acting factors. The level of steady-
state circRNA expression in cells can be influenced by several factors. In fact, regulation of
circRNA biogenesis starts from and is coupled with the transcription of circRNA-producing
pre-mRNA by Pol II. Moreover, cis- and trans-regulatory elements can further modify
the effectiveness of back-splicing, which is catalyzed by spliceosomal machinery. These
elements include intronic complementary sequences flanking circle formation exons, core
spliceosomal components, and other regulatory RNA-binding proteins. Finally, circRNA
turnover has also an effect in their expression levels. Back-splicing of circRNA-forming
exons could happen both co- and post-transcriptionally [15,16] (Figure 1).

After being generated, circRNAs tend to establish 16–26 base pair intra-molecularly
imperfect RNA duplexes and can be degraded by RNase L [17]. Nevertheless, due to their
closed structure, circRNAs are resilient to exonuclease RNase R [18]; thus, compared with
linear RNA, circRNAs are extremely stable, and are present in the tissues in concentra-
tions more than 20 times those of their linear parent genes [19,20]. In vitro, the half-life
of circRNAs is longer than 48 h, but circRNAs may demonstrate an even longer half-life
in vivo [21,22]. However, the processes of circRNA metabolization in vivo are indetermi-
nate, although a recent study stated that the RNA change of N6-adenosine methylation
stimulates the engagement of endonucleases to decay circRNAs [23]. It was also reported
that the circRNAs are totally metabolized by RNase L upon poly(I:C) stimulation or viral
contact [17], but circRNAs could also be discharged from cells via exocytosis, as circRNAs
have been identified in exosomes, although it is uncertain if their elimination via exosomes
can decrease their intracellular concentrations [24].
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Figure 1. Biogenesis of circular RNAs.

As far their functions, several experiments have demonstrated that circRNAs carry out
various biological actions by different mechanisms via translation, protein-binding control,
sponging of miRNAs, and gene transcriptional management [25] (Figure 2). Among these
processes, the most well-studied system is that circRNAs operate as the molecular sponge
of miRNA [26]. In particular, circRNAs can competitively join miRNAs and increase
the expression of miRNA target genes, thus managing gene expression, or can control
RNA-binding-protein function by generating RNA–protein complexes [27,28].
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2. CircRNAs and Cancer

CircRNAs have cell-, tissue- or disease-context-determined activities, so the same
circRNA may have contrasting effects in different circumstances [29]. However, several
studies reported that circRNAs were aberrantly expressed in cancer tissues and their
alteration was implicated in the occurrence and diffusion of tumors as they have been
shown to be able to control cancer dynamics in different malignancies [30].

As far as the causes of circRNA imbalances in neoplastic diseases, there are different
modalities to alter the circularization of circRNAs during the cancer process, such as the
mutation of trans-acting elements and cis-acting factors, that may alter the expression of
circRNAs [31].

CircRNA expression configurations have been evaluated in several solid cancers,
including epithelial ovarian cancer, breast cancer, and esophageal squamous cell cancer, and
specific circRNAs were revealed to be involved in the genesis of these tumors [32–34]. As for
hematological malignancies, a general evaluation of circRNA expression patterns revealed
464 altered circRNAs (317 were decreased and 147 were augmented) in acute myeloid
leukemia (AML) subjects compared with normal subjects, and among these circRNAs,
circ_0004277 was confirmed to be positively correlated with outcomes [35]. Furthermore,
circ-CBFB participated in the cell growth while reducing the programmed cell death
of chronic lymphocytic leukemia cells via affecting miR-607/FZD3/Wnt/beta-catenin
signaling [36].

In this review, we highlight the emergent role and the controlling systems by which
circRNAs influence multiple myeloma (MM) genesis. Additionally, we suggest that cir-
cRNAs can be considered as potential diagnostic and prognostic markers, can induce
chemoresistance, and might represent novel therapeutic targets for multiple myeloma.
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3. CircRNAs and Multiple Myeloma

Multiple myeloma represents 15% of hematological malignancies with 4.5 to 6 yearly
cases per 100,000 subjects, and about 86,000 new MM cases reported yearly [37].

Despite enormous progress in the diagnosis, prognosis, and therapy of MM in recent
years [38–42], the disease is still incurable [43]. Moreover, MM does not present clear
symptoms in the early phase of disease, and the early detection of the disease is challenging
with existing examinations [44]; therefore, it is essential to discover new markers and novel
MM-correlated targets through investigating its primary pathogenesis. Therefore, several
experiments have established the essential action performed by ncRNAs in the genesis of
the disease. For instance, several miRNAs were reported to control MM progression as
well as chemoresistance to MM drugs [45–47].

Several studies have also demonstrated the prospect of employing circRNAs as helpful
diagnostic and prognostic markers in MM, such that a kind of circRNA profile of the
MM can be obtained. In fact, a study reported that a circRNA signature was capable of
discriminating MM subjects from healthy controls (HCs), and there were 122 increased and
260 decreased circRNAs (in MM subjects compared with HCs), which were involved in
altered signaling pathways such as vascular endothelial growth factor (VEGF) and MAPK
pathways [48]. Furthermore, circ-PTK2 and circ-RNF217 were related to an inadequate
therapeutic response, whereas circ-AFF2 was correlated with a positive treatment response.
Several factors could justify these findings as these circRNAs might modify cell sensitivity
to chemotherapy and influence chemoresistance via affecting miRNAs. For instance, circ-
AFF2 can sponge miRNA-638, once reported to provoke chemoresistance in breast cancer
patients, thus reducing drug resistance and improving prognosis in MM subjects [49].
These results were validated by a different report stating that circPTK2 was present in
MM cell lines, enhancing MM cell vitality and diffusion and inhibiting programmed cell
death. Furthermore, circ-PTK2 controlled miRNA-638 and influenced MM cell activity,
stimulating MEK, ERK, and WNT b-catenin signaling pathways [50].

Previous analyses also suggested a modified presence of circ-MYBL2, a circRNA orig-
inating from MYBL2, in acute myeloid leukemia and cervical tumors [51,52]. A study
assessed circ-MYBL2 in MM patients, and it was remarkably reduced in MM bone mar-
row and serum compared with healthy controls [53]. Moreover, decreased circ-MYBL2
concentrations were strictly related to advanced clinical stage and poor prognosis, and
serum levels were extremely precise in diagnosing MM. Exogenous circ-MYBL2 adminis-
tration markedly inhibited MM cell survival, DNA production, and proliferation. It was
reported that circ-MYBL2 exercised its MM-suppressing action by modifying the amount
of phosphorylation of its linear isoform, in which circ-MYBL2 accelerated the joining of
cyclin F to MYBL2, inhibiting MYBL2 phosphorylation and stimulation, thus reducing the
transcription of several growth-correlated oncogenes. Relevantly, increased circ-MYBL2
decreased the tumor extent of subcutaneous xenografts in experimental animal models.

A different study analyzed another circRNA, circ-CDYL, which was considerably
increased in MM tissue and plasma samples and offered great diagnostic and prognostic
value [54]. A functional study demonstrated that circ-CDYL enhanced the survival of
MM cells and increased DNA synthesis while suppressing programmed cell death. As far
as the mechanisms, cytoplasmic circ-CDYL sponged miR-1180 to increase yes-associated
protein (YAP) [55,56], thus helping MM progression. miRNA-1180 was reported to be
severely reduced in MM and was suppressed by circ-CDYL, and the silencing of miRNA-
1180 rescued the reduced aggressive phenotype provoked by circ-CDYL decrease, thus
proposing that miRNA-1180 can act as an inhibiting factor in MM. In addition, these
findings displayed that YAP, the main effector of the Hippo signaling pathway, was a target
gene of miRNA-1180. YAP is often activated in neoplastic diseases, including MM, and an
alteration of YAP can stimulate cell proliferation and drug resistance. In the reported study,
YAP was decreased in circ-CDYL knockdown cells, and miRNA-1180 silencing reverted this
action, suggesting the existence of a regulatory axis of circ-CDYL/miR-1180/YAP in MM
cells [54], and the presence and function of this axis was confirmed in vivo by employing a
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xenograft tumor model. Thus, circ-CDYL is new promoter of MM, and affecting circ-CDYL
and its signaling pathway might represent a therapeutic possibility.

Other experiments have explored the effects of different specific circRNAs on the onset
and progression of MM. For instance, circ_0007841 was highly expressed in bone marrow
(BM) plasma cells of MM subjects and MM cell lines compared with normal controls and
normal plasma cell line nPCs. Circ_0007841 stimulated cell growth and inhibited the
programmed cell death of MM cells. miRNA-338-3p was a target of circ_0007841 in MM
cells and quickened the advancement of MM via miRNA-338-3p. In fact, BRD4 could
join miRNA-338-3p in MM cells and this miRNA exerted an anti-MM effect via targeting
BRD4, while circ_0007841 increased the stimulation of PI3K/AKT signaling through the
miRNA-338-3p/BRD4 axis [57]. Thus, circ_0007841 acted as an oncogene to stimulate the
growth and cell cycle and inhibit the programmed cell death of MM cells via segregating
miRNA-338-3p to increase the expression of BRD4. These effects were confirmed in other
studies and in other neoplastic diseases, including ovarian cancer [58,59].

A different biomarker of MM activity and progression is circ_0000142, which is highly
expressed in MM patients, and its high levels was correlated with the advanced Interna-
tional Staging System (ISS) and the Durie–Salmon staging system [60]. Increased concentra-
tions of circ_0000142 enhanced MM cell growth and diffusion and inhibited programmed
cell death, while knocking down circ_0000142 restored these effects. As far as the mecha-
nism, circ_0000142 worked as a competitive endogenous RNA, targeting miRNA-610 and
controlling AKT3 expression [61].

The human plasmacytoma variant translocation 1 (PVT1) gene codes for both circR-
NAs and linear ncRNAs. It is involved in different signaling pathways and has relevant
effects on several types of cancer. Increased PVT1 concentrations were also found in MM
BM cells compared with normal subjects, and mainly in MM patients with MYC mutations.
PVT1 knockdown in MM cell lines suppressed cell growth and stimulated programmed
cell death [62] via the re-establishment of miRNA-203a expression. In fact, PVT1 operates
as an miRNA-203a sponge and inhibition of miRNA-203a restored the PVT1- knockdown
phenotype. A similar action was proposed for circPVT1, the ectopic generation of which
increased the growth of MM models, inhibited programmed cell death, and enlarged
the stem cell compartment [63]. Furthermore, other findings suggest a circPVT1 effect in
treatment response [64,65].

Clinical significance might also be found for circ_0000190, a circRNA located in the
cytoplasm and decreased in both BM and peripheral blood, while the target of circ_0000190,
miRNA-767-5p, was increased, suggesting a negative correlation between them [66].
Circ_0000190 reduced cell survival and growth and provoked an increase in programmed
cell death of MM cells [67]. Mitogen-activated protein kinase 4 (MAPK4) is a target of
miRNA-767-5p, and increased expression of miRNA-767-5p stimulated cell proliferation
by modifying MAPK4. These results were confirmed in vivo in an MM animal experi-
mental model, where dispensation of circ_0000190 reduced tumor proliferation and dif-
fusion. These findings demonstrated that the ability of circ_0000190 to defend against
MM was obtained via the inhibition of miRNA-767-5p, which might be a cancer driver via
affecting MAPK4.

A different experiment confirmed these data, and circ_0000190 was negatively corre-
lated with ISS stages, and with several biomarkers, such as beta-2-microglobulin, lactate
dehydrogenase, and serum creatinine; the opposite trend was reported for miRNA-767-5p.
As far as clinical response, circ_0000190 was correlated with an increased overall response
rate (ORR), better overall survival (OS) and progression free survival (PFS), while miRNA-
767-5p was correlated with a poor prognosis with reduced complete response (CR) and
ORR as well as worse PFS and OS [68]. Thus, circ_0000190 and its target miRNA-767-5p
are correlated with risk stratification and prognosis in MM subjects.

A correlation with clinical findings in MM subjects was also assessed for the expres-
sion of circ_0001821 in the BM and MM cell lines [69], where its concentrations were
increased compared with healthy controls, and its levels were correlated with bone dis-
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ease, hemoglobin, and Beta-2-microglobulin. In MM subjects aged ≥60 years, increased
circ_0001821 demonstrated lower OS compared with MM patients with lower circ_0001821
expression. Moreover, the concentration of caspase-3 protein was lower in MM subjects
with high circ_0001821 expression than in those subjects with lower circ_0001821. In fact, an
increased expression of circ_0001821 provoked an inhibition of MM-cell programmed cell
death, while knockdown of circ_0001821 increased MM-cell apoptosis. Hence, circ_0001821
has an oncogenic effect in MM by controlling cell growth and apoptotic dynamics [69].

Other interesting studies have verified the predictive capability of circRNAs in MM.
In previous experiments, MM subjects who presented high C-KIT (CD117) expression
were reported to have a better outcome compared with subjects who had low C-KIT
expression [70], and 12 circRNAs derived from the C-KIT gene were displayed in K562 cells.

The expression of circ_0069767 was remarkably higher in MM patients than in healthy
subjects, but MM subjects with higher expression of circ_0069767 had longer PFS and OS,
as if the increased presence of the circRNA caused a reduction of growth and diffusion and
increased programmed cell death; moreover, knockdown of circ_0069767 provoked the
opposite biological effects. As far as the mechanisms via circ_0069767 exert their actions, it
was demonstrated that this circRNA, by sponging miRNA-636 in MM cells, controls cell
generation [71].

Finally, the presence of circRNA_101237 in MM cell lines and in the BM of MM pa-
tients with recurrent or refractory disease was remarkably increased, especially in patients
positive for 1q21 amplification, p53 or 13q14 deletion, and t(4,14) and t(14,16). Furthermore,
this circRNA was strictly correlated with the outcomes of MM subjects, as its increased
expression was linked with shorter OS and PFS. Bioinformatics evaluations recognized
circRNA_101237 networked with 11 miRNAs and 10 candidate mRNAs. This evidence
might explain the mechanism of action of this circRNA and its value as a new marker for
MM as well as its possible effect in the occurrence and development of MM [72].

The importance of angiogenesis in cancer and hematological malignancies is unques-
tionable [73–75]. However, to date, the practice of antiangiogenic treatments in MM patients
has been absolutely inadequate [76]. Some studies have tried to highlight whether circR-
NAs could act with different mechanisms with respect to their action on proliferation and
apoptotic dynamics and have demonstrated that they could also interfere with angiogenic
mechanisms.

Exosomal circRNAs were reported to be essential factors for driving angiogenesis in
tumors. An experiment recognized a difference in the expression of circRNAs in exosomes
from the blood of MM subjects for evaluating prognostic significance. These findings
established that the levels of circ-ATP10A were remarkably increased in MM subjects [77].
The bioinformatics assessment indicated that circ-ATP10A can operate as a miRNA sponge
and controls the concentrations of several growth factors, such as hypoxia-inducible factor-
1alpha (HIF1A), platelet-derived growth factor subunit A (PDGFA), VEGFB, and fibrob-
last growth factor (FGF), while the circ-ATP10A concentration was correlated with BM
microvessel density. These effects were obtained by targeting miRNA-6758-3p/miRNA-
3977/miRNA-6804-3p/miRNA-1266-3p/miRNA-3620-3p [77] (Table 1, Figure 3).

3.1. CircRNAs and Chemoresistance in MM

In spite of the progress with antimyeloma therapy, the occurrence of chemoresistance
is still the main reason for MM relapse [78]. The conditions causing chemoresistance are
composite mechanisms, including increased drug efflux pumps efficacy, reduced drug
levels, modification in DNA repair, changes in growth and programmed cell death [79],
and all types of ncRNAs appear to have a relevant effect on the occurrence of MM drug
resistance [80].
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Table 1. Effects of circRNA in multiple myeloma.

CircRNA Expression in MM Target Mechanism Ref.

circ-AFF2 Reduced in poor
prognosis MM patients miRNA-638 Effect on sensitivity to chemotherapy [49]

circ-PTK2 Augmented miRNa-638 MEK, ERK and WNT b-catenin signaling
pathways [50]

circ-MYBL2 Reduced Joining of cyclin F to
MYBL2 Inhibition of MYBL2 phosphorylation [53]

circ-CDYL Augmented miR-1180 Changed yes-associated protein [54]

circ_0007841 Augmented miRNA-338-3p Augmented expression of BRD4 [57]

circ_0000142 Augmented miRNA-610 AKT3 expression [61]

circPVT1 Augmented miRNA-203a Apoptosis [63]

circ_0000190 Reduced miRNA-767-5p Mitogen-activated protein kinase 4 [67,68]

circ_0001821 Augmented Caspase-3 protein [69]

circ_0069767 Augmented miRNA-636 Apoptosis [71]

circ-ATP10A Augmented

miRNA-6758-3p,
miRNA-3977,

miRNA-6804-3p,
miRNA-1266-3p, and

miRNA-3620-3p

Angiogenesis. Effects on hypoxia-inducible
factor-1 alpha, platelet-derived growth factor
subunit A, vascular endothelia growth factor

B, and fibroblast growth factor

[77]
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The protracted use of BTZ may cause the presence of chemoresistance in MM cells, and
to understand the mechanisms of such drug resistance, a study evaluated the correlation
between the aforementioned circRNA_101237 and BTZ resistance. In vitro studies demon-
strated that this circRNA was increased in BTZ-resistant cell lines and that circRNA_101237
increase was correlated with an inadequate response to BTZ in MM subjects, with a decrease
in M protein reduction after therapy [72].

Again, as part of the research performed to examine the mechanisms of drug resistance
to BTZ, Wang et al. evaluated the role of circ_0007841 in MM [81], also assessing its
correlations with sJAG1, a cell ligand connected with the Notch signaling pathway, which
is implicated in MM progression [82]. In MM BM samples, increased concentrations of
circ_0007841 and JAG1 and a reduction of miRNA-129-5p were discovered. Circ_0007841
knockdown drastically reduced cell growth, increased programmed cell death in vitro,
reduced chemoresistance to BTZ, and decreased tumor progression in vivo. The study
provided evidence that circ_0007841 targeted several miRNAs, such as miRNA-129-5p,
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positively controlled JAG1 production through sponging miRNA-129-5p, and suppression
of this miRNA upregulated the effect of the silencing of circ_0007841 on MM cells. Thus,
circ_0007841 might be useful as a possible therapeutic target in MM [81].

CircRNA itchy E3 ubiquitin protein ligase (circITCH) is a circRNA having a relevant
effect in the occurrence of several tumors [83], and this circRNA was reduced in MM BB
samples and cell lines as well as in BTZ-resistant MM cells and MM patients with poor
prognosis. Increased concentrations of circITCH enhanced the sensitivity of BTZ-resistant
MM cells to BTZ in both in vitro and in vivo studies. Moreover, circITCH was recognized
as a sponge for miRNA-615-3p, and PRKCD as a direct target of miRNA-615-3p. CircITCH
might operate via a miRNA-615-3p/PRKCD axis, presenting a new possible system for
preventing BTZ resistance in MM subjects [84].

Finally, Liu et al. evaluated the possible effect of circular RNA chaperonin enclosing
TCP1 subunit 3 (circ-CCT3) in BTX resistance [85]. Circ-CCT3 and BRD4 were increased,
while miRNA-223-3p was reduced in BTZ-resistant MM subjects and cells. The silencing of
circ-CCT3 enhanced the sensitivity of cells to BTZ by changing the expression of miRNA-
223-3p, which fostered BTZ sensitivity by suppressing BRD4.

Among the novel drugs used in the treatment of MM, immunomodulator drugs
(IMiDs) have also dramatically enhanced the survival of MM subjects, and drug resistance
to IMiDs represents the main problem in the therapy of these patients [86].

A report described genome expression configurations of circRNAs in IMiD-sensitive
and IMiD-resistant MM cells [87]. The authors found that genome circRNA expression
revealed IMiD sensitivity and that ciRS-7 was the most decreased circRNA in patients
with acquired resistance. The reduction of ciRS-7 connected with increased methylation
concentrations of the promoter CpG island of its host gene, LINC00632, and administration
of an EZH2 inhibitor (EPZ-6438) and a DNA methyl transferase inhibitor (5-azacytidine)
re-established the production of LINC00632 and ciRS-7, which also restored the IMiD
sensitivity of the cells.

Other studies have clarified the presence of correlations between some circRNAs and
other drugs used in the treatment of MM, such as circ_0007841, which was reported to
enhance doxorubicin resistance in MM cells via increasing ATP-binding cassette transporter
G2 (ABCG2) expression [88]. Its expression is increased in doxorubicin-resistant cells with
respect to parent cells, and the silencing of circ_0007841 in resistant cells could decrease
the half-maximal inhibitory dose, suggesting a decrease in drug resistance. These findings
propose that the combined use of an ABCG2 inhibitor and a circ_00078416 inhibitor could
be a possible treatment for MM cells [88] (Table 2).

Finally, steroids are a cornerstone of MM therapy, and circPVT1 was increased in
glucocorticoid-resistant cells, while its reduction increased sensitivity to glucocorticoid
administration, stimulated programmed cell death, and blocked cell growth in resistant
cell lines and xenograft models via an increase in caspase-3 and PARP and a decrease in
BCL2 [63].

Table 2. CircRNAs and chemoresistance in multiple myeloma.

circRNA Drug Mechanism Target Ref.

circRNA_101237 BTZ [72]

circ_0007841 BTZ sJAG1, notch signaling pathway miRNA-129-5p [81]

circITCH BTZ PRKCD miRNA-615-3p [84]

circ-CCT3 BTZ BRD4 miRNA-223-3p [86]

ciRS-7 IMiDs methylation of the promoter CpG island of
LINC00632 [87]

circ_0007841 Doxorubicin ATP-binding cassette transporter G2 [88]

circPVT1 Glucocorticoids Apoptosis Caspase-3 and PARP, BCL2 [63]
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3.2. CircRNA and MM Complications

During MM disease, light chains and polysaccharide compounds are accumulated
in tissues and can harm organ activities, causing kidney failure, anemia, hypercalcemia,
lithic lesions, and cardiac alterations [89], while the same anti-MM drugs can provoke the
occurrence of organ damage such as peripheral neuropathy and heart disease.

Peripheral neuropathy (PN) is a complication of MM, which negatively influences
MM patients’ quality of life. Several analyses have reported that about 20% of MM subjects
present with PN at the onset of their disease, and almost 75% experience chemotherapy-
induced PN (CIPN).

Exosomes are small extracellular vesicles with a size between 30 and 100 nm and can
be carried on circRNAs, mRNAs, and other noncoding RNAs [90,91] and are transferred
via endocytosis or direct union with the target cell membrane, thus allowing intercellular
interactions between the cell and remote cells or far tissues [92]. This condition is generally
recognized as a relevant promoter of cancer progression as exosomes can provoke the
stimulation, growth, and apoptosis of target cells [92]. Various studies described exosomes
as also being implicated in MM tumorigenesis [93].

An experiment reported that the levels of serum exosomal (exo) circMYC, a circRNA
originating from the MYC gene, were remarkably increased in MM patients compared
with normal controls, while the level of circMYC in circulating exosomes in BTZ-resistant
subjects was greater than that in non-resistant subjects [94]. Moreover, the amount of
exo-circMYC was associated with the Durie–Salmon and the ISS, and with deletion 17p,
and t(4;14). Statistical analysis demonstrated that a high exo-circMYC concentration was
an independent predictor of poor outcomes in MM subjects, with greater relapse rates,
greater mortality percentages, and reduced OS and PFS compared with patients with low
exo-circMYC expression [94].

Zhang et al. evaluated the relationship between serum exo-circRNAs and MM-related
PN [95] and found 265 increased circRNAs and 787 regulated circRNAs with at least a
two-fold modification in their expression in MM subjects compared with normal subjects.
Bioinformatics examination suggested that increased circRNAs possibly accelerated MM-
related PN. Furthermore, analysis revealed that chr2:2744228-2,744,407+ might provoke
MM-derived PN through the downstream miRNA and the ionotropic glutamate receptor
GRIN2B axis. Increased chr2:2744228-2,744,407+ in the serum exosomes of MM subjects
might cause a decrease in miRNA-6829-3p, an increase in GRIN2B in the serum, and also
suppressed cell survival. Furthermore, a correlation evaluation showed that the level of chr
2:2744228-2,744,407+ was positively associated with the occurrence and clinical findings
of PN, suggesting that exo-circRNA might represent a possible new therapeutic target for
MM-related PN [95].

Furthermore, clinical reports showed that up to 50% of MM subjects present with
heart damage, and cardiac complications represent one of the most severe problems in MM
subjects and can lead to heart failure provoked by cardiac amyloidosis, anemia, or by the
direct or indirect effects of some drugs employed in MM treatment [96,97].

A study evaluated the relationships between exo-circRNAs and MM-related heart
impairment [98]. Bioinformatics assessment demonstrated that enhanced expression of
circRNAs were capable of inducing MM-related myocardial failure. Exo-circ-G042080
was significantly expressed in the blood of MM patients and its expression was positively
associated with MM-correlated myocardial damage. The negative effect of circ-G042080
might be due to a downstream miRNA/TLR4 axis. In vitro studies demonstrated that
this axis might be shown in H9C2 cells cultured with exosomes and it is able to induce
aberrant autophagy. Therefore, exo-circRNAs might represent a novel diagnostic biomarker
of MM-related heart damage and a possible therapeutic target [98].

4. Conclusions

New, non-invasive diagnostic markers for MM diagnosis are particularly relevant as
the prompt identification of MM is key to enhancing survival. As such, several studies
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indicated that the circulating transcriptome is a precious spring of such markers [99,100].
Moreover, due to their great stability, circRNAs are better indicators of disease with respect
to their linear RNA as diagnostic and prognostic markers and as possible regulators of
chemoresistance in MM cells.

However, in spite of the fact that huge progress has been made in the study of circR-
NAs, there are several aspects of circRNAs that need to be investigated before they can
be incorporated into clinical practice, and numerous challenges remain to be addressed.
Indeed, although different roles of circRNAs have been described, the intimate mechanisms
of these actions in MM require further analysis. Furthermore, owing to the huge amount of
circRNAs, checking significant circRNAs is a long procedure and the low level of circRNAs
in biological samples and imperfect identification techniques prevent their extensive clinical
use [101]; moreover, procedural issues such as cross-hybridization questions in microarrays
and PCR amplification bias can hinder results [102,103].

Additionally, even the transfer of the findings obtained in in vitro experimental animal
models to in vivo models appears troublesome as low evolutionary preservation [104]
reduces the chances to employ animal models to analyze their function. Still, when con-
ducting in vitro loss-of-function analyses employing procedures such as RNA interference
(RNAi), several problems occur as the nuclear localization of most circRNAs makes RNAi
less successful [105,106]. An effective instrument to generate stable knockouts is the
clustered regularly interspaced palindromic repeats (CRISPR) technique [107]. However,
investigators must be conservative when employing this procedure for knockdown of
circRNAs as it is hard to prevent changes in the expression of protein-coding genes from
the same locus [108].

However, despite the limitations mentioned above, there is no uncertainty that the
analysis of circRNAs opens novel possibilities in the understanding of the pathophysiology
of MM and in the ability to predict response to therapy, and that it also provides new
therapeutic targets that could guarantee better survival for patients with MM.
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ABCG2 ATP-binding cassette transporter G2
BM bone marrow
BTZ bortezomib
CIPN chemotherapy-induced PN CIPN
circ-CCT3 circular RNA chaperonin-inclosing TCP1 subunit 3
circITCH circRNA itchy E3 ubiquitin protein ligase
circRNA circular RNA
ciRNAs circular intronic RNAs
CR complete response
CRISPR clustered regularly interspaced palindromic repeats
ecircRNAs exonic circRNAs
EIciRNAs exon-intron circRNAs
f-circRNAs fusion circRNA
FGF fibroblast growth factor
HCs healthy controls
HIF1A hypoxia-inducible factor-1alpha
IMiDs immunomodulator drugs
LncRNAs long ncRNAs
mecciRNAs mitochondria-encoded circRNA
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MM multiple myeloma
ncRNAs non-coding RNAs
OS overall survival
PDGFA platelet-derived growth factor subunit A
PFS progression free survival
PN peripheral neuropathy
PVT1 Human plasmacytoma variant translocation 1
rt-circRNAs read-through circRNAs
VEGF vascular endothelial growth factor
YAP yes-associated protein
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