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Simple Summary: Hypoxia is defined as the inadequate supply of oxygen in tissues. Regions of
acute and chronic hypoxia are a universal feature of the tumor microenvironment and a known
driver of tumor progression and therapeutic resistance. As oxygen levels decrease, transcription
factor HIF-1α and HIF-2α stabilize and positively regulate the hypoxic response, modulating many
of the cell’s defining functions. As a result, HIF-α activation in response to tumor hypoxia can drive
tumor progression, making HIF-1α and HIF-2α the primary targets for therapeutic intervention.
However, although HIF-α can both sequentially and differentially regulate the hypoxic response, the
role of HIF-2α is vastly under-considered. In this review, we discuss the role of HIF-2α in physiology
and tumor progression and the differences between HIF-1α and HIF-2α in structure, function, and
regulation of the hypoxic response. Notably, we conclude that cancer therapeutics which target
HIF-2α have the potential to supplement current solid tumor fighting strategies.

Abstract: Inadequate oxygen supply, or hypoxia, is characteristic of the tumor microenvironment
and correlates with poor prognosis and therapeutic resistance. Hypoxia leads to the activation
of the hypoxia-inducible factor (HIF) signaling pathway and stabilization of the HIF-α subunit,
driving tumor progression. The homologous alpha subunits, HIF-1α and HIF-2α, are responsible for
mediating the transcription of a multitude of critical proteins that control proliferation, angiogenic
signaling, metastasis, and other oncogenic factors, both differentially and sequentially regulating
the hypoxic response. Post-translational modifications of HIF play a central role in its behavior as a
mediator of transcription, as well as the temporal transition from HIF-1α to HIF-2α that occurs in
response to chronic hypoxia. While it is evident that HIF-α is highly dynamic, HIF-2α remains vastly
under-considered. HIF-2α can intensify the behaviors of the most aggressive tumors by adapting
the cell to oxidative stress, thereby promoting metastasis, tissue remodeling, angiogenesis, and
upregulating cancer stem cell factors. The structure, function, hypoxic response, spatiotemporal
dynamics, and roles in the progression and persistence of cancer of this HIF-2α molecule and
its EPAS1 gene are highlighted in this review, alongside a discussion of current therapeutics and
future directions.

Keywords: HIF-2α; HIF-1α; tumor microenvironment; tumor hypoxia; hypoxia-inducible factor

1. Introduction

Hypoxia, the inadequate supply of oxygen in tissues, is an intrinsic property of the
tumor microenvironment (TME), and is present in nearly all solid cancer sites [1,2]. Tumor
hypoxia leads to the activation of the hypoxia-inducible factor (HIF) signaling pathway.
HIFs are α,β heterodimeric transcription factors that maintain oxygen homeostasis by
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mediating the expression of over 1000 genes involved in modulating many of the cell’s
defining functions, including metabolic remodeling, angiogenic signaling, differentiation,
and migration [3]. As a result, HIF activation in response to tumor hypoxia can drive tumor
adaptation and development. In fact, hypoxia is a known poor prognosis marker, driving
therapy resistance [4,5], heterogeneity [6], angiogenesis [7,8], metastasis [9], and overall
tumor progression [10,11]. The complex capabilities and development of tumors, rational-
ized as the “hallmarks of cancer”, are all influenced by hypoxia in the TME, positioning
hypoxia at the forefront of tumor progression [12,13]. Thus, exploiting the HIF pathway for
therapeutic intervention is a potential strategy for treating solid cancers and is the subject
of considerable current research in the fields of cellular biology and oncology.

HIFs are composed of three α-subunits (HIF-1α, HIF-2α, and HIF-3α), also known as
the oxygen-sensing subunits, and three nuclear β-subunits (HIF-1β, HIF-2β, and HIF-3β).
Molecular oxygen concentrations negatively regulate the stability of the α-subunit through
a hydroxylation reaction which initiates the ubiquitin–proteasome degradation pathway.
As cellular oxygen levels decrease, HIF-α stabilizes and translocates to the nucleus, where
it can dimerize with HIF-β. Dimerization of any α-subunit with any β-subunit is sufficient
to become a functional transcription factor, although individual subunits can also modulate
aspects of cellular processes, including the synthesis of DNA, RNA, and proteins to main-
tain oxygen homeostasis [14,15]. HIF-1α and HIF-2α positively regulate the HIF response
and are considered to be the primary targets for therapeutic intervention [16,17]. HIF-1α is
the only α-subunit that is both constitutively transcribed and ubiquitously expressed, and
therefore has been the primary focus of hypoxia research since its discovery in 1991 [18–20].
Namely, the structure [21], function [22], and role of HIF-1α in tumor progression [23] have
been thoroughly reviewed. HIF-2α is highly homologous to HIF-1α, with 48% conserved
amino acid identity, primarily in the structural and functional motifs. As a result of these
similarities, HIF-1α and HIF-2α share many defining features that distinguish them as
primary targets, including negative relationships with oxygen, roles as hypoxia-induced
transcriptional activators, and DNA binding domains [17]. However, despite this homology,
HIF-2α exhibits vastly different and distinct expression patterns, physiological roles, regula-
tory controls, and gene specificity in oxygen homeostasis compared to HIF-1α. Specifically,
while HIF-1α is ubiquitous, HIF-2α is primarily expressed in highly vascularized organs
like the heart, liver, lung, brain, kidney, intestines, pancreas, and uterus [24–26]. In addition,
despite many overlapping downstream targets and the same DNA binding domain, HIF-1α
and HIF-2α have independent binding sites, targets, and optimal oxygen concentrations,
with HIF-2α mediating the chronic hypoxic response [27]. In general, HIF-1α induces
genes that regulate metabolic reprogramming, vascularization, apoptosis, and nitric oxide
production, while HIF-2α contributes to controlling oxidative stress, RNA transport, cell
cycle progression, and vascular remodeling [28]. Recently, it was discovered that HIF-2α
evolved after HIF-1α and is only found in vertebrates, while HIF-1α is phylogenetically
conserved in metazoans [29]. This discovery suggests that vertebrates require additional
oxygen regulation beyond what HIF-1α provides and that HIF-2α may have a more diverse
role than previously believed. Therefore, it is evident that the hypoxic cellular response is
dynamic, spatiotemporally regulated, and context-dependent, with differential and even
sequential HIF-1α and HIF-2α activity. Similarly, the TME resembles the hypoxic response
where spatiotemporal dynamics define solid tumor progression [30]. Hence, it is of no
surprise that hypoxia is associated with poor prognosis. Thus, further elucidating the role
of HIF-2α in both health and tumor progression may lead to novel targets and approaches
to overcoming tumor hypoxia.

Tumor hypoxia leads to resistance to standard cancer therapies, specifically radio-
therapy and chemotherapy [31]. Currently, immunotherapy and targeted therapy have
emerged as the standard of HIF-targeting cancer therapeutics. Indirect targeting of the HIF-
pathway has shown clinical success in treating solid cancers, with multiple downstream
HIF-1α inhibitors developed and FDA approved. For instance, the anti-VEGF monoclonal
antibody bevacizumab (Avastin) was first approved in 2004 for the treatment of colorectal
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cancer in combination with chemotherapy, and has since expanded to the treatment of
non-squamous non-small cell lung cancer (NSCLC), ERB2 negative breast cancer, renal
cell carcinoma, and glioblastoma [32]. In addition, bevacizumab was the fifth top-selling
monoclonal antibody in 2018, emphasizing its clinical benefit [33]. However, there are
currently no FDA-approved direct HIF inhibitors to treat solid cancers [34]. A 2011 pilot
study suggested topotecan (Hycamtin), an FDA-approved chemotherapeutic agent autho-
rized for certain solid cancers, as an HIF-1α-targeting cancer therapeutic agent because
of its ability to inhibit HIF-1α independently from topoisomerase 1 [35,36]. However, the
results failed to allow topotecan as a HIF-targeting cancer therapeutic agent because of high
toxicity and low specificity [37]. This result highlights the complexity of the HIF pathway
and suggests that targeting HIF-1α directly and independently can influence therapeutic
efficacy. Additionally, the hypoxic response and the TME are complex. The incorporation
of HIF-2α will introduce the spatiotemporal control of the hypoxic response along with
novel direct and indirect targets. We propose that the next generation of hypoxia-targeting
therapeutic agents will require a dynamic approach to treatment, utilizing both HIF-2α and
HIF-1α, mimicking the native hypoxic response and TME. Therefore, considering the role
of HIFs in regulating cellular oxygen homeostasis and tumor progression, a comprehensive
review of HIF-2α may be necessary to prompt the next generation of hypoxia physiology
and pathophysiology research with the end goal of novel therapeutics. In this review, we
elucidate the role and regulation of HIF-2α in oxygen homeostasis over the lifetime of the
cell in terms of transcription, translation, and protein stability, contrasting HIF-1α when
necessary. Then, we review the role of HIF-2α in tumor progression, with emphasis on the
spatial and temporal dynamics of the TME. Finally, the consequences of hypoxia on cancer
therapy and current therapeutic interventions will be discussed, including our take on the
future of hypoxia-mediated research.

2. Role of HIF-2α in Development

HIF-2α was first discovered and cloned in 1997 by four individual groups [38–41].
This discovery came six years after HIF-1α was cloned, revealing the first insights on how
cells sense and respond to hypoxia [18,19]. Each group named the newly discovered protein
differently, but the accepted naming convention is that the gene, EPAS1 (endothelial PAS
domain protein 1), encodes the protein HIF-2α.

Knockout mouse models of HIF-2α−/−, compared to HIF-1α−/−, were the first to
suggest independent roles. Both HIF-1α−/− and HIF-2α−/− mice resulted in prema-
ture death at day E10.5, but the cause of death was different for each set. HIF-1α−/−
mice exhibited mass cell death and drastic and atypical vascular regression, malforma-
tions, and remodeling [15,42,43], while HIF-2α−/−mice died due to bradycardia (failed
catecholamine synthesis), respiratory distress syndrome (inadequate alveolar type 2 cell
surfactant production), and failed fusion and assembling of primary vasculature [44–46].
Later developmental studies using congenic mouse F1 hybrids that carried a null EPAS1
allele observed hepatosteatosis, cardiac hypertrophy, pancytopenia, metabolic crisis (anion-
gap acidosis and altered mitochondrial intermediates), lower body weight, and premature
death [47]. Thus, this indicates that both HIF-1α and HIF-2α are essential to oxygen
homeostasis, but HIF-2α has a distinct role.

Originally it was suggested that HIF-2α was only expressed in endothelial cells,
hence the name EPAS1. Now, HIF-2α is known to display spatial expression patterns,
being primarily expressed in highly vascularized organs such as the heart, liver, lung,
brain, kidney, intestines, pancreas, and uterus [24–26]. Within those organs, HIF-2α also
exhibits cell-specific expression patterns, with parenchymal expression observed in the
intestines and liver; nonparenchymal expression in the kidneys, pancreas, and brain; and
uniform distribution observed in the myocardium [26]. Altogether, this contributes to
lung maturation [44], catecholamine homeostasis and developmental cardiac function [45],
reactive oxygen species (ROS) maintenance and mitochondrial homeostasis [47], vascular
remodeling [46], iron homeostasis [48,49], angiogenesis in the retina [50], and is the primary
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mediator of erythropoiesis [50–53]. The differential effects that HIF-2α exhibits on the
pathology of knockout mice, its diverse roles, and tight spatiotemporal regulation reveals
the benefits of HIF-2α in both the development and homeostasis of vertebrates.

2.1. Structure of EPAS1

EPAS1 is located on chromosome 2, contains 16 exons, and has a promoter region that
spans approximately−1988 bp to +100 bp from the transcription start site (TSS) (Figure 1) [54].
Constitutive transcription requires a careful balance of evolutionary conservation and
adaptability. In fact, 91% of the EPAS1 promoter, region −1823 bp to +83 bp from the
TSS, is classified as a CpG island (GC content: 61%, O/E ratio: 0.6, length: 1907 bp) [55].
CpG islands are widely associated with the TSS, and overlap with transcriptional reg-
ulatory regions, including enhancers, repressors, and promoters [56]. These “CG”-rich
regions, especially promoters, are generally protected from methylation by histone acetyl-
transferases, contributing to genomic evolutionary conservation by minimizing epigenetic
regulation [57–59]. An intergenic and intragenic CpG island (region −756 bp to +2090 bp
from the TSS) was identified in EPAS1 to be a spot for transcription factor binding and
histone acetylation, indicating high levels of gene expression and modularity [60–62].
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2.2. Genetic Variations of EPAS1

Identification of single nucleotide polymorphisms (SNPs), haplotypes, indels, and
transcriptional regulators within EPAS1 indicate how the hypoxic response and oxygen
homeostasis are adaptive at the DNA level. Unique haplotypes in EPAS1 are associated with
a high-altitude adaptation in native Tibetans [54,63,64], Tibetan dogs [65], and Himalayan
wolves [66], indicating that EPAS1 is highly subject to positive selection in low oxygen
environments. Specifically, an SNP found within the promoter region of EPAS1 (rs56721780:
G>C) is common to the Tibetan population. This mutation decreases the binding of the
transcriptional repressor IKAROS family zinc finger 1 (IKZF1) to the EPAS1 gene, leading
to increased expression of HIF-2α. Similarly, an insertion mutation found within the EPAS1
promoter at the −742 indel is common in Tibetans and provides a binding site for the
transcriptional activator specificity protein 1 (Sp1), which also increases the expression
of HIF-2α [54]. A genotype comparison between Tibetan and Chinese Han populations
revealed three intronic EPAS1 SNPs (rs13419896, rs4953354, and rs1868092) specific to
Tibetans that directly correlated with low hemoglobin concentration [67,68].

2.3. HIF-2α Mediates Hypoxia-Induced Translation

Translation is one of the most ATP-consuming processes in cells, especially cap-
dependent translation [69]. In an effort to conserve energy and maintain oxygen home-
ostasis in response to hypoxia, overall cellular protein translation is suppressed up to 93%,
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requiring alternative hypoxia-induced translation pathways [70]. While HIF-dependent and
HIF-independent pathways contribute to this suppression (see review by Chee et al. [71]),
HIF-2α can mediate cap-dependent oxygen-independent translation [71,72].

During periods of low oxygen, HIF-2α, RNA-binding motif protein 4 (RBM4), and
eukaryotic translation initiation factor 4E type 2 (elF4E2) can form the HIF-2α:RBM4:eIF4E2
complex which binds to RNA hypoxic response elements (rHREs). RBM4 and elF4E2 are
typically associated with translational repression, but they switch to translational regulators
during periods of low oxygen [73,74]. The HIF-2α:RBM4:eIF4E2 complex is assembled
on rHREs, a short ribonucleotide sequence similar to RBM4 binding sites, except for
containing a “CCG” motif located in the 3′ untranslated region (UTR) of hypoxia-induced
target genes [72]. Formation of the HIF-2α:RBM4:eIF4E2 complex on rHREs enables
binding to the 7-methylguanosine 5′ cap on mRNAs, resulting in cap-dependent translation
independent of eIF4E. Both epidermal growth factor receptor (EGFR) and insulin-like
growth factor-1 (IGF1R) contain rHREs and are translated by the HIF-2α:RBM4:eIF4E2
complex [75].

2.4. Translational Regulation of HIF-2α

RNA binding proteins (RBPs) and microRNAs (miRNAs) are two classes of regulatory
molecules that can influence translation rates by binding to the 3′ or 5′ UTR of specific
targets. Two RBPs, iron regulatory protein (IRP) 1 and 2, can interact with HIF-2α mRNA,
repressing its translation rate [76]. In addition, Zimmer et al. showed that the translational
repression of HIF-2α is predominantly regulated by IRP1 [77]. The 5′ UTR of HIF-2α mRNA
contains a conserved iron response element (IRE), slowing HIF-2α translation when both
oxygen and iron concentrations are low [78]. This iron-mediated feedback mechanism is
specific to HIF-2α because it is the prime mediator of erythropoiesis, preventing excessive
red blood cell production from disrupting oxygen delivery. Additionally, miR-30a-3p,
miR-30c-2-3p, and miR-145 were shown to repress HIF-2α translation by binding to the 3′

UTR [79,80].

2.5. Structure of HIF-2α

HIFs constitute a family of basic helix-loop-helix/PER-ARNT-SIM (bHLH-PAS) het-
erodimeric transcription factors. The bHLH-PAS family contains highly conserved struc-
tural domains that distinguish them as transcriptional regulators, accounting for the high
homology of HIF-1α and HIF-2α (Figure 2) [81]. The N-terminal region of the protein
includes the most evolutionary conserved motifs, specifically the bHLH domain and PAS
domain. The bHLH domain is responsible for DNA binding and contributes to protein
dimerization. The PAS domain is composed of PAS-A, PAS-B, and the PAS-associated-C-
terminal (PAC), which ensures gene selectivity, heterodimerization specificity, and enables
binding of post-translational modifiers [82,83]. In contrast, the C-terminal region is the
most variable part of the protein, containing transactivation domains (TADs) and repres-
sion domains that give the bHLH-PAS family their diverse functions. HIF-2α contains the
evolutionary conserved bHLH-PAS motifs in the N-terminal region along with two TADS:
N-terminal TAD (N-TAD) and C-terminal TAD (C-TAD). In addition, HIFs selectively bind
to hypoxia response elements (HREs) which have the core DNA sequence 5′-RCGTG-3′,
and are located in the promoter regions of genes [84]. Interestingly, HIF-2α was found to
bind to a reverse order HRE, sequence 5′-CACGY-3′, located within the promoter region
of the membrane-type-1 matrix metalloproteinase gene [85]. To our knowledge there has
been no evidence that HIF-1α binds to any reverse order HREs.
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2.6. PTMs Regulate HIF-2α Stability

HIF-α mRNA levels do not correlate with hypoxia-mediated HIF function [86–89].
The canonical roles of HIF-α are dependent on protein stability, and therefore are primarily
regulated by post-translational modifications (PTMs). In fact, the half-life of HIF-1α and
HIF-2α is about 5–8 min under normoxic conditions due to PTMs [90,91]. The predominant
PTM responsible for the canonical oxygen sensing role is an oxidation reaction, specifically
hydroxylation. Hydroxylation of the α-subunit can initiate ubiquitin-mediated proteolysis
and block transcriptional coactivator recruitment, leading to the short half-life previously
mentioned [92]. Prolyl hydroxylase (PHD) 1-3, and an asparaginyl hydroxylase termed
factor inhibiting HIF (FIH), are responsible for HIF-hydroxylation. All four hydroxylases be-
long to the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase superfamily and require
oxygen, 2OG, ascorbate, and iron as cofactors [93]. PHD1-3 catalyzes trans-4 hydroxylation
of proline residues 405 and 531 in the oxygen degradation domain of HIF-2α (Pro402 and
Pro564 in HIF-1α, respectively). Enzyme abundance, dependent on the cell type or cellular
oxygen level, primarily determines the catalyzation of the α-subunit by any PHD. PHD2
is considered the principal isoform because of its ubiquitous and basal expression [94,95].
Specifically, PHD2−/− knockout mice died by embryonic day 14.5 while PHD1−/− and
PHD3−/− knockout mice developed normally [93,96]. Interestingly, Appelhoff et al.
demonstrated that PHD3 is more effective at inhibiting HIF-2α, while PHD2 is more influ-
ential over the suppression of HIF-1α [93]. Once hydroxylated, the α-subunit serves as a
substrate, binding the von Hippel–Lindau protein (pVHL). Upon binding, pVHL recruits
elongin C, elongin B, cullin-2, and ring-box 1 proteins, creating the pVHL complex which
together serve as the E3 ubiquitin ligase [97]. The pVHL complex then targets the α-subunit
for polyubiquitination, and therefore proteasomal degradation, through recruitment of the
E2 ubiquitin-conjugating enzyme [98]. Ubiquitination of HIF-α is efficient for maintaining
continuous oxygen sensing and enables a quick response to hypoxia [99]. In normoxic
conditions, FIH catalyzes the β-hydroxylation of asparagine residue 847 on HIF-2α (N803
on HIF-1α) to downregulate transactivation [92,100]. This process prevents HIF-α from
associating with the transcriptional coactivator E1A binding protein p300/cAMP-response
element-binding protein (p300-CBP), inhibiting the transcription of hypoxic-induced genes
in normoxia [99,101,102]. Hypoxia stabilizes HIF-α and associates it with p300-CBP and
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HIF-β to form a transcription factor that binds to HREs (Figure 3). However, despite
HIF-1α and HIF-2α having high structural homology and similar oxygen-mediated desta-
bilization, they display different cell-type specific targets and gene specificity though their
N-TADs [27,103,104], proximal vs distal promoter binding bias [27,28], stabilization in
different oxygen levels [105,106], and durations of hypoxic response [107–109].
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2.7. Spatiotemporal Dynamics of HIF-α

The differences between HIF-1α and HIF-2α indicate distinct spatiotemporal regu-
lation and even coregulation of oxygen homeostasis [111]. Hu C et al. demonstrated
that the N-TAD regions of HIF-1α and HIF-2α show different target-gene specificity [112].
Deleting the N-TAD regions in HIF-α abolished this specificity and swapping N-TADs
was sufficient to switch target gene expression [104]. A genome-wide mapping study
showed that 80% of HIF-2α binding sites resided within distal enhancer regions farther
than 2.5 kb from the TSS, compared to 60% of HIF-1α binding sites [28]. Additionally,
425 and 400 high-stringency HIF-2α and HIF-1α binding sites were identified, with some
being intronic, intergenic, exonic, and within the 5′ UTR and 3′ UTR. Furthermore, Smythies
et al. demonstrated that HIF-1α and HIF-2α have distinct roles by introducing a frameshift
mutation through a Cas9 double stranded break, causing a knockout by a premature stop
codon in HIF-α target genes [27]. Taylor et al. described that HIF-1α and HIF-2α have
different molecular mobilities and sub-nuclear distributions, attributing to the homoge-
neous nuclear localization of HIF-1α and the ability of HIF-2α to move freely into the
nucleus and form speckles [113]. Essentially, this demonstrates that HIF-α behaves inde-
pendently and does not compete for binding sites throughout the duration nor degree
of the hypoxic response [27]. Consequently, this translates into both shared and unique
downstream targets. In fact, in endothelial cells, HIF-2α regulated 1454 genes while HIF-
1α regulated 701 genes, with 303 overlapping targets [114]. Examples of HIF-2α target
genes include: angiopoietin2 (ang2), cyclin D1 (CCND1), delta-like ligand 4 (D114), ery-
thropoietin (EPO), peroxisome proliferator-activated receptor alpha (PPARα), and periostin
(POSTN) [114–116]. In comparison, HIF-1α induces phosphoglucomutase 1 (PGM1), solute
carrier family 2 member 1 (SLC2A1), phosphofructokinase (PFK), nitric oxide synthase
2 (NOS2), carbonic anhydrase 9 (CA9), and hexokinase 1 (HK1) [52,115,117]. Shared tar-
gets include VEGF, fibroblast growth factor (FGF), transforming growth factor (TGF), and
angiopoietin-like 4 (ANGPTL4) [114]. Altogether, this demonstrates the diverse and com-
plementary role of HIF-α in physiology, and further alludes to its role in tumor progression.
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Interestingly, in oxygen concentrations of less than 1%, both HIF-1α and HIF-2α are
stabilized, with HIF-1α generally having a higher initial accumulation, and therefore medi-
ating the response to acute hypoxia. However, prolonged hypoxia reverses this, increasing
HIF-2α accumulation and decreasing HIF-1α, even when the oxygen concentration in-
creases to around 5%. As a result, HIF-2α is recognized as mediating the response to
chronic hypoxia. The shift between acute and chronic hypoxia is generally considered to
be 24 h, but it should be noted that this time frame is not always consistent throughout
publications, with groups classifying the transition as taking minutes while others consider
it to take weeks [118]. Altogether, the spatiotemporal dynamics of HIF-α indicate a clear
switch from HIF-1α to HIF-2α in response to prolonged hypoxia [98,119,120].

2.8. PTMs Regulate the HIF Switch

Given the importance of PTMs for HIF-α protein stability and the dynamic expression
of HIF-α throughout hypoxia, it is unsurprising that PTMs also govern the switch from
HIF-1α to HIF-2α. Recently, Zheng et al. identified a positive feedback loop between HIF-
1α and HIF-1α anti-sense long non-coding RNA (HIFAL) that would contribute to a higher
accumulation of initial expression levels of HIF-1α compared to HIF-2α [121]. Additionally,
CBP-p300-associated factor (PCAF), an acetyltransferase that stabilizes the stress-induced
p53 pathway, can acetylate HIF-1α at K674, increasing protein levels [122,123]. However,
CBP alone can also acetylate HIF-2α within its C-terminus at K385, K685, and K741,
deactivating it [124]. Heat shock protein 90 (Hsp90), which increases expression in hypoxia,
can stabilize both HIF-1α and HIF-2α by binding to the PAS domain, maintaining high HIF-
1α levels and basal HIF-2α levels [125–127]. Despite this initial surge in HIF-1α, prolonged
hypoxia results in the destabilization of HIF-1α and the increased accumulation of HIF-2α.
Receptor-activated kinase C1 (RACK1) competes with Hsp90 to bind to the PAS-A domain
of HIF-1α and recruits elongin-C, promoting oxygen-independent proteasomal degradation
of HIF-1α, but not HIF-2α [125–127]. Similarly, hypoxia-associated factor (HAF), an E3
ubiquitin ligase, gradually increases expression in hypoxia, and selectively degrades HIF-1α
but not HIF-2α [128,129]. Sirtuin 1 (SIRT1), a redox sensing NAD-dependent deacetylase,
is downregulated in acute hypoxia and upregulated by a redox imbalance, similar to
that found in chronic hypoxia [123]. SIRT1 deacetylates HIF-1α at K674, blocking p300
recruitment, leading to decreased expression levels, and deacetylates HIF-2α at K385,
K685, and K741, leading to increased expression levels [130]. The transition from acute
to chronic hypoxia is also regulated at the transcriptional level by repressor element 1-
silencing transcription factor (REST) [131]. HIF-1α drives the transcription of REST, which
in turn inhibits the expression of HIF-1α, but not HIF-2α, in a negative feedback loop [132].
Furthermore, Kruppel-like factor 2 (KLF2) is a transcriptional regulator within a zinc finger
family subclass that moderates cell differentiation and growth, specifically maintaining
gene expression in endothelial cells and regulating pro-inflammatory regulation [133]. KLF2
protein expression is induced during hypoxia within endothelial cells and is downregulated
by miR-200b during acute hypoxia [134]. Studies show that KLF2 significantly lessens
the accumulation of HIF-1α protein and inhibits the expression of the protein [134,135].
Overexpression of KLF2 can also result in the inhibition of HIF-1α and the genes it targets
and selectively promotes HIF-1α degradation. However, like REST, KLF2 has no impact on
HIF-2α gene expression or the protein’s stability. Knowing KLF2’s modulating properties,
regulating KLF2’s expression allows switching between proteins HIF-1α and HIF-2α during
hypoxia. At the translational level, miR-429 is upregulated during hypoxia in some cell
types, decreasing HIF-1α mRNA levels [136]. Additional factors that may influence this
switch are double minute 2 protein, casein kinase 1δ, and protein kinase D1 [137–139].

3. Role of HIF-2α in Tumor Progression

Hypoxia arises when the transport of oxygen, nutrients, and waste is reduced below
the metabolic demand. Unlike blood cancers that generally do not form masses, solid
malignancies’ rapid and uncontrolled proliferation create a mass, forming a TME. Hypoxia
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develops due to uncontrolled proliferation, the altered metabolism of malignant cells, and
aberrant vasculature present in the TME.

3.1. The Hypoxic TME

The TME is defined as the dynamic and bi-directional network that surrounds cancer
cells and promotes tumor progression. The tumor stroma, the cellular and noncellular
components that interact with cancer cells and aid progression, can consist of blood ves-
sels, immune cells, signaling molecules, fibroblasts, and the extracellular matrix. The
physical and biochemical interactions within the TME are defining features of cancer pro-
gression [140]. Solid tumors exhibit heterogeneity because of inconsistent resources that
arise from a rapid proliferation of cancer cells. This intertumoral heterogeneity results in
tumor and stroma residing in distinct regions of varying oxygen concentrations or variable
hypoxic niches. Unfortunately, solid cancer sites have an approximate detection threshold
of 1 cm3, which is roughly equivalent to 1 g or 109 cells [141]. New diagnostic methods,
including probes, medical imaging, and biomarkers, have been developed to try and reduce
this threshold [142,143]. For some cancers, including clear cell renal carcinoma (ccRCC), the
initial volume is an even more vital prognosis factor than tumor grade [144]. A tumor vol-
ume of 1 cm3 equates to a radius of 10,000 µm; comparatively, oxygen diffusion is around
150 µm, and in poorly perfused areas, it can fall to 100 µm [145,146]. Therefore, tumor
masses can show hierarchical tissue regions of decreasing oxygen concentration further into
the tumor core, resulting in heterogeneous normoxic to necrotic tumor cells and, as a result,
differential expression of HIF-1α and HIF-2α. In an attempt to outline the spatiotemporal
dynamics of hypoxia within the tumor microenvironment, subtypes have been loosely
defined as acute, chronic, or cyclic (also called intermittent) [119]. There are discrepancies
involving the temporal categorization of solid tumors, with some groups only examining
acute versus chronic [147], while others only compare cyclic and chronic [143,148]. Similarly,
there is little consensus regarding which of these subtypes contributes the most to aggres-
sive cancer phenotypes, with separate groups finding that acute [118], chronic [149–152],
or cyclic [153] tumor microenvironments best promote tumor growth. Nonetheless, all
subtypes contribute to the co-evolution of cancer progression and TME development, ex-
ploiting hypoxia adaptation and promoting non-transformed cell types into pro-tumor
stroma phenotypes. The need for a more well-defined hypoxic scale has been identified,
perhaps one that strictly defines acute hypoxia as within 24 h.

HIF-2α expression has been detected in many solid cancer sites (Table 1). Roig et al.
recently conducted a meta-analysis that included 6052 patients over 18 solid cancer sites to
determine if HIF-2α overexpression and clinical outcomes overlapped [154]. The results
revealed that HIF-2α levels correlated with poor overall survival, disease-free survival,
disease-specific survival, metastasis-free survival, and progression-free survival. The
hypoxic TME triggers the overexpression of HIF-2α in both tumor cells and tumor stroma,
directly influencing metastasis, angiogenesis, and stemness. Overall, both HIF-1α and
HIF-2α are associated with a poor prognosis.

Table 1. Summary of the overexpression of HIF-2α in multiple cancer types with HIF-1α as
a comparison.

Cancer Type Prognosis Comparison
Made to HIF-1α

Evidence of HIF-1α
Involvement Method(s) Reference

Neuroblastoma

Advanced clinical stage No N/A Western blot, RT-PCR [80]
Angiogenesis, aggressive

phenotype, growth Yes Transiently expressed Western blot, qPCR [105]

Aggressive phenotype,
metastasis Yes Transiently expressed Western blot, RT-qPCR [106]

Aggressive phenotype Yes Transiently expressed Western blot, qPCR [109]
Stemness Yes Transiently expressed Western blot, RT-qPCR [89]
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Table 1. Cont.

Cancer Type Prognosis Comparison
Made to HIF-1α

Evidence of HIF-1α
Involvement Method(s) Reference

Clear cell renal
carcinoma

Poor overall survival Yes Lower Fuhrman
grade Immunohistochemistry [155]

Oxidative phenotype Yes Basal expression,
decreased growth Immunohistochemistry [156]

Cell cycle progression No N/A Western blot [157]

Arsenite-
transformed liver

cancer

Epithelial-mesenchymal
transition, stemness No N/A Western blot [158]

Breast cancer

Worse disease-specific survival
(HER2+) Yes Independent normal

expression
Western blot, RT-PCR,

immunohistochemistry [159]

Epithelial-mesenchymal
transition, invasion Yes Independent normal

expression Western blot, qPCR [160]

Melanoma Stemness Yes Independent
overexpression Western blot, siRNA, [161]

Glioblastoma

Increasing grade,
mortality No N/A Immunohistochemistry [162]

Stemness Yes Independent
overexpression

Western blot,
immunochemistry [163]

Non-small-cell
lung cancer

Mesothelial-
mesenchymal

transition
No N/A Western blot, shRNA [164]

Lung
adenocarcinoma Growth, resistance No N/A qt-PCR, shRNA [165]

Hepatocellular
carcinoma Metastasis Yes Transiently expressed Western blot, shRNA [166]

Colon cancer Resistance Yes Co-expressed Western blot, siRNA [167]

Cancer
Stem Cells Stemness, self-renewal No N/A qPCR, siRNA, ELISA [168]

Abbreviations: RT-PCR: reverse transcription-polymerase chain reaction, qPCR: quantitative polymerase chain re-
action, siRNA: small interfering RNA, shRNA: short hairpin RNA, ELISA: enzyme-linked immunosorbent assay.

3.2. EPAS1 Mutations and Cancer

Somatic mutations, germline mutations, and SNPs in EPAS1 are associated with
tumorigenesis and polycythemia, a rare disease connected to certain malignancies [169].
The ClinVar database contains over 179 mutations within EPAS1, while HIF-1α only has
32 mutations identified [170].

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine-derived
catecholamine-secreting malignancies, known for being the most inheritable tumors in
humans. In approximately 40% of these malignancies, a mutation of just 1 of 15 PPGL
oncogenes is detected [171]. Unsurprisingly, EPAS1 mutations are one of the most frequent
mutations in PPGLs, aligning with its role in catecholamine homeostasis and erythropoiesis.
Approximately 40 somatic/mosaic mutations have been identified in PPGL patients (re-
viewed elsewhere in Toledo et al.) [171]. Specifically, a gain-of-function mutation in exon
12 (c.1589C>T) or exon 9 (c.1121T>A) is responsible for all 13 cases of PPGLs with poly-
cythemia [172–174]. Although specific EPAS1 germline mutations (c.1603A>G, c.1609G>A,
c.1609G>T) and somatic mutations (c.1595A>G, c.1586T>C) lead to polycythemia and not
tumorigenesis, the onset of polycythemia might itself be a precursor to multiple diseases
such as Pacak–Zhuang syndrome, for example [68,173,175,176].

Eight variations in EPAS1 (c.1084C>T, c.1099C>A, c.1145_1145delT, c.1093C>G,
c.1121T>G, c.1137_1137delG, c.1135_1136insT, c.1091_1092insT) were recently detected
in 6 out of 80 patients (7.5%) with esophageal squamous cell carcinomas, with the ma-
jority of patients carrying these variations experiencing a deregulation of EPAS1 [177].
These factors directly correlated with tumor location and stage. An SNP within intron
1 (rs13419896) played a role in increasing both the expression and transactivation activity
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of EPAS1/HIF-2α [178]. Patients with non-small-cell lung cancer who had this SNP had a
poorer prognosis than patients without this variation.

In addition, mutations in genes associated with oxygen-dependent HIF destabilization
create a pseudohypoxic phenotype and lead to further upregulation of HIF-α subunits. An
example of this is seen in ccRCC, the most common type of kidney cancer. Histologically,
ccRCC is very heterogeneous, and oncogenesis is associated with VHL syndrome and
heterozygous germline mutations in the VHL gene [179]. This VHL mutation results
in the overexpression of HIF-α subunits. Interestingly, the expression of HIF-2α was
an independent predictor of overall survival rate [155]. Furthermore, HIF-1α and HIF-
2α display opposite functions, where target genes of HIF-1α correlated with improved
survival and decreased tumor growth while HIF-2α target genes correlated with a worse
prognosis and increased tumor growth [180]. However, a recent study demonstrated in an
autochthonous ccRCC mouse model that HIF-α showed opposite effects, but proposed that
both play a crucial role in progression, indicating the importance of a heterogenous TME
and HIF-switch regulators [181].

3.3. Stroma

There has been increasing interest in the role of HIFs in stroma biology. It is now
widely accepted that the TME evolves with tumor progression, giving rise to diverse cell
populations with a range of phenotypes in the TME [140,182]. Hypoxic stress has been
raised as a common environmental driver of this evolution, and it is therefore of no surprise
that HIFs are a focus [182]. Furthermore, the fact that tumor stroma can acquire pro- and/or
anti-tumorigenic phenotypes indicates divergent molecular mechanisms [183,184]. The
role of HIF-2α in stroma biology was first observed in tumor-associated macrophages
(TAMs), one of the most abundant cell types in the TME [185]. Talks et al. observed strong
immunostaining of HIF-2α in TAMs associated with several solid tumor types, including
lung, liver, and breast, in addition to differentiated U937 cells [186]. Overexpression of
HIF-2α, compared to HIF-1α, was confirmed in TAMs found within primary invasive breast
carcinomas, and was associated with a higher tumor grade [187]. Thus, to understand
the role of HIF-α in macrophage polarization, Takeda et al. measured HIF-2α expressed
after Th1 or Th2 cytokine administration in polarized macrophages [116]. HIF-1α and
HIF-2α showed antagonistic functions, with HIF-2α induction by Th2 cytokines in M2
macrophages. HIF-2α and HIF-1α correlated with arginase 1 genes and inducible nitric
oxide (NO) synthase genes, respectively, which hints that HIF-2α may regulate the cellular
oxidative state [188]. Finally, Casazza et al. suggested that HIF-2α plays a role in trapping
TAMs in the hypoxic TME by activating nuclear factor-κB (NF-κB) and repress neuropilin
1 (Nrp1) [182].

Given HIF-2α was first thought to be solely expressed in endothelial cells (ECs), HIF-2α
may contribute to tumor progression by regulating ECs. Indeed, Skuli et al. demonstrated
that knocking out HIF-2α in ECs reduced tumor vascularization and growth in Lewis lung
carcinomas (LLC) and B16F1 melanoma cell line xenografts [189]. The predominance of
HIF-2α compared to HIF-1α in ECs was confirmed with PHD2 knockdown in ECs, where a
50% reduction in PHD2 resulted in higher HIF-2α expression and was shown to bind to the
promoter region of Flt1 and VE-cadherin, presumably to improve vascular perfusion [190].
Interestingly, tumor growth did not change, and metastasis was reduced when comparing
PHD2+/− ECs and wild-type LLC in Panc02 mouse models. While this does reassure
HIF-2α’s role in vessel remodeling and integrity, it is contradictory to a pro-tumorigenic
role of HIF-2α. However, it may give insight into the feedback mechanisms used to fuel
tumor progression in the TME. For example, extracellular superoxide dismutase (SOD3), an
antioxidant enzyme that catalyzes extracellular superoxide free radicals, is downregulated
in many solid cancer types, increasing oxidative stress, a cancer hallmark [191–193]. Re-
expression of SOD3 to the TME inhibited PHD activity, and therefore induced promoter-
driven transcription of vascular endothelial (VE) cadherin by HIF-2α [194]. As a result,
vessel hyperpermeability improved and increased chemotherapeutic delivery. Only HIF-2α
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overexpression led to an increase in vascular endothelial cadherin expression, and the
authors suspect that this is because HIF-1α had a more rapid decay. In addition, SOD3
overexpression in ECs increased the transmigration of T-lymphocytes by upregulating
laminin-α4 (LAMA4) in an HIF-2α-dependent manner [195]. Altogether, this indicates a
unique role of HIF-2α in stroma ECs, and emphasizes the dynamic role the TME plays in
tumor progression.

The role of HIF-α in immune exclusion, and specifically in T-lymphocytes, has been
explored in many studies [196]. Most notably, HIF-2α is essential for regulatory T (Treg)-cell
development in mice. Knockout of HIF-2α in Foxp3-specific cells resulted in the inability to
suppress colitis induced by effector T-cells and a resistance to tumor growth, indicating the
potential to target HIF-2α in the TME to control immune tolerance [197]. Singh et al. found
that miR-15b/16 regulate the expression of HIF-1α and HIF-2α encoding EPAS1 in helper
T-cells. This suppressed the differentiation of induced Tregs and promoted the expression
of IL-9 in Th9 cells.

3.4. Metastasis

The development of a secondary malignant site, termed metastasis, typically correlates
with advanced stage cancers and a shorter overall survival [198]. As first described by
the ‘seed and soil’ hypothesis in 1989, the bi-directional communication between cancer
cells and the TME promotes metastasis [199]. In fact, it has been suggested that hypoxia
contributes to the regulation of every step of metastasis, and therefore positions HIFs
as metastatic ‘master regulators’ [200]. Indeed, HIF-2α has been identified to interact
with 70 proteins in 501mel melanoma cells, most notably SOX10 and AP2a, alluding to
its key role in cancer development [201]. While metastasis is a complicated and multi-
step process, it is clear that the adaptation to oxidative stress is directly associated with
transdifferentiation and metastasis in cancers [202–205].

The developmental role of HIF-2α in ROS and mitochondrial homeostasis suggests
that it may play a role in adapting to the oxidative stress caused by hyperproliferation.
Conditions of high oxidative stress are cytotoxic to cells and the upregulation of antioxi-
dants is required to maintain redox balance. A typical antioxidant that regulates oxidative
stress and maintains redox balance in the reduced state is thioredoxin (TXN). Notably,
TXN is shown to be induced by hypoxia, specifically HIF-1α, in hepatocellular carcinoma
(HepG2) cells [206]. The exploitation of antioxidants, like TXN, is common in many can-
cer cells. Increased expression of TXN in hepatocellular carcinoma cells correlated with
increased HIF-2α stability by PTMs [166]. The dissociation of SENP1 from TXN leads to
SUMOylation of SIRT1, enabling SIRT1 to deacetylate HIF-2α, thus increasing its expression.
SUMOylated SIRT1 regulates HIF-1α in an opposite manner, demonstrating the HIF switch
in vitro. Upregulated TXN and HIF-2α both in vivo and in vitro were also associated with
epithelial-mesenchymal transition (EMT) and metastasis [207].

3.5. Angiogenesis

The expression of HIF-2α in highly vascularized cells and its role in oxygen homeosta-
sis, specifically in development and erythropoiesis, suggests that HIF-2α may have evolved
to ensure recruitment, remodeling, and maturation of primitive vasculature, even in regions
with oxygen concentrations higher than anoxic (>5%). This expression would ensure that
impaired vasculature, such as during embryonic development and in the wound healing
process, could signal a need for angiogenesis or repair. Moreover, similarities between
the wound healing process and TME dynamics resulted in the characterization of cancer
as “a wound that will not heal” [208,209]. Indeed, Yamashita et al. demonstrated that
HIF-2α knockdown mice transplanted with melanomas had significantly reduced tumor
size and fewer large vessels [210]. This result occurred because of the reduced ephrin-A1
expression on vascular endothelial cells, decreasing binding of HIF-2α, but not HIF-1α, to
an HRE in the promoter of ephrin-A1. Ephrin-A1 is both a soluble and membrane-bound
ligand that binds to its cognate, ephrin type-A receptor 2 (EphA2), and influences cell
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behavior, regulating cell adhesion and cytoskeleton remodeling during embryogenesis
and inflammation [211]. Specifically, in pulmonary vascular endothelial injuries, Ephrin-
A1/EphA2 is upregulated, increasing monolayer permeability, and potentially enabling
entry of inflammatory cells and fluid [212]. Tumor necrosis factor-alpha (TNF-α), a typical
cytokine in both the TME and the early wound healing process, upregulates the expression
of ephrin-A1 [213,214]. Upregulation of EphA2 by hypoxia has been noted in multiple
cancers and corresponds with the upregulation of the NF-κB pathway, a pathway that links
cancer and chronic inflammation [215–218]. Initial disruption to the endothelial barrier
followed by repair and stabilization is a crucial feature of tumor angiogenesis linking the
ephrin/Eph pathway as angiogenic mediators [219,220]. Corroborating with previous
results, the loss of HIF-2α in endothelial cells indicated impaired tumor growth, increased
vessel permeability, and reduced the expression of ang2, D114/Notch signaling, and var-
ious cell adhesion molecules [117]. Altogether, this indicates that HIF-2α plays a role in
angiogenesis by controlling vascular morphogenesis.

3.6. Stemness

Cancer stem cells (CSCs) constitute a small population of intratumoral cells that hold
a stem cell-like phenotype (“stemness”). Aggressive environments, heterogeneity, and the
TME all fuel the development of CSCs [221,222]. Cancer adaption to intertumoral oxygen
gradients created by hypoxia leads to increased heterogeneity and plasticity, common
features of an aggressive phenotype [5]. Therefore, CSCs typically reside in anatomically
distinct “niches” within the TME; these regions correlate with low oxygen and limited
immune evasion. The spatiotemporal regulation of HIF-2α suggests HIF-2α plays a role in
mediating stemness. Indeed, Seidel et al. proposed that CSCs are maintained in hypoxic
niches, and HIF-2α, but not HIF-1α, upregulates stem-cell surface markers, including
CD133 [163]. In melanoma cells, HIF-2α was shown to upregulate miR-363-3p, a miRNA
associated with proliferation and invasion in malignant cells and healthy endothelial
cells [161,223]. miR-363-3p was shown to directly bind to the 3′ UTR of p21, a controller of
the cell cycle, and inhibit its function. Inhibition of p21 causes increased levels of CD133,
Jarid1B, and Nanog, all markers of a stem cell-like phenotype [161]. Additionally, HIF-
2α was shown to directly bind to the promoter of POU class 5 homeobox 1 (POU5F1),
commonly referred to as Oct4, a potent regulator of stem cell pluripotency [224]. In
non-small-cell lung cancer (NSCLC) cells, HIF-2α not only promotes the expression of
the FOXP3 protein but also binds directly to it, promoting its oncogenic role. HIF-2α
overexpression was also shown to induce the expression of nuclear enriched abundant
transcript 1 (NEAT1). The NEAT1 and FOXP3 proteins are believed to activate the Wnt/β-
catenin signaling pathway, inducing the epithelial-mesenchymal transition in lung cancer
cells, and thereby increasing their stemness [225,226]. The role of HIF-2α overexpression in
these pathways and its correlation to a poor prognosis in NSCLC patients exemplifies the
need for HIF-2α targeting therapies for the disease [227].

4. Hypoxia and Cancer Therapy

The impact of hypoxia on tumor progression and therapeutic resistance has established
the hypoxic TME as a promising strategy to improve the efficacy of solid cancer therapeutics.
Hypoxia is a hallmark of solid tumors and is used for tumor imaging, detection, and
prognosis. Hypoxia strongly correlates with a poor cancer prognosis, disease relapse, and
acts as a strong obstacle to radio and chemotherapies. Additionally, over 20 common
cancer drugs have been shown to be less effective in hypoxic tumors [31]. As previously
mentioned, there is a strong significant negative association between HIF-2α expression
and survival endpoints [154]. In normoxia, radiation therapy and photodynamic therapy
are effective at killing cancerous cells by generating ROS; however, because of the lack of
oxygen in hypoxic conditions, these therapies have become less effective at killing tumor
cells [228,229]. Specifically, well-oxygenated cells respond to radiotherapy 2.5–3 times
better than hypoxic cells, and optimal radiosensitivity is achieved at a partial pressure of
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oxygen above 20 mmHg [230]. Additionally, large fractions of hypoxic cells found in tumors
not only promote a CSC phenotype, but also prevent chemotherapeutics from accumulating
at functional concentrations, both of which contribute to therapeutic resistance [231].

Several strategies to mitigate the detrimental effects of hypoxia on cancer therapies
have occurred over recent years. The use of hypoxia-activated prodrugs (HAPs), which
exclusively activate in low oxygen environments, has shown some promise in the pre-
clinical and clinical development stages. For example, TH-302 or evofosfamide, is a
promising hypoxia-activated drug in Phase 1 and 2 trials, but has been limited in Phase
3 trials so far due to limited efficacy, as reviewed in [228]. It is hypothesized that poor
screening for patient tumor hypoxia levels may be the cause for these limited results [232].
In addition, EO9, also known as apaziquone, is reduced to hydroquinone in the presence
of oxygen, but in hypoxic conditions is reduced to semiquinone, which is more toxic
to the tumor. EO9 had limited efficacy in Phase 1 and 2 trials, as hydroquinone and
semiquinone suffer from instability due to a short half-life, but showed promise for a
localized treatment via intravesical instillation for superficial bladder cancers. PR-104 has
shown advantages in leukemias by “decreased tumor burden and increased survival” in
Phase 1/2 trials, but has shown toxicity and sparse responses in solid tumors. AKR-1C3 can
be used as a biomarker to predict the PR-104 response, as it causes the activation of PR-104
independent of tissue oxygenation, resulting in toxicity [233]. CP-506 is a new hypoxia-
activated prodrug based on PR-104, but is more resistant to AKR-1C3 activation and is
orally bioavailable. In vivo, CP-506 showed strong selectivity for hypoxic cells in tumor
xenograft models and is currently in a Phase 1/2 trial [234]. However, no HAPs have yet
received FDA approval [235,236]. Due to hypoxia’s role in reducing radiotherapy efficacy,
some groups rely on imaging local oxygen partial pressures to determine their radiation
dosage painting [237]. Dosage optimization can likely improve outcomes; however, this
approach must be tested in a clinical setting to verify the model, and this strategy does not
address the underlying issues of the hypoxic environment. Other therapies for reducing
hypoxia involve altering the plasma oxygen supply of patients, either by having them
breathe hyperbaric oxygen (HBO) or supplemental oxygen. When used in combination
with radiotherapy, HBO has been shown to increase patient survival. Reducing hypoxia
by increasing blood oxygen levels has been shown to reduce adenosine concentration
in the TME, increasing the local activity of natural killer cells and T-cells [31]. It should
be noted that HBO treatment requires a specialized facility and 24/7 occupation of the
patient during treatment to see its full benefits. Lastly, another hypoxia control strategy
is starvation therapy via glucose oxidase in liposomes to deplete the glucose and oxygen
supply in the tumor and produce toxic hydrogen peroxide [238]. This method magnifies
the hypoxia of the region, allowing for better targeting of hypoxia-activated prodrugs, but
retains the radiotherapy disadvantages. Conversely, oxygen therapeutics based on liquid
fluorocarbons may be used to increase the oxygen carrying capacity of the blood to reverse
hypoxia [31].

Various HIF-1α indirect inhibitors have been developed, with Rapamycin, Cetuximab,
Romidepsin, and Vorinostat receiving FDA approval for the treatment of a variety of cancer
types; however, as previously mentioned, no direct HIF-1α inhibitors are currently on the
market [239,240]. Ma et al. recently compiled a comprehensive review of drugs currently
under investigation which indirectly inhibit HIF-1α activity, either by suppressing signaling
pathways which upregulate its concentration, promoting its degradation, or by inhibiting
its transcription and translation [241]. While targeting HIF-1α has shown some success, it
fails to address the oncogenic biochemical pathways involved in tumor progression that
are reliant on HIF-2α, as previously discussed. As a result, three small-molecule agonists
that specifically target HIF-2α, named PT2385, PT2399, and PT2977, have been developed.
These allosteric inhibitors block the dimerization of HIF-2α with HIF-1β. Both drugs have
proved efficacious in pre-clinical models of ccRCC and kidney cancer, respectively [242,243].
Encouragingly, a Phase 1 dose-escalation trial of patients with advanced ccRCC treated with
PT2399 suggested that the small-molecule inhibitor was tolerated favorably [244]. Similarly,
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in a Phase 1 trial, PT2385 demonstrated a synergistic inhibitory effect on tumor growth
when used as a combination therapy with the anti-PD-1 antibody [245]. However, PT2385
was shown to inhibit HIF-2α activity in non-tumor patients, as shown by a reduction in
erythropoietin. This reduction resulted in a functional reduction in red blood cell precursors.
Furthermore, tumors may develop resistance to both PT2385 and PT2399 after prolonged
treatment via a G323E gate keeper mutation in the HIF-2α gene [246,247]. Nevertheless,
these first-of-their-kind drugs highlight the potential for selectively targeting HIF-2α in
ccRCC and, theoretically, a broad range of cancers.

Expression of immune checkpoints such as programed death ligand 1 (PD-L1) and
cytotoxic T-lymphocyte-associated antigen 4 are associated with poor prognosis and are
often upregulated in malignant tumors. Immune checkpoint inhibitors are a promising
form of immunotherapy which block the immune suppressing checkpoints displayed by
cancers, which allows them to evade the immune response [248]. The success of these
therapies indicates the importance of reducing immune checkpoints in cancerous cells.
Hypoxia has been identified as a factor in the upregulation of the immune checkpoint
PD-L1 in myeloid-derived suppressor cells. In ccRCC cells, the immune checkpoint PD-L1
and HIF-2α expression are correlated, and targeting HIF-2α results in a decrease in PD-L1
protein and mRNA expression levels [249]. As a complex, HIF-1β and either HIF-1α or
HIF-2α induce the expression of a variety of immune checkpoint genes such as PD-L1,
CD47, CD137, CD73, and CD70 in hypoxic ccRCC cells [250,251]. The effect that HIF-2α
has on these checkpoints emphasizes its potential as a therapeutic target, particularly when
used in combination with checkpoint inhibitors. In a Phase 1 trial, the previously discussed
small-molecule agonist, PT2385, demonstrated a synergistic inhibitory effect on tumor
growth when used as a combination therapy with the anti-PD-1 antibody [245]

Most other HIF inhibitors being investigated act either exclusively on HIF-1α, or on
both HIF-1α and HIF-2α. One notable drug that targets HIF-1α and HIF-2α is the histone
deacetylase (HDAC) pan inhibitor Vorinostat (Suberoylanilide Hydroxamic acid/SAHA),
which the FDA approved for the treatment of cutaneous T-cell lymphomas. There are many
theories about the multiple mechanisms of the inhibitory function of this drug. One such
theory is that this drug may inhibit stabilization of both HIF-1α and HIF-2α through the
acetylation of Hsp90 [252]. Vorinostat can also block the nuclear translocation of HIF-1α
and HIF-2α by inhibiting its interaction with Importin [243]. While showing some promise,
current therapies are limited by the complexity of the HIF pathway, and a new wave of
approaches is required to combat a hypoxic TME.

5. The HIF-α Debate

While our understanding of the hypoxic response has grown tremendously in the
10 years since “HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression” was
published, the role of HIF-α in tumor progression remains controversial [17]. It is important
to note that there are studies that report EPAS1/HIF-2α as a tumor suppressor [181,253–256].
In addition, some studies report HIF-1α as a tumor suppressor [257–260]. The landmark
review by Keith et al. was the first to expound the overlapping and opposing roles of
HIF-α in tumor progression [17]. We have reviewed many of the factors that contribute
to these divergent roles, including PTMs, cell type, and degree and duration of hypoxia.
For example, as previously mentioned, HIF-2α expression in TAMs has been linked to an
M2 phenotype [116] and poor prognosis [261], and expression is correlated with tumor
grade [186,187]. However, Cowman et al. recently found that TAMs in ccRCC tissue
samples primarily expressed HIF-1α, not HIF-2α, and HIF-1α expression significantly
correlated with tumor stage [262]. In addition, they found HIF-1α co-localized with CD137,
an M2 marker. This recently discovered correlation between HIF-1α expressing TAMs and
ccRCC is noteworthy given the evidence of HIF-2α’s role as the predominant driver in
ccRCC, and may inadvertently demonstrate the context-dependent roles that HIF-α plays
in the stroma to counteract hypoxic stress and drive tumor progression. Furthermore, in
a E0771 breast cancer allograft model, HIF-2α deletion in myeloid cells increased tumor
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growth [263]. This revealed that in breast tumors, HIF-2α expression in TAMs had a
tumor-suppressive role by expressing Spint1 (serine protease inhibitor, Kunitz type-1).
Recently, single-cell RNA sequencing revealed that TAMs do not exhibit a defined M1 or
M2 polarization, as was also seen in Cowman et al., thus further indicating the importance
of environmental factors [262]. Nonetheless, HIF-α clearly displays spatial and temporal
topography. Despite Keith et al. suggesting these dynamics and proposing that the
hypoxic response is balanced by the antagonistic roles of HIF-1α and HIF2α, HIF-2α is
still overlooked [17]. At the time of this publication, the term “HIF-1” appeared 7x more
than the term “HIF-2” within publications when searched on Google Scholar over the past
10 years (62,900:9070). In addition, the term “HIF-1” was referenced within the title of a
publication 10×more than “HIF-2” (2270:224). We argue that physiologically, hypoxia is
a dynamic process, but clinically, the role of HIFs is still primarily viewed as players in a
static system resulting in limited clinical success.

Although HIF-1α and HIF-2α display complementary interactions, they have distinct
roles and are involved in a variety of independent regulatory pathways. Given the spa-
tiotemporal regulation of HIFs, the isoforms may only be expressed at critical points in
tumor progression; for example, HIF-1α primarily mediates angiogenesis, while HIF-2α
mediates vascular integrity. We postulate that the nature of the tumor and the TME can
drive these differential results. For instance, the presence or absence of an oncogene can
influence the roles of HIF. HIF-1α and HIF-2α differ in how they regulate the highly onco-
genic pathway, MYC, which is seen to be upregulated or downregulated in cancers by up
to 70% [264,265]. Generally, HIF-1α disrupts the MYC pathway by transcriptionally dis-
placing MYC binding [266], promoting MYC proteasome degradation [267,268], inducing
the expression of MAX antagonists such as MXI1 [267], and competitively binding to MAX
and Sp1 [266,269]. This leads to the expression of p21, G1-phase arrest, and the reduction
of genes involved in DNA repair and mitochondrial biogenesis. Conversely, HIF-2α can
enhance MYC activity by stabilizing and promoting the MAX/MYC complex [138,267].
In addition, the overexpression of HIF-2α can promote Sp1 activity, and therefore IL-8
expression, by MYC [270]. Leading to S-phase entry, genomic stability is preserved through
the expression of DNA repair proteins and resistance to replicative stress. However, over-
expression of MYC can overcome HIF-1α inhibition, with studies showing HIF-1α can
induce specific MYC target genes [271,272]. This can explain the antitumorigenic effects of
HIF-1α in cancers with low MYC oncogenic dependency and demonstrates the complexity
of HIF-α in highly MYC oncogenic cancers, suggesting that solely inhibiting HIF-1α may
result in preliminary attenuation, but have no impact on overall tumor burden [273]. Shih
et al. [274] demonstrated that HIF-2α was critical for tumor re-proliferation, i.e., the switch
from tumor dormancy to proliferation, in epithelial ovarian cancer cells. In addition, a
comparison of the acute hypoxic response while HIF-2α mediates the chronic response
then initial proliferation and subsequent reoxygenation due to rapid proliferation would
be predominantly controlled by HIF-1α.

Considering it is estimated that over 40% of cancers overexpress MYC, it may be
beneficial to target HIF-1α and MYC using overlapping pathways and direct or indirect HIF-
2α targets [265]. It should also be noted that similar HIF-1α and HIF-2α dynamics are seen
in other critical pathways such as p53 and mTOR, introducing other potential targets which
can be exploited by therapeutic interventions [17,275]. Furthermore, genomic abnormalities
can influence HIF-α function. A 14q focal deletion is a common abnormality in ccRc;
specifically, the deletion encompasses the HIF-1α locus and contributes to a loss of function
mutation of the HIF-1α gene, which is otherwise classified as a tumor suppressor [260].

We suggest an alternative perspective to explicate the role of HIF-1α and HIF-2α in
tumor progression (Figure 4). We propose that HIF-1α and HIF-2α are continuously opti-
mized and balanced until the ‘end stage’ of tumorigenesis, with varied HIF-α requirements
based on location, TME, and stage. For example, Mazumdar et al. demonstrated that the
deletion of HIF-2α in a KrasG12D-driven murine NSCLC model resulted in tumor growth,
whereas HIF-1α deletion did not affect growth. Interestingly, the overexpression of HIF-2α
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led to angiogenesis and EMT transition [254]. It was concluded that reducing HIF-2α below
a threshold resulted in deletion of the tumor suppressor SCGB3a1, but overexpression
increased VEGF, VEGFR2, and snail [254]. Altogether, this alternative perspective can
elucidate unique and opposing HIF-α activities in tumor progression.
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6. Future Perspectives

The impact of hypoxia on tumor progression and therapeutic resistance has estab-
lished the hypoxic TME as a promising new strategy to improve the efficacy of solid cancer
therapeutics. Immunotherapy, specifically adoptive cell therapy (ACT), is a dynamic and
promising target for future generations of solid cancer therapies. Unlike monoclonal an-
tibodies and small molecules, ACT allows the patient’s own immune cells to effectively
target, terminate, and persist cancer. The modularity of ACT provides a dynamic and
personalized system that can be adapted to include the most recent advances and findings
in the field. For example, multiple hypoxia-sensing CAR T-cells have been developed.
Juillerat et al. was the first to fuse the HIF-1α ODD to the CAR scaffold, termed HIF-CAR,
and demonstrate a CAR T-cell only responsive in hypoxic environments [276]. Recently,
two other hypoxia-sensing CARs, termed HiCAR and HypoxiCAR, have been developed,
and both utilize the HIF-1α ODD [277,278]. In addition, HiCAR and HypoxiCAR incorpo-
rate single or consecutive HREs upstream of their promoter to induce CAR expression in
hypoxic conditions, leading to dual hypoxia sensing, and demonstrating the versatility and
potential for immunotherapy. Similarly, oxygen-sensing nanoparticles offer an alternative
delivery method for existing cancer therapies, and can be used in combination with CARs
to target the TME [279].

At the forefront of many developing cancer therapies is CRISPR/Cas9-mediated gene
editing. While CRISPR-mediated HIF-1α knockout has shown promise in in vitro and
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in vivo mouse liver cancer models, to our knowledge, currently, no therapies targeting
HIF-2α are in development. The modularity of CRISPR technology would likely allow for
this system to be easily adapted to target HIF-2α in cancer, however, further development
of delivery methods beyond the implantation of lentivirus transfected with CRISPR/Cas9
utilized in this study are required for clinical applications [172]. In addition, epigenetic
modifications have shown potential in pre-clinical and clinical trials [244]. A high through-
put screen for HIF-2α expression that utilizes CRISPR-Cas9 to target chromatin regulators
has been developed to better investigate the epigenetic regulation of the protein. This study
found that there are no individual factors that are essential for HIF-2α expression in the
ccRCC cells that they investigated, indicating that targeting multiple chromatin factors
would likely be required to efficiently regulate HIF-2α [252].

7. Conclusions

In the present review, we highlighted the role and regulation of HIF-2α in both physi-
ology and tumor progression, emphasizing the independent and coregulatory dynamics of
HIF-2α compared to HIF-1α. We also established the similarities between the spatiotempo-
ral dynamics of the TME and the HIF pathway. However, we also indicated and implied
that HIF-1α and HIF-2α are diverse by nature, and proposed an alternative perspective
to elucidate the role of HIF-α dynamics in tumor progression; that cancer optimizes the
HIF pathway for tumor progression through balancing of the α-subunit. The observation
that HIF-α is highly dynamic and spatiotemporally regulated suggests that therapeutic
interventions may be challenging, requiring the next generation of solid cancer therapies to
be both innovative and dynamic.
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