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Simple Summary: Development of noninvasive diagnostic tests capable of detecting multiple cancer
types early is urgently needed. Majority of the tests that are currently in development for multi-
cancer early detection are based on next generation sequencing technology to evaluate methylation or
fragmentation patterns of circulating tumor DNAs. Here, we developed a serum-based 4-microRNA
diagnostic model, which when compared to the existing next generation sequencing-based tests,
demonstrated superior performance in detecting 12 cancer types in the largest case-control validation
cohort to date. The simplicity of our model also makes it feasible to develop an in vitro diagnostic
(IVD) test capable of decentralized testing, supporting the wide adoption and compliance in the
at-risk general population.

Abstract: Early detection is critical to reduce cancer deaths as treating early stage cancers is more
likely to be successful. However, patients with early stage diseases are often asymptomatic and
thus less likely to be diagnosed. Here, we utilized four microarray datasets with a standardized
platform to investigate comprehensive microRNA expression profiles from 7536 serum samples. A
4-miRNA diagnostic model was developed from the lung cancer training set (n = 416, 208 lung cancer
patients and 208 non-cancer participants). The model showed 99% sensitivity and specificity in the
lung cancer validation set (1 = 3328, 1358 cancer patients and 1970 non-cancer participants); and the
sensitivity remained to be >99% for patients with stage 1 disease. When applied to the additional
combined dataset of 3792 participants including 2038 cancer patients across 12 different cancer
types and 1754 independent non-cancer controls, the model demonstrated high sensitivities ranging
from 83.2 to 100% for biliary tract, bladder, colorectal, esophageal, gastric, glioma, liver, pancreatic,
and prostate cancers, and showed reasonable sensitivities of 68.2 and 72.0% for ovarian cancer and
sarcoma, respectively, while maintaining 99.3% specificity. Our study provided a proof-of-concept
data in demonstrating that the 4-miRNA model has the potential to be developed into a simple,
inexpensive and noninvasive blood test for early detection of multiple cancers with high accuracy.

Keywords: multi-cancer early detection; microRNA; noninvasive; blood-based diagnostic model

1. Introduction

The World Health Organization (WHO) estimated that there were 19.3 million new
cancer cases and 10 million cancer deaths worldwide in 2020, with most new cases from
breast (11.7%), lung (11.4%), colorectal (10.0%), prostate (7.3%), and stomach (5.6%) can-
cers [1]. Cancer survival rates decrease significantly if cancer is diagnosed at late stages.
For example, the five-year survival rate for localized lung cancers is 59%, but is only 6% for
metastatic diseases [2]. Unfortunately for many cancers, patients with early stage diseases
are typically asymptomatic and thus less likely to be diagnosed [3,4]. Therefore, detection
of cancer at early stages is critical to decrease cancer-related mortality as treatment is more
likely to be successful at early stages.
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Currently, the United States Preventive Service Task Force (USPSTF) only recommends
four cancer screenings in the general population: breast cancer mammography for women
aged 50-74, cervical cancer cytology/HPYV testing for women aged 21-65, colon cancer
colonoscopy and/or stool based testing for persons aged 50-75, and lung cancer low-
dose CT scans in smokers aged 50-80 [5-8]. However, adoption and adherence to these
screening guidelines varies widely [9,10]. The other commonly used screening method is
the testing of prostate-specific antigen (PSA) for prostate cancer. However, PSA screening
suffers from false positive results resulting in invasive prostate biopsy, overdiagnosis, and
overtreatment, and thus is not uniformly recommended by USPSTF [11]. Due to the lack
of effective screening methods for most cancer types, two-thirds of all cancer diagnoses
and three-fifths of all cancer deaths are not covered by the existing evidence-based cancer
screening guidelines that address a single cancer at a time [2]. In addition, if these guidelines
are followed sequentially, the cumulative risk of false positives could increase substantially
to greater than 50% [12]. Thus, there is an urgent unmet need to develop a test capable of
detecting multiple cancer types early and simultaneously, ideally noninvasive, such as a
blood test, which has become the cornerstone of the so-called multi-cancer early detection
(MCED) paradigm. Such a MCED test often requires very high specificity, preferably
>99%, to ensure minimum false positives in order to be able to screen the at-risk general
population.

Molecules such as microRNAs (miRNAs) may serve as biomarkers for MCED. miRNAs
are small single-stranded non-coding RNA molecules of an average of 22 nucleotides long.
miRNAs function in negative post-transcriptional regulation of gene expression primarily
by binding with complementary sequences in the 3’ untranslated region (3’ UTR) of mRNA
molecules [13]. miRNAs appear to regulate more than 50% human genes, and abnormal
expression of miRNAs has been implicated in many human cancers [14]. miRNAs are
also abundant as extracellular circulating molecules released into circulation by tumor
cells either through cell death or by exosome-mediated signaling [15]. Combined with its
remarkable stability in the blood and other body fluids, circulating cell free miRNAs have
the potential to serve as noninvasive biomarkers for cancer screening and diagnosis [16].

In the study reported here, we described the development and validation of a cir-
culating miRNA-based diagnostic signature for MCED by utilizing four large miRNA
microarray datasets, all based on a standardized microarray platform.

2. Materials and Methods
2.1. Study Design

Four microarray datasets totaling 7536 unique participants including 3604 cancer
patients and 3932 non-cancer controls were included in the current analysis, all derived
from studies originating from a Japanese nationwide research project “Development and
Diagnostic Technology for Detection of miRNA in Body Fluids” designed to characterize
serum miRNAs in over 50,000 participants across 13 cancer types using a standardized
microarray platform [17-20]. The four datasets were originally assembled to develop
diagnostic signatures for lung (GSE137140), ovarian (GSE106817), liver (GSE113740), and
bladder (GSE113486) cancers, respectively.

The lung cancer dataset has the largest sample size for a single cancer type (1 = 1566)
and non-cancer controls (n = 2178). The original lung cancer study established a 2-miRNA
diagnostic model (referred to as the “original 2-miRNA model” in this study) with high
sensitivity and specificity for the detection of lung cancer [17]. The objective of the current
study was initially set to use this dataset to develop and validate a new diagnostic model
that may out-perform the original 2-miRNA model for lung cancer detection. As datasets
for additional cancer types were identified, the new model was then evaluated for its
performance to detect other cancers.
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2.2. Participants and Serum Samples

Serum sample collection has been previously described in the original publications [17-20].
Briefly, serum samples were collected from cancer patients who were referred or admitted
to the National Cancer Center Hospital (NCCH) between 2008 to 2016 prior to surgical
operation, and stored at 4 °C for one week before being stored at —20 °C until further use.
Cancer patients who were treated with preoperative chemotherapy and radiotherapy prior
to serum collection were excluded. The serum samples for non-cancer controls who had no
history of cancer and no hospitalization during the previous 3 months were collected along
with routine blood tests from outpatient departments of three sources: NCCH, National
Center for Geriatrics and Gerontology (NCGG) Biobank, and Yokohama Minoru Clinic
(YMCQ). Serums collected from NCCH were stored in the same way as the cancer patients,
while those from NCGG and YMC were stored at —80 °C till use. The original studies
were approved by the NCCH Institutional Review Board, the Ethics and Conflict of Interest
Committee of the NCGG, and the Research Ethics Committee of Medical Corporation
Shintokai YMC. Written informed consent was obtained from each participant.

2.3. miRNA Microarray Expression Analysis

Details about microarray analysis were described in the original publications [17-20].
Briefly, total RNA was extracted from 300 pL serum, labeled by 3DGene® miRNA Labeling
kit and hybridized to 3D-Gene® Human miRNA Oligo Chip (Toray Industries, Kanagawa,
Japan) designed to investigate 2588 miRNA sequences registered in miRBase release 21
(http:/ /www.mirbase.org/, accessed on 10 January 2022). The following low-quality
samples were excluded: coefficient of variation of negative control probes >0.15; and
number of flagged probes identified by 3D-Gene® Scanner as “uneven spot images” >10.
The presence of a miRNA was determined when signal intensity was greater than mean
plus two times standard deviation of the negative control signals, and in using the negative
control signals the top and bottom 5% of the ranked signal intensities were removed.
Background subtraction was performed by subtracting the mean signal of negative control
signals (after removing top and bottom 5% as ranked by signal intensities) from the miRNA
signal. Normalization across microarrays was achieved by calibrating according to three
pre-selected internal control miRNAs (miR-149-3p, miR-2861, and miR-4463).

2.4. Diagnostic Model Development

Patients in the lung cancer dataset were divided into the same discovery and validation
sets as in the original publication (Figure 1A) [17], because (1) the discovery set was selected
by the original authors to be balanced between cancer and non-cancer with respect to age,
sex, and smoking history; (2) 50% of non-cancer participants in the discovery set were from
NCCH with the same serum storage condition as cancer patients to minimize potential bias
in miRNA candidates selection; (3) Using the same discovery and validation sets allows
direct performance comparison of the new diagnostic model with the original 2-miRNA
model. As the diagnostic model was developed from the lung cancer discovery set, after its
validation in the lung cancer validation set, we further tested its ability as a multi-cancer
diagnostic model in a combined dataset of other additional cancer types that were not used
in the model development.
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Figure 1. Case flow diagram. (A) Lung cancer dataset was split into a discovery and a validation set;
(B) Ovarian, liver and bladder cancer datasets were combined into a single validation dataset after
removing redundant samples.

Linear Model for Microarray Data (limma) [21] was performed in the discovery set to
evaluate the statistical significance of differential miRNA expression between lung cancer vs.
non-cancer. Ten-fold cross validation in the discovery set, based on the area under the curve
(AUC) of the Receiver’s Operating Characteristics (ROC) curve analysis, was performed
to determine the optimal number of miRNAs for the best diagnostic model. A diagnostic
index was calculated as a linear sum of miRNA expression levels weighted by limma
statistics. The cut-point for the diagnostic index was chosen to ensure no misclassification
of non-cancer controls in the discovery set to minimize false positives as the diagnostic
model may potentially be used as a screening test in the at-risk general public.
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2.5. Statistical Analysis

The diagnostic performance for identifying cancer vs. non-cancer was determined
by AUC of the ROC curve analysis, sensitivity, and specificity. Comparing AUC of two
ROC curves was done with roc.test function with bootstrapping method from pROC
package. Comparing paired sensitivities for the lung cancer clinical subsets was performed
by McNemar test. limma analysis was carried out using Bioconductor package limma
(http:/ /www.bioconductor.org, accessed on 27 August 2020) [21]. All statistical analysis
was performed using R version 4.0.5 (http:/ /www.r-project.org, accessed on 15 July 2020).

3. Results
3.1. Participants and Datasets

The lung cancer dataset included 1566 lung cancer patients and 2178 non-cancer
controls (Figure 1A) [17]. The ovarian cancer dataset consisted of 333 ovarian cancer
patients and 2759 non-cancer controls, as well as patients with breast, colorectal, esophageal,
gastric, liver, lung, pancreatic, and sarcoma cancers (Figure 1B) [18]. The liver and bladder
cancer datasets included 345 liver cancer/1033 non-cancer and 392 bladder cancer/100 non-
cancer participants, respectively, in addition to patients with biliary tract, breast, colorectal,
esophageal, gastric, glioma, lung, ovarian, pancreatic, prostate, and sarcoma cancers
(Figure 1B) [19,20]. With the lung cancer dataset left intact, redundant samples within the
other three datasets that showed correlations either among themselves or with samples in
the lung cancer dataset being greater than 0.99 were removed. Then, the unique samples
from the ovarian, liver, and bladder cancer datasets were then combined into a single
non-lung cancer dataset with a total of 3792 samples, including 2038 cancer patients across
12 cancer types and 1754 non-cancer controls (Figure 1B).

The lung cancer dataset was divided into the same discovery set (n = 416) and valida-
tion set (n = 3328) as the original study (Figure 1A). The discovery set included 208 lung
cancer patients and 208 non-cancer controls, matched by age, sex, and smoking status [17].
The validation set included 1358 lung cancer patients and 1970 non-cancer controls. The
patients with lung cancer included 57% male, 62% former or current smokers, 78% adeno-
carcinoma, 14% squamous carcinoma, 72% stage I, 15% stage II, and 13% stage III (Table 1).

The 392 bladder cancer patients were of mean age 68 y, 72% male, 5% metastatic, 12%
nodal positive, 77% T2 or below, and 80% high grade (Table 1). The 333 ovarian cancer
patients were of mean age 57 y, 25% stage I, 10% stage II, 55% serous, 19% clear cell, and
13% endometrioid histology (Table 1). The 348 liver cancer patients were of mean age 68y,
78% male, 37% stage I, and 33% stage II (Table 1). No detailed demographic information
and tumor characteristics for the other cancers were provided by the original studies.

Table 1. Patient and tumor characteristics for patients with lung, bladder, ovarian, and liver cancers
and demographic information of the corresponding controls.

Lun[glga*ncer Characteristics Blad%e;](iancer Characteristics Ovanﬁglc*ancer Characteristics lee[ggj‘a*ncer
n=1566 n=392 n =333 n =348
Age (mean, SD) 65 (10) Age (mean, SD) 68 (11) Age (mean, SD) 57 (12) Age (mean, SD) 68 (9)
Gender Gender Stage Gender
Male 895 (57%) Male 283 (72%) I 82 (25%) Male 268 (78%)
Female 671 (43%) Female 109 (28%) I 33 (10%) Female 77 (22%)
Smoking gg‘;gg, 1118 0% 218 (65%) unknown 3
Former/current 972 (62%) Class I 36 (10%) Histology Stage
Never 594 (38%) Class II 115 (31%) Serous 182 (55%) I 123 (37%)
Histology Class III 73 (19%) Clear cell 64 (19%) 11 108 (33%)
Adenocarcinoma 1217 (78%) Class IV 50 (13%) Endometrioid 43 (13%) 111 80 (24%)
Squamous 221 (14%) Class V 103 (27%) Mucinous 14 (4%) v 19 (6%)
Adenosquamous 18 (1%) unknown 15 Other epithelial 17 (5%) unknown 18
Small cell 23 (1%) T stage Non-epithelial 13 (4%) Child-Pugh
Other 87 (6%) <pT2 300 (77%) A 303 (88%)
Stage >pT2 90 (23%) Non-Cancer (n = 2759) B 40 (12%)
I 1126 (72%) unknown 2 Info Not Available unknown 5
I 233 (15%) Grade Virus
I-IV 203 (13%) Low 77 (20%) HBsAg+ 57 (16%)

0 4(0%) High 315 (80%) HCVAb+ 141 (41%)
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Table 1. Cont.

Lun[% 7C]a*ncer Characteristics Bladcﬁ;ﬁancer Characteristics Ovarl[a;g](;bancer Characteristics L1ve[§(§ia*ncer
Nodal status non-B non-C 147 (43%)
Non-Cancer (n = 2178) N+ 42 (12%) unknown 3
Age (mean, SD) 51 (11) NO 320 (88%)
Gender unknown 30 Non-Cancer (n = 1033)
Male 1129 (52%) M stage Age (mean, SD) 65 (10)
Female 1049 (48%) M1 17 (5%) Gender
Smoking Mo 347 (95%) Male 239 (23%)
Former/current 482 (22%) Unknown 28 Female 794 (77%)
Never 1696 (78%)

Non-Cancer (1 = 100)

Age (mean, SD) 64 (16)
Gender
Male 48 (48%)
Female 52 (52%)

* Adapted from references [17], [19], [18], [20], respectively.

3.2. Development of Diagnostic Model

Diagnostic model development was performed in the discovery set of the lung cancer
dataset, which included 208 lung cancer patients and 208 non-cancer controls (Figure 1A).
limma analysis was used to evaluate the statistical significance of differential miRNA
expression between lung cancer patients and non-cancer controls. The top 50 differen-
tially expressed miRNAs were listed in Table S1. Ten-fold cross validation showed that
a diagnostic model with the top 4 miRNAs ranked by adjusted p values (hsa-miR-5100,
hsa-miR-1343-3p, hsa-miR-1290, and hsa-miR-4787-3p) would result in the best AUC in
the ROC curve analysis (Figure 2A). A diagnostic index calculated by the weighted sum
of the 4 miRNA expression levels and normalized to the range of zero to ten showed a
near-perfect AUC value of 0.999 (Figure 2B), numerically better than the AUC of 0.993 for
the original 2-miRNA model from the original publication [17] (p = 0.16). The cut-point of
six was chosen to ensure no misclassification of the non-cancer controls in the discovery
set to minimize the false positives, which resulted in 98% sensitivity and 100% specificity
(Figure 2C), compared to 99% for both sensitivity and specificity for the original 2-miRNA
model [17].



Cancers 2022, 14, 1450

7 of 14

>

AUC of ROC

Sensitivity

Diagnostic Index

0.996

0.992

0.8

04

0.0

10

10-Fold CV B ROC of Discovery Set c Discovery Set
°°°?o°°°°o° ] spec=100% sens =98%
I ° © x 9 -
l % o [N
! ) - kel
! %o, = £ ®+
i % 2z ] o
: °, 2 < | ‘g © T ---- FLFT oo '-lF; """
: % o o c 4
! o @ g
! o -1 0 « -
! % ° AUC =0.999
! ° > | o 4
T T T T T T © T T T T T T T T
0 5 10 15 20 25 30 00 02 04 06 08 10 Non-Cancer Cancer
. . (n=208) (n=208)
No. of miRNAs 1-Specificity
ROC of Validation Set E Validation Set F Pre vs. Post
spec =99% sens =99%
x 24 x
[0) (1)
el kel
£ ® o £
L p )
S oo -l R ____ =
o Y <)
8 + gl
0 « 4 + o
AUC =0.999
o 4
T T T T T L T T
00 02 04 06 08 10 Non-Cancer Cancer Pre Post
n=1970 n=1358 n =180 n =180
1-Specificity ( ) ( ) ( ) ( )
Stage pT pN pM Histology
+
+ +
Yoy 3
+ &
+ o
: ¥ ¥ E)
+ + + ¥
+ +
+ + + +
99.6% 99.6% 97.9% 98.4% 99.4% 100% 100% |99.6% 99.3% 99.1% 100% 98.9% 100% |99.5% 98.2% 99.3% [99.3% 100% |99.2% 99.5% 100% 100% 100%
T T T T T T T T T T T T T T T T T T T T T T I
IA. 1B A ©B WA HIB IV Ta T T2a T2 T3 T4 N0 NI N2 MO Mia ADC SqCC LCC SCLC Others

n=686 n=285 n=146 n=61 n=164 n=6 n=8 n=466 n=297 n=435 n=52 n=89 n=17 n=1047n=166 n=142n=1348 n=8 n=1038n=205 n=34 n=22 n=57

Figure 2. Development and validation of the 4-miRNA diagnostic model in the lung cancer data
set. Where applicable, different colors were used to denote different subject conditions. Dotted
horizontal lines represent the cut-point for the diagnostic index of our model. (A) determination of
the optimal number (dotted line) of miRNAs for the diagnostic model by 10-fold cross validation
in the discovery set; (B) ROC analysis in the discovery set; (C) distribution of diagnostic index in
the discovery set; (D) ROC analysis in the validation set; (E) distribution of diagnostic index in the
validation set; (F) comparison of diagnostic index of paired serum samples (pre- vs. post-surgery) of
180 lung cancer patients; (G) distribution of diagnostic index in the clinical subsets of the validation
set. The percentages shown in the graph were sensitivities in each cancer subgroup.

3.3. Validation of the Diagnostic Model in the Lung Cancer Validation Set

The performance of the 4-miRNA model was evaluated in the lung cancer validation
set (n = 3328), including 1358 lung cancer patients and 1970 non-cancer controls. The
4-miRNA model achieved an AUC of 0.999 (Figure 2D), significantly better than the AUC
of 0.996 for the original 2-miRNA model [17] (p = 0.01). The new model also resulted in
99% for both sensitivity and specificity (Figure 2E), whereas the original 2-miRNA model
showed 95% sensitivity and 99% specificity [17].

Furthermore, the performance of the 4-miRNA model was assessed in clinical subsets
of the validation set, as defined by clinical stage, T stage, N stage, M stage, and Histology.
Across all clinical subsets, the 4-miRNA model showed sensitivities of approximately 99%
or above (Figure 2G, Table 2), which were superior to the sensitivities of the original 2-
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miRNA model (Table 2). In particular for early stage lung cancer, e.g., for both patients with
stage I lung cancer and patients with T1 tumors, the 4-miRNA model demonstrated >99%
sensitivity (Figure 2G, Table 2), compared to the sensitivities of 95.4 and 95.9%, respectively,
for the 2-miRNA model (Table 2). In the prevalent histological types of adenocarcinoma and
squamous cell carcinoma, the 4-miRNA model also demonstrated superior performance
(Figure 2G, Table 2), compared to the original 2-miRNA model (Table 2).

Table 2. Comparison of sensitivities in the lung cancer clinical subsets between the original 2-miRNA
model and the new 4-miRNA model.

Clinical Subsets n Original 2-miRNA Model New 4-miRNA Model p-Value *
IA 686 96.1% 99.6% <0.001
IB 285 93.7% 99.6% <0.001
ITA 146 97.3% 97.9% 0.99
Clinical Stage I1B 61 96.7% 98.4% 0.99
IITA 164 90.2% 99.4% <0.001
IT11B 6 83.3% 100.0% 0.99
v 8 100.0% 100.0% 1.00
Tla 466 96.1% 99.6% <0.001
T1b 297 95.6% 99.3% 0.003
T Stage T2a 435 93.6% 99.1% <0.001
T2b 52 92.3% 100.0% 0.134
T3 89 94.4% 98.9% 0.221
T4 17 94.1% 100.0% 0.99
No 1047 95.5% 99.5% <0.001
N Stage N1 166 95.8% 98.2% 0.289
N2 142 90.1% 99.3% <0.001
M Stage MO 1348 94.7% 99.3% <0.001
Mia 8 100.0% 100.0% 1.00
ADC 1038 95.1% 99.2% <0.001
SqCC 205 94.2% 99.5% 0.006
Histology LCC 34 97.1% 100.0% 0.99
SCLC 22 90.9% 100.0% 0.480
Others 57 96.5% 100.0% 0.480

* p values calculated by McNemar Test.

Data on paired serum samples (pre- vs. post-surgery) were also available for 180 pa-
tients. The diagnostic indices of the 4-miRNA model for post-surgery serum samples were
reduced to normal levels below the diagnostic index cut-point (Figure 2F).

3.4. Application of the Diagnostic Model in Additional Cancer Types

The performance of the 4-miRNA model was further assessed in the combined dataset
of 3792 patients, including 2038 cancer patients across 12 different cancer types and
1754 non-cancer controls. The bladder, liver, and ovarian cancers had the largest sam-
ple sizes with >300 patients in each. Except for breast cancer in which the 4-miRNA model
did not perform, the 4-miRNA model showed very strong performances with AUCs > 0.95
in biliary tract, bladder, colorectal, esophageal, gastric, glioma, liver, ovarian, pancreatic,
and prostate cancers, and an AUC of 0.876 in Sarcoma (Figure 3A). Accordingly, the 4-
miRNA model demonstrated high sensitivities in the range from 83.2 to 100% for biliary
tract, bladder, colorectal, esophageal, gastric, glioma, liver, pancreatic, and prostate cancers,
and reasonable sensitivities of 68.2 and 72.0% for ovarian cancer and sarcoma, respectively
(Figure 3B). In addition, for the 1754 non-cancer controls independent of those included in
the lung cancer dataset, the 4-miRNA model maintained a high specificity of 99.3%.
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Figure 3. Performance of 4-miRNA diagnostic model in the datasets of additional cancers. (A) ROC
analysis; (B) distribution of diagnostic index the 4-miRNA model. The percentages shown in the
graph were sensitivities of each cancer type and specificity of non-cancer controls. Different colors
denoted different subject conditions.

A further sensitivity analysis with an adjusted diagnostic index cut-point of 5.1 that
would lower the specificity to 95% resulted in increased sensitivities across all 11 cancer
types, demonstrating sensitivities of >90% across ten cancer types with the exception of
76.5% sensitivity for sarcoma (Table 3).
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Table 3. Comparison of sensitivities of the 4-miRNA diagnostic model in additional cancer datasets
based on the default cut-point vs. alternative cut-point that resulted in 95% specificity.

Default Cut-Point Based on 99% Alternative Cut-Point Based on 95%
Specificity Specificity

Biliary Tract Cancer 97.5% 100.0%
Bladder Cancer 98.2% 99.2%
Colorectal Cancer 85.8% 91.6%
Esophageal Cancer 84.7% 95.2%
Gastric Cancer 100.0% 100.0%
Glioma 87.5% 97.5%
Liver Cancer 84.2% 92.5%
Ovarian Cancer 68.2% 90.1%
Pancreatic Cancer 83.2% 95.3%
Prostate Cancer 92.5% 97.5%
Sarcoma 72.0% 76.5%

4. Discussion

In this study, we report on the development and performance evaluation of a 4-miRINA
diagnostic model for multi-cancer early detection. We demonstrated that in the large in-
dependent set of 7120 participants including 3396 cancer patients and 3724 non-cancer
individuals, the 4-miRNA model can detect 12 cancer types (biliary tract, bladder, col-
orectal, esophageal, gastric, glioma, live, lung, ovarian, pancreatic, prostate, and sarcoma)
simultaneously with high sensitivities (80-100% for ten cancer types, and ~70% for two
cancer types) while still maintaining a very high specificity of 99% that is typically required
for a screening test to be useful in at-risk general population. To our knowledge, this is the
first MCED diagnostic model based on circulating cell-free microRNAs. It is interesting to
note that the diagnostic index for lung cancer patients decreased to the levels of non-cancer
controls after tumor resection, suggesting that the diagnostic model might have the poten-
tial to be used to monitor future tumor recurrence. While experimental investigation of the
biological roles of the four microRNAs in carcinogenesis is beyond the scope of the current
study, two of the four miRNAs had been studied previously in cancer. hsa-miR-5100 has
been found to be overexpressed in cancers of lung, gastric, pancreatic, and oral squamous
cell carcinoma [22-26], while hsa-miR-1290 was overexpressed in cancers of colorectal,
lung, glioma, and oral squamous cell carcinoma [27-30].

Noninvasive screening tests analyzing circulating nucleic acids and/or proteins have
become the driving force of the MCED campaign with significant progress being made
recently. Nearly all of the tests that are being developed for MCED are based on the
evaluation of circulating tumor DNAs, and most utilize next generation bisulfite sequencing
technology to evaluate the methylation patterns of these tumor DNAs [31-34]. Two such
tests, Galleri and PanSeer, are developed as methylation-based epigenetic signatures [31,33].
In the analysis of the case-control study of the Circulating Cell-free Genome Atlas (CCGA),
Galleri interrogated >100,000 methylated regions and showed that the sensitivity for 12 pre-
specified cancers (anus, bladder, colon/rectum, esophagus, head and neck, liver/bile-
duct, lung, lymphoma, ovary, pancreas, plasma cell neoplasm, stomach) was 67.6% for
patients with stage I-1III disease (1 = 874) and increased to 76.3% (1 = 1346) when stage
IV cancer was included, while reaching a 99.3% specificity based on 1254 non-cancer
controls [31]. On the other hand, PanSeer assay which targeted only 477 methylated
genomic regions retrospectively analyzed plasma samples from a group of asymptomatic
individuals enrolled in a longitudinal cancer monitoring study, and demonstrated a high
sensitivity of 95% in 98 individuals who later were diagnosed with one of five cancers
(stomach, esophageal, colorectal, lung, and liver cancer) within four years of blood draw
(pre-diagnosis samples), but with a lower specificity of 96% in 207 healthy controls [33].
However, what was puzzling with PanSeer was that when it was evaluated in 113 post-
diagnosis plasma samples, the test only showed a lower 88% sensitivity [33]. Another
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test called DELFI, based on the genome-wide analysis of cell-free DNA fragmentation
patterns by next generation sequencing, achieved a 73% sensitivity across seven cancers
(n = 208, breast, bile duct, colorectal, gastric, lung, ovarian, and pancreatic) and 98%
specificity (n = 215) [34]. Finally, CancerSEEK, a test combining the measurement of nine
protein biomarkers and detection of mutations of 16 genes in circulating cell-free DNA,
showed ten-fold cross-validations and median 70% sensitivity (n = 1005) across eight
cancers (n = 1005, ovary, liver, stomach, pancreas, esophagus, colorectum, lung, and breast)
and 99% specificity (n = 812) [32]. In summary, the current MCED tests in development
generally showed sensitivities in the range of 60-70% when a high specificity of 99% was
mandated. Compared to these tests, our diagnostic model was much simpler with only
4 miRNAs and yet demonstrated substantially higher sensitivities in the range of 80-100%
for 10 out of 12 cancer types studied with a large cohort of over 7000 participants. It is
worthy of note that a simple diagnostic model not only costs significantly lower, but also
can be developed into an in vitro diagnostic (IVD) test using conventional technology
platform such as RT-PCR capable of decentralized testing, which has an advantage over
NGS-based tests that are usually implemented as a laboratory developed test (LDT). These
characteristics are important to drive the wide adoption and compliance of MCED tests as
they are intended to target high-risk or at-risk general public.

Among the 13 cancer types examined in this study, only breast cancer was not detected
successfully by the 4-miRNA diagnostic model. While the reason for this underperfor-
mance was not clear, it may indicate that breast cancer has a different miRNA expression
profile and/or different shedding pattern of miRNAs into the bloodstream. Interestingly,
Galleri and CancerSEEK also showed poor sensitivity of 30.5 and 33% in breast cancer,
respectively [31,32]. Nevertheless, the poor performance in breast cancer may not be clini-
cally important because mammography screening has been very effective in detecting early
stage breast cancer and decreasing breast cancer mortality [35].

The ultimate diagnostic performance and clinical value of these MCED tests has to
be established in large prospective screening trials with asymptomatic individuals. In
the DETECT-A trial enrolling more than 10,000 asymptomatic women, 96 cancers were
identified across ten cancer types, CancerSEEK showed a sensitivity of 27%, and that
increased to 52% when adding those detected by standard-of-care screening tests [36]. In
addition, CancerSEEK, when combined by PET-CT scan, showed a specificity of 99.6%
and a positive predictive value (PPV) of 40.6%. On the other hand, in the interim analysis
of 4033 participants from the prospective PATHFINDER study of Galleri test, 40 had a
positive test result, 18 of them were confirmed to have cancer leading to a PPV of 45% [37].
For our 4-miRNA diagnostic model, assuming 1% cancer incidence rate and a conservative
average sensitivity of 85 and 99.3% specificity, our model would provide a PPV of 55%
when screening asymptomatic individuals. This is significantly higher than the PPVs for the
four USPSTF recommended single cancer screenings, which range from 3.7 to 4.4% [38-40].

Our study has limitations. First, while we have access to the detailed patient-level
clinical data for lung, bladder, ovarian, and liver cancer patients in the respective datasets,
the clinical stage information is only available for lung, ovarian, and liver cancer patients.
The sensitivity for stage I lung, ovarian, and liver cancer was 99.6, 71.6, and 87.2%, re-
spectively, similar to the sensitivities for all lung, ovarian, and liver cancer patients. In
addition, the sensitivities for biliary tract, bladder, and gastric cancers were very high
(>95%), indicating the performance for these cancers is likely to be high even in early stage
cancers. This is in contrast to other MCED tests where the sensitivity for early stage cancers
was often substantially lower than late stage ones. For example, Galleri and CancerSEEK
detected stage I cancers with a sensitivity of 16.8 and 43%, respectively [31,32]. Second,
demographic data were lacking for non-cancer individuals in the combined dataset of
other additional cancer types, thus we could not evaluate the potential bias due to the
imbalance of such factors between cancer vs. non-cancer for those cancer types. However,
such information was available for the lung cancer dataset. Analysis of ROC curves and the
distribution of diagnostic index across age and gender groups in the lung cancer dataset
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showed no apparent bias in the performance of 4-miRNA model due to age and gender
imbalance (Figure S1). Individual patient-level smoking information in the lung cancer
dataset was not provided by the original publication. However, given that smoking status
was matched in the discovery set to minimize potential miRNA selection bias and the
near perfect performance of the 4-miRNA model in the lung cancer dataset, smoking was
unlikely to significantly impact the diagnostic performance. Third, the cancer patients and
the non-cancer individuals were recruited from different hospitals with different serum
storage conditions. Among the 1754 non-cancer controls in the combined cancer dataset,
139 were from the same hospital (NCCH) as the cancer patients, and they did not show
significantly different diagnostic index from those recruited from the other two hospitals
(mean diagnostic index: 3.25 vs. 3.33 for NCCH vs. non-NCCH, p = 0.41). Therefore,
different serum storage conditions may not contribute apparent bias in the results. Finally,
our current diagnostic model is developed to detect cancers, but is not able to identify the
tissue of origin. Research is currently ongoing to identify tissue-specific miRNAs that allow
the prediction of tissue of origin. In addition, the 4-miRNA diagnostic model will be used
together with PET scan and other imaging technology to not only confirm, but also localize
the cancers, similar to how CancerSEEK was used in cancer screening [36].

We acknowledge that our study was a bioinformatics analysis of publicly available
microarray datasets. While we were able to develop and evaluate the performance of a
4-miRNA diagnostic model for lung cancer and subsequently other additional cancers,
wet-bench experimental investigations of the roles of the four microRNAs in carcinogenesis
will provide mechanistic understanding of the cancer prediction power of these miRNAs.
Furthermore, recruiting an additional cohort using a comparable or alternative technical
platform to further validate the 4-miRNA model will be a critical step before the model
could find its way towards clinical application. These will be the focus of our future work,
which is beyond the scope of the current study.

5. Conclusions

In summary, our study has provided proof-of-concept data for a simple and affordable
blood-based diagnostic test that detects multiple cancers. The 12 cancer types that were
detected in this study account for almost 380,000 (~62%) estimated cancer deaths in the
US in 2021 [2]. While the early detection of these cancers should conceivably reduce the
cancer-related deaths, the ultimate determination of clinical performance and clinical utility
will require the evaluation in large prospective studies with asymptomatic individuals
from the intended use population.

6. Patents

A.Z. and H.H. have a pending patent on a microRNA-based diagnostic model for
multi-cancer early detection, based on the data included in this article.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/cancers14061450/s1, Figure S1: ROC analysis and distribution
of diagnostic index across age and gender groups in the lung cancer dataset; Table S1: Top 50
differentially expressed miRNAs from the lung cancer discovery set.
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