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Pancreatic ductal adenocarcinoma (PDAC) is a biologically aggressive malignancy
showing a remarkable resistance to existing therapies and is often diagnosed at an advanced
stage, leaving only about 15–20% of patients with an option for surgical resection [1].
Despite major improvements in surgical techniques and chemotherapy regimens, the
overall 5-year survival for PDAC is currently <10% [1]. Moreover, its incidence is increasing
by up to 1% per year, and it is projected to become the second-leading cause of cancer-
related mortality by 2030 [2].

The mutational landscape of PDAC is dominated by recurrent driver mutations in
KRAS, TP53, SMAD4, and CDKN2A, which occur alone or in combination in >50% of
the cases, whereas recurrent mutations in a number of other genes, including ARID1A,
KDM6A, MLL3, TGFBR2, RBM10, and BCORL1, are found in <10% of tumors [3–5]. Gene
alterations associated with targeted therapy such as ERBB2 amplification; BRAF gene
fusions/mutations; and mutations in the DNA damage repair (DDR) genes BRCA1, BRCA2,
or PALB2 are found in a small percentage of PDAC patients [6,7]. Nevertheless, a number of
recently identified “actionable molecular phenotypes” is currently under clinical investiga-
tion [5]. For example, Casolino and co-workers performing a meta-analysis of 21,842 PDAC
genomes has estimated that the pooled prevalence of germline and somatic mutations
in DDR genes (i.e., BRCA1, BRCA2, PALB2, ATM, ATR, CHEK2, RAD51, and FANC) that
cause homologous recombination deficiency (HRD) lies between 14.5 and 16.5% of PDAC
cases [8]. Moreover, recent evidence suggests that unstable genomes as determined by
Structural Variation analysis and BRCA mutational signatures (BRCAness phenotype) can
also act as surrogate biomarkers of HRD [3,8]. Thus targeting HRD may cover not only
the germline carriers but also PDAC patient subsets harboring somatic mutations in DDR
genes or even patients exhibiting a “BRCAness phenotype” [8]. Since HRD is a predictive
biomarker of response to DNA damaging agents such as platinum and PARP inhibitors, all
of the above suggests that up to 44% of PDAC patients might benefit from these therapeutic
approaches [5,8].

Additionally, “bulk” transcriptomic profiling has identified two broad PDAC subtypes
with distinct biology, namely Classical and Basal-like, with Basal-like tumors associated
with significantly poorer outcome [4,9–14]. These subtypes are characterized by the differ-
ential expression of pancreatic specific transcription factors, such as GATA6, PDX1, and
HNF1A, which are maintained in Classical tumors and are lost in Basal-like PDACs [4,9–11].
Furthermore, these data are expanded by the results of next-generation single cell sequenc-
ing (scRNAseq) and single nucleus sequencing (snRNAseq), which provide a comprehen-
sive map of tumor cell subsets and can give us insight into chemotherapy resistance and
metastasis [15].

In addition, the tumor microenvironment (TME) of PDAC has been established as
an important player affecting disease progression and response to therapy [16–18]. The
PDAC TME is generally considered “immunologically cold”, exhibiting low numbers of
CD8+ cytotoxic T cells and high numbers of immunosuppressive immune cell popula-
tions, rendering most PDAC patients poor candidates for immunotherapy [19,20]. Indeed,
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immunotherapy response rates are very low in PDAC, limited in a rare subset of pa-
tients with microsatellite instability–high (MSI-high)/mismatch repair–deficient (dMMR)
tumors [21,22]. However, new methods such as spatially resolved transcriptomics and
multiplexed imaging modalities provide us with substantial information concerning the
interactions between tumor and immune cells, revolutionizing our knowledge about the
immune microenvironment of PDAC [15]. Moreover, the deconvolution of bulk RNA data
using validated gene signatures has demonstrated that many immune cell populations,
including T cells, B cells, and myeloid cells, as well as their subtypes contribute to complex
and heterogeneous immune profiles in the PDAC TME. Immunophenotyping of PDAC
tissues using scRNAseq, spatial transcriptomics, and multiplexed immunofluorescence has
revealed that Classical and Basal-like cell phenotypes are associated with distinct immune
microenvironments [15]. Thus, Basal-like tumors are associated with increased macrophage
infiltration and loss of cytotoxic T cells in both primary and metastatic micro-niches [23]
(Figure 1). These findings suggest that Basal-like tumors may respond to therapies that
specifically target tumor-associated macrophages (TAMs), such as Colony stimulating
factor 1 receptor (CSF1R) inhibitors [24]. However, the propencity of DDR and MSI to
induce distinct immune profiles independent of a certain molecular PDAC subtype is cur-
rently unknown. Tumor-infiltrating T cells are associated with increased overall survival in
PDAC and can potentially predict immunotherapy response [25,26]. Single cell analysis has
even showed that CD8+ T cell tumor infiltration is inversely correlated with myeloid cell
enrichment [17]. However, tumor-infiltrating CD8+ T cells can exhibit exhausted pheno-
types which can increase with disease progression [26]. Exhausted CD8+ T cell signatures
were associated with increased expression of the immune checkpoint TIGIT (i.e., T cell
immunoglobulin and ITIM domain) [15]. The ligand for TIGIT, PVR (i.e., poliovirus re-
ceptor), was expressed in tumor, endocrine, and endothelial cells and myeloid subsets,
supporting the observation that myeloid cells promote immunosuppression in PDAC [27].
Recent data also show that immune checkpoint receptors PD-1/PD-L1 (i.e., programmed
cell death 1/programmed cell death 1 ligand 1) are heterogeneously expressed in PDAC
patients and associated with distinct immune microenvironments [17,26]. In addition, it
has been shown that primary PDACs and metastatic lesions have distinct immune mi-
croenvironments [23,24,28]. These data highlight the complexity of individual patient
immune microenvironments and suggest that therapeutic approaches targeting immune
checkpoints may need to be tailored to individual PDAC patients [15,17]. It is also currently
unclear how immune microenvironments change during patient treatment. Therefore,
longitudinal single-cell studies mapping the variability of the immune microenvironment
and the cell–cell interactions between neoplastic and immune cells will be very helpful for
the improvement of immunotherapies for PDAC patients.

Many studies have demonstrated that genetic changes, such as KRAS and MYC,
can also modulate the PDAC TME and enhance its immunosuppressive nature [29–31].
Changes associated with response to immune checkpoint inhibitors (ICI) such as microsatel-
lite instability have very low prevalence in PDAC (around 1%) [22]. While BRCA1- and
BRCA2-deficient tumors are associated with increased immune infiltrates, the rates of
response to ICI are low. Recent evidence in mouse models of breast and colorectal cancer
suggest that BRCA2-deficient tumors are more susceptible to ICIs than BRCA1-deficient
tumors [32,33]. In addition, a loss of CDKN2A, which is a feature of PDAC, has been identi-
fied as a biomarker of immune checkpoint therapy resistance in solid tumors [34]. These
studies show that a diversity of events may affect the response to ICIs and suggest that, for
the administration of immunotherapy, the complex genomic and biomarker signature of
each individual tumor should be taken into consideration.

In conclusion, for the implementation of precision oncology in the management of
PDAC patients, the use of appropriate biomarkers in routine clinical care is necessary.
Cancer biomarkers detected in tumor tissue, blood, or other fluids can aid in the early
detection of PDAC or its recurrence and may have prognostic as well as predictive roles.
These biomarkers are still being discovered.
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Figure 1. PDAC (pancreatic ductal adenocarcinoma) with Basal-like phenotype with presence of 
many tumor buds (arrows) and an immunosuppressive microenvironment with many CD68+ tu-
mor-associated macrophages (TAMs) and few CD8+ and CD3+ T cells, many of which express FOXP3 
(T regulatory cells; Tregs). Tumor cells (pancytokeratin): cyan; CD68+TAMs: red; CD8+ T cells: green; 
CD3+ T cells: yellow; and FOXP3+ Tregs: white. DAPI (4',6-Diamidino-2-phenylindol): blue. Multi-
plex immunofluorescence ×300. 
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Figure 1. PDAC (pancreatic ductal adenocarcinoma) with Basal-like phenotype with presence of
many tumor buds (arrows) and an immunosuppressive microenvironment with many CD68+ tumor-
associated macrophages (TAMs) and few CD8+ and CD3+ T cells, many of which express FOXP3
(T regulatory cells; Tregs). Tumor cells (pancytokeratin): cyan; CD68+ TAMs: red; CD8+ T cells:
green; CD3+ T cells: yellow; and FOXP3+ Tregs: white. DAPI (4′,6-Diamidino-2-phenylindol): blue.
Multiplex immunofluorescence ×300.
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