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Simple Summary: Topic models are algorithms introduced for discovering hidden topics or latent
variables in large, unstructured text corpora. Leveraging on analogies between texts and gene ex-
pression profiles, these algorithms can be used to find structures in expression data. This work
presents an application of topic modeling techniques for the identification of breast cancer subtypes.
In particular, we extended a specific class of topic models to allow a multiomics approach. As an il-
lustrative example, considering both messenger RNA and microRNA expression levels, we were able
to clearly distinguish healthy from tumor samples as well as the different breast cancer subtypes.
The integration of different layers of information is crucial for the observed classification accuracy.
Our approach naturally provides the genes and the microRNAs associated to the specific topics that
are used for sample organization. We show that indeed these topics often contain genes involved
in breast cancer development and are associated to different survival probabilities.

Abstract: The integration of transcriptional data with other layers of information, such as the post-
transcriptional regulation mediated by microRNAs, can be crucial to identify the driver genes
and the subtypes of complex and heterogeneous diseases such as cancer. This paper presents
an approach based on topic modeling to accomplish this integration task. More specifically, we
show how an algorithm based on a hierarchical version of stochastic block modeling can be naturally
extended to integrate any combination of ’omics data. We test this approach on breast cancer samples
from the TCGA database, integrating data on messenger RNA, microRNAs, and copy number
variations. We show that the inclusion of the microRNA layer significantly improves the accuracy
of subtype classification. Moreover, some of the hidden structures or “topics” that the algorithm
extracts actually correspond to genes and microRNAs involved in breast cancer development and are
associated to the survival probability.

Keywords: miRNAs; miRNA expression regulation; topic modeling; stochastic block modeling;
multiomics; chr14q32

1. Introduction

A crucial problem in modern computational biology is the integration of differ-
ent sources of information in the framework of the so-called “precision medicine” [1].
Thanks to the impressive improvement of experimental techniques and the creation of ded-
icated databases, plenty of different ’omics datasets are available. However, these datasets
are difficult to integrate in a coherent picture. They are typically noisy and sparse; they
can strongly depend on experimental and processing choices and biases, such as normal-
ization or imputation techniques, and present different constraints—for example, due
to (often unknown) specific regulatory interactions. At the same time, only by combining
different layers of information can we hope to understand complex pathologies such as
cancer and, thus, optimize the therapeutic protocols. In fact, a major goal would be to be
able to identify as soon as possible the particular cancer subtype of a given patient, find
the corresponding drivers and altered pathways, and thus, possibly, fine-tune the therapy.
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A fundamental preliminary step is the development of algorithms able to identify and ex-
tract the relevant structure and organization of tumor samples using the different available
layers of molecular information.

In particular, topic modeling has been recently proposed as a computational technique
to identify hidden structures in gene expression data [2,3]. Topic models are a set of algo-
rithms originally developed to extract latent variables from text corpora [4–6]. The most
popular of these algorithms is the so-called Latent Dirichlet Allocation [5] (LDA), which
has been successfully applied not only in texts analysis, but also in other contexts such
as bioinformatics [7].

LDA is based on the assumption of a Dirichlet prior for the latent variables. This choice
simplifies the statistical inference problem making the algorithm highly efficient. How-
ever, many complex systems in which LDA is applied, including expression data, are charac-
terized by the emergence of power-law distributions, which are very far from the Dirichlet
assumption [8–11]. Moreover, the optimal number of topics must be identified by the user
in the standard LDA formulation [5].

To overcome these problems, a new class of algorithms based on hierarchical Stochastic
Block Modeling (hSBM) was recently proposed [10]. These algorithms are based on the for-
mal equivalence between the topic identification problem and the community detection
problem in bipartite networks [12–14], where well-developed techniques based on stochas-
tic block modeling [15] can be applied without the need of a Dirichlet prior.

We recently performed a comparative study [3] of different topic modeling algorithms
on the task of identifying cancer subtypes from breast and lung cancer gene expression
datasets from The Cancer Genome Atlas (TCGA) [16,17]. We found that hSBM typically out-
performs other algorithms in the clustering task. Importantly, this algorithm presents the ad-
ditional advantages of naturally selecting the number of clusters and of providing the genes
significantly associated with the latent structure on which the classification is based. We
were able to show that the established cancer subtype organization for both breast and
lung cancer was well-reconstructed by the latent topic structure inferred by hSBM and that
the topic content itself was very informative. In fact, topics associated with specific cancer
subtypes were enriched in genes known to play a role in the corresponding disease, and
were related to the survival probability of patients.

This paper extends our previous study by integrating in the hSBM framework multiple
layers of information. While the integration of additional biological information should
generally improve the accuracy of the statistical inference, it is important to stress that this is
not always trivially true. Highly noisy or irrelevant data layers could interfere with the task.
We will show an empirical example of such a negative interference. Therefore, the addition
of new layers should be driven by a clear biological motivation.

We will focus on the illustrative case of breast cancer, which is the most commonly
diagnosed cancer type and the leading cause of cancer death in women worldwide [18],
with three main goals:

• First, we will show how different layers of biological information can be efficiently
integrated in the hSBM framework. We release the python package nSBM, inherited
from hSBM [10], which is ready to install, easily executable, and can be used to infer
the topic structure starting from different layers and types of biological data.

• Second, focusing on breast cancer, we will show that the combination of microRNA
and protein-coding expression levels greatly improves the algorithm’s ability to iden-
tify cancer subtypes. These findings further confirm the important role previously
recognized in several studies that miRNAs play in cancer development [19,20].

• Third, we use the inferred topic structure to select a few genes, miRNAs, and chro-
mosomal duplications that seem to have a prognostic role in breast cancer and, thus,
could be introduced as additional signatures of specific breast cancer subtypes. The ex-
tension of subtype signatures can help clinicians to fine-tune diagnostic protocols
in the framework of a precision medicine approach to cancer [1].
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2. Results
2.1. nSBM: A Multibranch Topic Modeling Algorithm

Many real-word networks are accompanied by annotations or metadata describing
different node properties. For example, in social networks, information about age, gen-
der, or ethnicity can be associated to the nodes or the data capacity can be associated
to the nodes of the Internet network [21]. In a similar way, different ’omics can provide ad-
ditional information to biological networks. These metadata can improve the performance
of community detection algorithms by providing additional levels of node correlations
that are not accessible only using a single data source [22–24]. Given the relation between
community detection and topic modeling [10], a similar improvement is expected also
in the detection of latent variables using topic modeling analysis on multiomics datasets.
Our first goal is, thus, to extend the topic modeling approach to multiomics data, and to test
its performances in a concrete biological problem.

The extension of a network-based topic modeling algorithm to multipartite networks
was recently proposed in the classic context of text analysis by [23], and we apply here
a similar approach to biological data. In this case, networks are generic n-partite networks
that contain nodes of n types: sample nodes (i.e., patients), and (n− 1) sets of nodes (e.g.,
protein-coding mRNA levels, microRNAs) that represent different features associated
with the sample nodes.

The topology of the n-partite network is starlike with a center containing the sample
nodes and n− 1 branches (Figure 1b). Each node in a branch can be connected with all
the sample nodes, but no connection exists between nodes within a branch nor between
nodes in different branches. This is the natural generalization of the standard bipartite net-
work shown in Figure 1a. In the biological example that will be addressed in the following,
only two branches are present: protein-coding genes and microRNAs. However, the pre-
sented scheme is general and can be easily extended to several branches at the expense
of computational speed. We will discuss the addition of a third sample feature capturing
the gene Copy Number Variation (CNV).

gene-topic

Gene

Cluster
Sample

miRNA-
topic

miRNA

b

Gene

Sample

Topic

Cluster

a

Figure 1. Cartoon of multipartite networks with samples, protein-coding genes, and microRNAs.
(a) A bipartite network with a layer of protein-coding genes and a layer of samples. A gene is
connected to a sample if it is expressed in that sample and the link weight is proportional to the ex-
pression level. (b) A tripartite network obtained by adding the miRNA expression layer. The topic
model algorithm essentially outputs a block or topic structure in each layer.

We shall denote in the following as “links” the connections between the branch nodes
and the sample nodes. Each link is characterized by a weight. The weights can have
a different nature depending on the branch. For instance, weights on links connecting
the gene branch with the samples encode the expression level (here in FPKM units) and,
analogously, the links connecting to miRNAs report the miRNA expression level. When we
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add a layer with the CNV information, the links are weighted with the number of copies
of the gene in the connected sample. The algorithm interprets the weight wij between node
i and node j as a collection of wij independent edges. We will use the term “edge” for this
elementary unit of link weights.

Once the multipartite network is defined, the statistical inference procedure leading
to the topic structure is a straightforward extension of the procedure developed for the hier-
archical Stochastic Block Model (hSBM) [10], which we already applied in its bipartite form
to expression data [25]. hSBM is a generative model that basically searches the parameters
(θ) that maximize the probability that the model describes the data (A)

P(θ|A) ∝ P(A|θ)P(θ).

The model uses a generative process to build a network given a set of parameters θ.
Using a Markov Chain Monte Carlo algorithm, these parameters are optimized in a unsu-
pervised way and the optimization continues until the generated model approximates well
the data A. (see [10] and references therein for more details).

The output of the algorithm is a partitioning of nodes or a set of “blocks” of nodes
associated to probability distributions. The samples are partitioned into “clusters”, while
the blocks of nodes in the branches are essentially the “topics”. Since we are consider-
ing several branches, we will have topics of different types, such as gene-topics on the
gene expression branch, miRNA-topics on the miRNA branch, CNV-topics on the CNV
branch, and so on. We will consider clusters and topics as “hard” blocks (i.e., each sam-
ple/gene/miRNA belongs to only one block) and distinct (there are no blocks containing
different kind of nodes). However, given its probabilistic nature, the algorithm can be
naturally extended to fuzzy clusters.

There are several features that distinguish hSBM, and its nSBM extension introduced
here, from other clustering or topic modeling algorithms such as LDA.

• Lack of a parametric prior.
Thanks to the network-based approach and to the particular way links are used to up-
date the block structure, this class of algorithms does not require a specific parametric
assumption for the prior probability distribution of the latent variables. This is a major
difference with respect to LDA and makes this class of algorithms particularly suited
for biological systems in which long-tail distributions and hierarchical structures are
ubiquitous (see the discussion on this point and the comparison with LDA in [3]).

• Probability distributions over latent variables of different types.
The output of the algorithm is not deterministic but is instead a set of probabilities
that associate a sample with latent variables of different types P(gene-topic|sample),
P(miRNA-topic|sample) and associate different features to topics, such
as P(gene|gene-topic) and P(miRNA|miRNA-topic). P(gene-topic|sample) and
P(miRNA-topic|sample) represent the contribution of each miRNA- or gene-topic
to each sample. On the other hand, P(gene|gene-topic) and P(miRNA|miRNA-topic)
quantify how much each gene or miRNA contributes to a specific topic.
As we will show in the following, these probability distributions capture relevant
properties of the biological system.

• Hierarchical topic structure.
Blocks and the probability distributions described above are available at different
layers of resolution, from few large sets (clusters/gene-topics/miRNA-topics) at low
resolution to many small sets at a higher resolution. The specific number of layers and
their block composition are found by the algorithm optimization process and are not
given as input. Therefore, the datasets can be organized in different ways depending
on the resolution of interest. Note that not all possible resolutions are trivially present,
as in standard hierarchical clustering.

• Concurrent and separate topic organization of the different network layers.
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Different ’omics have typically different normalization, and the numbers associated
to different molecular features have often a very different meaning. A major advantage
of nSBM with respect to other algorithms [26,27] is that each layer is independently
contributing to the optimization process and a topic organization is given for each
layer. Therefore, there is no need to reweight the different layers to balance their
contributions since they are kept separate while concurrently contributing to the sam-
ple clustering. This makes the model suitable to be applied not only to genomics
data, as we will discuss in this paper, but, ideally, to any combination and number
of different concurrent ’omics.

2.2. Subtype Classification of Breast Cancer Samples

The benchmark task we now focus on to test the performance of nSBM is its ability
to cluster breast cancer samples according to their subtype annotation. This is an important
task for its clinical relevance, but also because the breast cancer subtype could be dependent
on a complex combination of factors, including gene and miRNA expression profiles; thus,
the classification could be a good test for nSBM.

Breast cancer is indeed a heterogeneous disease, with wide variations in tumor mor-
phology, molecular characteristics, and clinical response [18,28–30]. Notwithstanding
this variability, it is one of the few tumors for which there is a widely accepted subtype
classification [28,31].

Breast cancer samples are usually divided into five different subtypes: Luminal A,
Luminal B, Triple-Negative/Basal, HER2, and Normal-like. For our tests, we used as a bench-
mark the TCGABiolinks annotations [32,33], as discussed in the Methods section. These
annotations are the result of a rather complex process. On the clinical side, the classification
is based on the levels of a few proteins whose presence in the biopsy are usually detected
using immunohistochemistry (IHC) assays. In particular, these proteins are two hormone-
receptors (estrogen-receptor (ER) and progesterone-receptor (PR)); the Human Epidermal
growth factor Receptor 2 (HER2); and Ki-67, which is a nuclear antigen typically expressed
by proliferating cells and, thus, is used as an indicator of cancer cell growth. On the gene
expression side, the same subtypes can be identified by looking at the expression levels
of a set of genes included in the so-called “Prediction Analysis of Microarray (PAM)50” [34].
The agreement between PAM50 results and IHC-based subtyping is, in general, reasonably
good but far from being perfect. Indeed, the classification task is made particularly difficult
by the heterogeneity of cancer tissues (biopsies may contain relevant portions of healthy
tissue) and by the intrinsic variability of gene expression patterns in cancer cell lines.

We recently demonstrated that topic-modeling-based algorithms can achieve satis-
factory performances in this classification task by looking at gene expression profiles [3]
(and not only of the PAM50 genes), and not relying on the known IHC markers. The ad-
vantage of this approach is that it avoids problems and ambiguities in classification due
to the stochastic fluctuations of the IHC markers or due to the different inference strategies
adopted by PAM50 classifiers (see, for instance, [35] for a recent comparison of the perfor-
mances of different classifiers in a set of breast cancer classification tasks).

Following this line, one of the goals of our study is to evaluate if the integration
of miRNA expression levels (and possibly of other layers of information) can further
improve the hSBM results presented in ref. [3].

2.3. Integrating microRNA Expression Profiles in a Topic Modeling Analysis

It is, by now, well-established that miRNAs play an important role in several human
diseases, particularly in cancer. Accordingly, miRNAs have been proposed as diagnostic
biomarkers of human cancers [20,36,37]. This is particularly true for breast cancer, for which
several studies have highlighted the prognostic role of miRNAs [38].

Following this line of evidence, we integrated miRNA expression levels with protein-
coding mRNA levels using a n = 3 version of nSBM (which, in the following, we shall
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denote as triSBM). In this case, the analysis output, besides the clusters of samples and
the topics of genes, will also contain a collection of miRNA-topics.

2.3.1. Including miRNAs in the Topic Modeling Analysis Modifies Both the Sample
Clusters and the Gene-Topics

We first tested if the integration of miRNAs has an effect on the partition of samples
in clusters and on the topic organization in the gene branch.

Figure 2 reports the Adjusted Mutual Information (AMI) between the partition ob-
tained with a standard hSBM and with triSBM while varying the hierarchy level (l0, l1. . . ),
with l0 being the finer layer (the one with smaller sets). We used the AMI to score the over-
laps of partitions, since it measures the mutual information between partitions compared
with the one obtained by two random partitions. Figure 2a shows that there is a substantial
disagreement between the clusters of samples in the two outputs. Similarly, Figure 2b
indicates that the same is true for the topics on the protein-coding gene side. The overlap
between the partitions obtained by hSBM and triSBM is negligible.

Therefore, the addition of the miRNA branch can radically affect the inferred topic
structure and the clustering of samples.

a b

l0 l1

triSBM

l0
l1

l2
l3

hS
BM

clusters

0

1
AMI

l0 l1

l0
l1

l2
l3

gene-topics

triSBM

hS
BM

Figure 2. Adding miRNA leads to new topics. The Adjusted Mutual Information between the outputs
of triSBM and hSBM (i.e., with and without miRNA). The partitions obtained in output are different
for any combination of layers.

2.3.2. The Inclusion of miRNAs in the Topic Modeling Analysis Leads to a Better
Separation of Healthy and Tumor Tissues

We first tested the ability of the algorithm in recognizing healthy from cancer samples.
The hSBM algorithm showed good performances on this task by considering only gene
expression data [3], as summarized in Figure 3b. We then tested triSBM, in which gene
expression levels were considered jointly with miRNA levels in the same set of TCGA
samples. The detailed procedure and the algorithm output at different hierarchical levels
are described in the Methods section. We found a significant improvement in the perfor-
mance of the algorithm. In fact, Figure 3a clearly shows that normal samples are collected
in a single cluster by triSBM, while the separation is less neat in the absence of information
on miRNA expression (Figure 3b).

The two model settings (hSBM and triSBM) are compared quantitatively in Figure 4
using Normalized Mutual Information (NMI) as a score [39,40]. The NMI score is explained
in detail in the Methods section.
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Figure 3. Clustering of breast samples with and without the miRNA branch. We compare normal
and solid tumor tissues from TCGA using (a) triSBM and (b) hSBM at a similar resolution level.
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Figure 4. The increase in performance when separating tumor and normal samples by the addition
of the miRNA layer. The NMI is evaluated at different resolution levels (numbers of clusters) using
(triSBM) or not using (hSBM) the information of miRNA expression. The normal/tumor annotation
from TCGA is used as ground truth.

2.3.3. Including miRNAs in the Topic Modeling Analysis Improves the Identification
of Cancer Subtypes

As a second benchmark, we tested the ability of triSBM to identify breast cancer
subtypes. Again, triSBM and hSBM are compared and the results are reported in Figure 5.
Further, in this case, the inclusion of miRNA levels improves the algorithm ability to group
samples belonging to the same cancer subtype. The improvement is quantified by the NMI
scores reported in Figure 5a–c, which show that the improvement is mainly due to the better
performance of triSBM in distinguishing LuminalA from LuminalB samples. This was
indeed the critical obstacle limiting the performances of hSBM in our previous study [3],
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suggesting that the distinction of these subtypes crucially depends on miRNA expres-
sion levels.

We used the Subtype Selected labels provided by TCGABiolinks [32,33] as the ground-
truth annotation of subtypes. However, note that this labeling has a less-solid basis with
respect to the clear healthy/cancer distinction since the subtypes may not be so clearly
defined and can be easily misclassified because of the high tumor heterogeneity.

Note that the standard characterization of breast cancer subtypes relies on the expres-
sion level of only few markers. We did not explicitly select these markers in our gene
selection process; thus, as previously discussed [3], the emergent sample organization is
the result of the global pattern of gene and miRNA expression levels. Therefore, the signifi-
cant overlap with the standard subtype annotation is highly nontrivial, and the discrepancy
does not have to be automatically interpreted as a failure since the standard annotation
could be limited.

Given these positive results, we will explore in the following sections the biological
information contained in the latent variables inferred by the algorithm and test their
possible prognostic role.
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a

Figure 5. Scores and partitions based on Subtype_Selected annotations from [32,33]. (a) Scores for both
(triSBM and hSBM) setting for the subtype classification problem. (b) The miRNA are introduced. We
compared the two settings choosing the layers with a compatible number of clusters. (c) The clusters
from a simple bipartite setting. They are almost similar; in (c), Luminal B is identified better. We
define Normal as the Solid Tissue Normal from TCGA, whilst Normal-Like are the Primary Tumors
annotated BRCA.Normal from [32].

2.3.4. Check the Robustness of the Model with an Independent Labeling

We compared the blocks we obtained in output with the annotations of TCGA sample
in [41]. First of all, we measured the Adjusted Mutual Information (AMI) between these
labels and the Subtype_Selected ones discussed above (AMI is a score between 0 and 1,
which measures the mutual information between two annotations compared with the one
obtained by comparing two random annotations). We found a value of ∼ 0.37, which
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shows that the two labels are not trivially the same and, thus, represent a reliable test
of our clusters.

We measured the Normalized Mutual Information score of both the bipartite (hSBM)
model and the model that integrates miRNA (triSBM). Results are reported in Supple-
mentary Figure S1. Looking at the figure, we see that our clusters also show a significant
agreement (high values of NMI/NMI∗) with this independent classification and, above all,
that the agreement improves when including miRNAs.

The overlap between our cluster partition and two independent nonoverlapping labels
can be explained by the fact that our partition groups samples at the intersection between
the two labeling systems.

2.3.5. Validation on an Independent Source of Data: METABRIC

We applied the same pipeline applied on TCGA to the METABRIC [42] dataset and
measured the agreement between our partition on this data and the labels provided by [41].
We confirmed the results obtained on TCGA: the triSBM model has a better agreement
(NMI score is reported in Supplementary Figure S2) with the labels assumed as ground
truth with respect to the model without miRNA (hSBM).

2.4. triSBM Topics Can Be Used to Obtain Subtype-Specific Information

A major advantage of a topic modeling approach to multiomics data is that we can use
the information stored in the probability distributions P(topic|sample) to obtain subtype-
specific signatures. Following the analysis of [3], we constructed from these probabilities
a set of “centered” distributions P(topic|subtype) (see the definition in the Equation (5)
of the Methods section), which allow us to identify subtype-specific topics (i.e., topics
that are particularly enriched in the samples belonging to a particular subtype) that are
candidates to play a role in driving the specific features of that subtype.

These topics are nothing but lists of genes and can be investigated using a standard
enrichment analysis. The results shown in this paper were computed using the Gene Set
Enrichment Analysis GSEA [43] tool. In particular, we concentrated on the keywords
extracted from [44–46].

We discuss the results of this analysis in the following two subsections.

2.4.1. Analysis of Subtype-Specific Topics of Genes

We report in Figure 6 a few examples of P(gene-topic|subtype) distributions for a few
selected topics and in Table 1 the results of the corresponding enrichment analysis.

Looking at the figures and at the table, we see a few interesting patterns.

• There are topics, such as, for instance, topic 8 in Figure 6, which shows a similar
behavior in all cancer subtypes and a different one (in the case of topic 8, it is depleted)
in the normal tissues. These are the topics that allowed the algorithm to distinguish so
accurately normal from cancer samples. In the case at hand, the functional analysis
allows to easily understand the reason of this different behavior: the genes contained
in topic 8 are strongly enriched in cell cycle keywords, which are likely to be associated
to the proliferating nature of tumor tissues.

• Another interesting pattern is well-exemplified by topics 27, 28, and 44 in Figure 6.
These are topics that are over-represented only in one particular subtype (in the ex-
ample, topics 28 and 44 in the Basal subtype and topic 27 in the HER2 one) and can
thus be used as signatures of these subtypes. This is in nice agreement with the find-
ing of the gene enrichment analysis, which, for topics 28 and 44, provides a strong
enrichment for the keyword SMID_BREAST_CANCER_BASAL_UP, which is known
to be associated with the Basal subtype [44], while topic 27 is enriched in the keyword
SMID_BREAST_CANCER_ERBB2_UP, which is in fact associated with the HER2 sub-
type [44]. These topics are the latent variables that allow the algorithm to distinguish
among different subtypes.
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Figure 6. Box plots of the centered P(gene-topic|sample) for different gene-topics. Samples belonging
to each subtype may be over- or under-expressed in different topics.

Table 1. GSEA FDR enrichment P-values on the gene-topics. For each gene-topic, only the terms with
the strongest enrichment are reported. In brackets is the number of genes in each set (topic). Lists are
available at https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_
level_0_topics.csv, accessed on 10 February 2022.

Term False Discovery Rate

gene-topic 6 (55)
SMID_BREAST_CANCER_BASAL_DN 8.14 × 10−22

FARMER_BREAST_CANCER_APOCRINE_VS_LUMIN MINAL 3.67 × 10−7

gene-topic 8 (19)
MODULE_54 (cell cycle) 2.31 × 10−20

gene-topic 12 (13)
MODULE_1 (ovary genes) 1.52 × 10−7

SMID_BREAST_CANCER_BASAL_DN 1.53 × 10−7

https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_0_topics.csv
https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_0_topics.csv
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Table 1. Cont.

Term False Discovery Rate

gene-topic 15 (26)
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSINSITION 7.93 × 10−15

gene-topic 25 (40)
CHARAFE_BREAST_CANCER_LUMINAL_VS_MESEN SENCHYMAL_UP 4.59 × 10−15

SMID_BREAST_CANCER_BASAL_DN 3.98 × 10−14

VANTVEER_BREAST_CANCER_ESR1_UP 7.91 × 10−5

gene-topic 27 (44)
SMID_BREAST_CANCER_ERBB2_UP 1.73 × 10−7

gene-topic 28 (53)
SMID_BREAST_CANCER_BASAL_UP 8.11 × 10−23

gene-topic 37 (54)
FAN_OVARY_CL13_MONOCYTE_MACROPHAGE 1.36 × 10−14

VANTVEER_BREAST_CANCER_ESR1_DN 7.63 × 10−11

gene-topic 44 (37)
SMID_BREAST_CANCER_BASAL_UP 3.22 × 10−13

gene-topic 53 (39)
SMID_BREAST_CANCER_BASAL_DN 4.46 × 10−11

gene-topic 55 (58)
SMID_BREAST_CANCER_BASAL_DN 4.96 × 10−33

FARMER_BREAST_CANCER_BASAL_VS_LULMINAL 1.21 × 10−14

VANTVEER_BREAST_CANCER_ESR1_UP 2.91 × 10−14

SMID_BREAST_CANCER_LUMINAL_B_UP 7.33 × 10−12

gene-topic 68 (54)
SMID_BREAST_CANCER_BASAL_UP 6.19 × 10−21

CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN 1.32 × 10−14

SMID_BREAST_CANCER_LUMINAL_B_DN 1.46 × 10−14

CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN 3.15 × 10−10

2.4.2. Analysis of Subtype-Specific Topics of miRNAs

While the above results were similar to the ones already discussed in [3], the novelty
of the present analysis is that we can perform a similar study also on the miRNA side.
As we will see, this allows for a new independent insight on the problem.

We report four instances of the P(miRNA-topic|subtype) probability distributions
in Figure 7 and the corresponding enrichment analysis in Table 2. They are, somehow,
paradigmatic examples of the type of information that one can obtain from this type
of analysis.

• The first one (named miRNA-topic 7 in our output, see https://github.com/BioPhys-
Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_0_topics.csv, accessed
on 10 February 2022) is the typical example of a topic that shows no particular prefer-
ence for a cancer subtype (see Figure 6) but shows a strong enrichment for a particular
chromosomal locus: chr14q32 (see Table 2). This enrichment is due to the fact that
most of the miRNAs of the topic are indeed contained in this locus. Moreover, looking
at Figure 8, we see that these miRNAs are exactly those with the highest probability
to belong to the topic. This strongly suggests that a somatic alteration (duplication
or deletion) at this locus could be associated to the onset of cancer and could thus
be used as a marker. Indeed, this locus is known to be associated with breast can-
cer [47]. Accordingly, if we perform a survival analysis between patients with this
topic upregulated and patients with the topic downregulated (see next subsection),
we find a remarkable increase in the survival probability of patients with the topic
downregulated.

https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_0_topics.csv
https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_0_topics.csv
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However, this is not the end of the story. Looking at Table 2, we see that the same
topic is also enriched in keywords associated to Alzheimer disease. Indeed, it is
known that there is a sort of inverse comorbidity [48] between a few types of cancer
(in particular, lung [49] and breast [50]) and Alzheimer’s disease. This association
is confirmed and supported by our analysis, which also suggests that it could be
mediated exactly by the microRNAs contained in miRNA-topic 7. Indeed, some
of the miRNAs contained in the topic, such as mir-34c, are known oncosuppressors
of breast cancer [51,52] and, at the same time, are recognized markers of Alzheimer’s
disease [53,54]. The most important of these is the abovementioned mir-34c, which
is in fact, strongly associated with miRNA-topic 7, being the only miRNA in the
topic with P(miRNA|miRNA-topic) > 0.04 not belonging to the locus chr14q32 (see
Figure 8).

• A second class of topics is represented by the other three entries of Figure 7 (miRNA-
topics 11, 13, and 16 in our output), which show a different behavior in one of the sub-
types with respect to the others (in the present case, these topics are upregulated
in samples belonging to the basal subtype). Out of these, only miRNA-topic 11 shows
a significant entry in the table of enriched keywords: Table 2. The enrichment is
for another chromosomal locus: chr19q13. What is interesting is that this locus has
been associated in the past to other types of cancer [55]. Our analysis suggests that it
could also play a role in breast cancer and, in particular, in the Basal subtype.
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Figure 7. Box plots of the centered P(miRNA-topic|sample). This plot shows that the differences
of topic expression in each subtype may be different. Some miRNA-topics are more abundant
in samples known to be Basal Subtype.

Moreover, we found a nontrivial overlap between genes in these miRNA-topics and
the miRNA clusters proposed by [56]. In particular, there were 12 miRNAs in miRNA-topic
7 from cluster cl349_chr14 (estimating the probability of this happening by chance using
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a hypergeometric test, we obtained a P− value ' 10−5.8), and 8 miRNAs in miRNA-topic
11 were assigned with label cl590_chr19 (P− value ' 10−7.4).

In the next subsection, we shall study in detail—as an example of the type of analyses
that we can perform using the probability distributions obtained from triSBM—the first
of these topics.

0.00 0.01 0.02 0.03 0.04

P(miRNA|topic)
0
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10

12

#
m
iR
N
A
s

miRNA in Metadatum 7
enrich term chr14q32
miRNA-topic 7

P(miRNA|miRNA-topic)
Figure 8. Genes that are annotated in the Gene Set Enrichment Analysis terms contribute more
than average to the topic. Contribution of miRNAs to miRNA-topic 7. miRNAs that belong to the on-
tology specific of locus c14q32 are highlighted and have high P(miRNA|miRNAs’ topic).

Table 2. GSEA results on the miRNA-topics. We selected and reported the ones with the strongest
enrichment. Lists are available at https://github.com/BioPhys-Turin/keywordTCGA/blob/main/
brca/trisbm/trisbm_level_1_metadata.csv, accessed on 10 February 2022.

Term False Discovery Rate

miRNA-topic 7 (57)
chr14q32 1.81 × 10−29

WP_ALZHEIMERS_DISEASE 2.88 × 10−4

miRNA-topic 11 (60)
chr19q13 1.57 × 10−6

2.5. miRNAs Contained in miRNA-Topic 7 Are Strongly Associated with Breast Cancer and May
Affect the Survival of Patients

We can use the information contained in the probability distribution
P(miRNA|miRNA-topic) to perform a more refined analysis of the miRNAs contained
in the topic. First, we see that 75% of the miRNAs in the topic are annotated with the
chr14q32 locus and that they are exactly those with the highest values of
P(miRNA|miRNA-topic). This can be visualized in Figure 8, where we highlighted in red
the miRNAs annotated to the chr14q32 keyword from GSEA [43].

Then, we sorted the miRNAs on the basis of their value of P(miRNA|miRNAs’ topic)
and investigated the first ones (see those with P(miRNA|miRNAs’ topic) > 0.030
in Table 3); it turns out, using the DISEASES tool [57], that most of them are in some
way associated with breast cancer. Let us highlight that mir-511, mir-31, and mir-34c are
highly important in this miRNA-topic; nevertheless, they do not belong to the c14q32 locus
gene set. What is interesting in our analysis is it suggests that these miRNAs, which were

https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_1_metadata.csv
https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_1_metadata.csv
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studied in the past as separated entities, are most-probably working together. A better
understanding of this cooperative behavior could be of great importance to fine-tune future
therapeutic protocols. As a first step in this direction, we took advantage of the probabilistic
nature of topic modeling to investigate the survival probability of patients.

In particular, since a P(topic|sample) can be assigned to each patient (sample), it is possible
to create cohorts of patients based on the importance of a given topic in their transcriptome.

We ran a Cox [58] model to verify which is the contribution of our topic to the survival
probability of patients.

We report in Figure 9 the Kaplan–Meyer curves that we obtained.
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Figure 9. Kaplan–Meier analysis of miRNA-topic 7. We divided patient (samples) into two cohorts
using the information regarding the importance of this miRNA-topic in each sample. Patients with
a great presence of these topics have smaller values of survival.

The contribution of the topic to the survival probability turns out to be very significant:
a positive regulation corresponds to higher hazard ratios, meaning that if miRNA inside
our topics are expressed higher than normal, the survival probability of patients decreases.
While these results should be taken with some caution due to the several sources of bias
that may be present in the TCGA population that we tested, it is nevertheless interesting
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to notice that the presence or absence of this topic has an impact on the survival probability
larger than the tumor stage, which is, obviously, strongly correlated with the patient’s
prognosis (see Supplementary Figure S3). As a comparison, we also report in Figure S3
variables such as gender (this is not very balanced, as samples are almost all females) or age,
which, as expected, do not have significant effects on the survival probability of patients.

Table 3. microRNAs sorted by their P(miRNA|miRNA-topic 7). The most important miRNAs in our
candidate miRNA-topic. Most of them are well-known in literature. The complete list is available
at https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_1_
keyword-dist.csv, accessed on 10 February 2022.

microRNA P(miRNA|miRNA-topic 7)
hsa-mir-654 0.047
hsa-mir-758 0.046
hsa-mir-493 0.042
hsa-mir-889 0.041
hsa-mir-34c 0.041
hsa-mir-431 0.039
hsa-mir-369 0.039
hsa-mir-370 0.039
hsa-mir-410 0.037
hsa-mir-154 0.035
hsa-mir-495 0.035
hsa-mir-511 0.035
hsa-mir-411 0.033
hsa-mir-432 0.032
hsa-mir-31 0.031

hsa-mir-487b 0.030
hsa-mir-376c 0.030
hsa-mir-412 0.030

. . . <0.030

Going further in the investigation of the survival probability of the patient, one can
wonder if patients in a cluster share a similar prognosis.

If one measures the fraction of patients still alive 3 years after the diagnosis, it is
possible to give a prognosis indication of patients in a given cluster. In Figure S7, we
reported two clusters in which the prognosis of the patient is significant. In cluster 6,
for instance, only 18% of the patients survived more than 3 years. This corresponds
to a cluster with a bad prognosis. On the opposite side, more than 60% of patients grouped
in cluster 14 survived: we can assert that patients in this set have a favorable prognosis. We
measured the significance of these results by comparing the aforementioned percentages
to the ones obtained by creating clusters at random (picking up patients from the whole
dataset at random 100 times) and obtained significant Z ∼ 3 scores (reported in Figure S7).

3. Discussion

There are two main directions in which the analysis discussed in the previous section
could be improved. First, one could include in the investigation the regulatory interactions
among miRNAs and target genes. Second, one would like to extend the integration
to other information layers. We shall discuss in this section a few preliminary attempts in
these directions.

3.1. Including Regulatory Interactions in the TriSBM Framework

MiRNAs exert their biological function by regulating target genes
at the post-transcriptional level. It is thus of great importance to be able to include this
information in the topic modeling analysis. This is not an easy task, since miRNAs act
in a combinatorial way: typically, several miRNAs cooperate to regulate a single target
gene; at the same time, a single miRNA can regulate hundreds of targets. Moreover, while

https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_1_keyword-dist.csv
https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/trisbm/trisbm_level_1_keyword-dist.csv
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the standard miRNA–target regulatory interaction is of inhibitory type, it sometimes hap-
pens that a miRNA can have a widespread (indirect) activatory role by interfering with
a repressed epigenetic pathway. These are the so-called “epi-miRNAs” [59,60] that have
been recently shown to play an important role in cancer development [60]. Keeping track
of these interactions can be of crucial importance to correctly decode the information
contained in the miRNA expression data. To this end, one can make use of a few special-
ized databases of miRNA–target interactions. In particular, in the following, we shall use
MirDip [61] and TarBase [62], which are among the most popular ones and are somehow
complementary in their target selection choices.

To integrate the regulatory information, we made use of the analogy of this problem
with inclusion of the citation information among documents in standard topic model-
ing applications to texts [23]. In our case, the additional links are not between samples
(as it would be a citation link or a hyperlink); therefore, for links between branches in par-
ticular, we added gene–miRNA links.

We ran the tripartite model as described before; then, in a second moment, we
added links gene–miRNA from regulatory network (we tested separately MirDip [61]
and TarBase [62]), as shown in Figure 10a. On the fitted triSBM model, we ran steps
of the fast merge-split implementation of SBM [63] to improve the description length
(see Methods for a precise definition) of the data made by the model, taking advantage
of the gene-regulation information in a way similar to the citation between documents
when they are used to improve the classification ability of hSBM in that context.

We report in Figure 10b the Normalized Mutual Information, measuring the ability
of the full process (fit triSBM, add links, run merge-split) in identifying the breast subtypes.
Remarkably enough, we see that by including the information on miRNA–genes inter-
actions, we reach a higher NMI, i.e., a better agreement of our clusters with the subtype
organization. This does not happen when simply running merge-split after triSBM is run.

This shows that it is possible to integrate not only multiple layers of sample-related
information, but also knowledge about correlations between different kinds of features.
Our results represent a first proof of concept in this direction, and we plan to further pursue
this type of analysis in future.
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Figure 10. Configuration and scores when adding gene–miRNA links. (a) A graphic of a tripartite
network with links gene–miRNA. (b) The scores of this new setting using two different (mirDIP [61]
and TarBase [62]) regulatory networks separately.

3.2. Adding Further Layers of Information: The Case of Copy Number Variation

As we discussed in the introduction, the nSBM algorithm can be extended in principle
to any other layer of information on the samples. A natural candidate is Copy Number
Variation (CNV). It is well-known that chromosomal aberrations are a hallmark of cancer
and that several types of cancer are characterized by a well-defined set of chromosomal loci
whose deletion or duplication can drive the onset of that particular type of cancer. We already
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noticed that, using the information contained in the miRNA branch, we could identify two
loci whose alteration were known to be associated with the onset of breast cancer. In TCGA
database, we also have the information on the CNV values for all samples. We included this
information by adding a fourth branch to our algorithm (accordingly, we shall call it in the
following, “tetraSBM”). As a preliminary test, we selected only genes with positive CNV (i.e.,
genes contained in duplicated loci) and that were neglected for the moment deletions.

We performed a gene selection also in this new branch. Highly Copied Genes were
selected, keeping the ones with an average (over samples) CNV greater than 3.5. A
total 1353 genes passed our selection. This selection would select genes with at least 2
duplications (CNV = 4) on average.

It is important to stress that, at this stage nodes, which corresponds with the same gene
in the gene expression branch and in the CNV branch, are completely uncorrelated and are seen
by the algorithm as independent nodes. We shall discuss below how to address this issue.

In our setting, we have 3000 protein-coding genes in the gene expression branch, 1353
genes in the CNV branch, and 417 of them are represented by nodes in both branches.

We ran the tetraSBM model on this network with samples, protein-coding genes, miRNAs,
and CNV genes and obtained two hierarchical levels. In the first one, the four branches were
partitioned into 13 clusters, 7 gene-topics, 5 miRNA-topics, and 5 CNV-topics. In the second
one, we found 397 clusters, 49 gene-topics, 14 miRNA-topics, and 31 CNV-topics.

Looking at the CNV-topics, we found a very interesting result (see Table 4). Performing
the usual Gene Set Enrichment Analysis we found, with very low values of False Discovery
Rate (FDR), a few chromosomal loci that we think represent the complete collection of chro-
mosomal aberration associated with breast cancer and could be used as a robust signature
of this type of tumor. The relevance of this result is supported by the other set of enriched
keywords (taken from [64]), which are reported in Table 4 and show that for some of these
loci, the association with breast cancer is already known and is indeed very strong.

On the other side, if we test the performance of tetraSBM to identify the samples
subtype, we see that, including the information on CNV, we have a decrease in the NMI
value (see Supplementary Figure S4). This is not surprising because within the duplicated
(or deleted) loci, besides the few drivers of the cancer, there are hundreds of “hitchhikers”
genes that simply add noise to the process of subtype classification performed by the other
two layers (genes and miRNAs). The variability of the gene expression values that are
associated to the different cancer subtypes (and in fact, are allowed to classify the subtypes
in the hSBM and triSBM versions of the algorithm) were completely shadowed by the noise
induced by the CNV branch. In the Supplementary Figure S5, we reported a bipartite anal-
ysis on subtypes with a bipartite network using only the CNV data. This analysis confirms
that the CNV layer is less-informative than the layer with only protein-coding genes.

This tells us that adding further layers of information does not automatically improve
the quality of clustering. It is always important to perform a careful analysis of the bio-
logical information contained in the data and of its possible interference with the other
layers. In this particular example, we learned that miRNAs cooperate together to assign
coregulated genes to the same gene-topic and samples of the same subtype in the same
clusters. This fact becomes particularly clear looking at the probability (see Equation (2)
in the Methods section and [65] for further details) of moving nodes between groups: when
moving a gene between gene-topics, it is more probable to move in a topic where there are
genes with many connections to the miRNAs connected to the gene itself. This is confirmed
by the fact that, as we discussed in the previous sections, there are miRNA-topics that
overlap with clusters of miRNA [56] known to coexpress in breast cancer. On the other
hand, the CNV features force samples with the same duplicated loci to be together and this
seems not to be correlated with the cancer subtype, at least in TCGA-BRCA data.
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Table 4. Enrichment analysis on the Copy Number Variation branch of tetraSBM. All the lists are
available at https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/tetrasbm/trisbm/
trisbm_level_0_kind_3_metadata.csv, accessed on 10 February 2022.

Term False Discovery Rate

CNV-topic 1 (41)
chr20q13 3.66 × 10−63

NIKOLSKY_BREAST_CANCER_20Q12_Q13_AMPLICON 3.66 × 10−63

CNV-topic 3 (50)
chr17q23 1.42 × 10−60

NIKOLSKY_BREAST_CANCER_17Q21_Q25_AMPLICON 1.42 × 10−60

CNV-topic 4 (17)
chr8q24 1. × 10−25

NIKOLSKY_BREAST_CANCER_8Q23_Q24_AMPLICON 1.5 × 10−7

CNV-topic 6 (53)
chr8q12 1.02 × 10−37

chr8q11 1.4 × 10−24

chr8q13 1. × 10−19

NIKOLSKY_BREAST_CANCER_8Q12_Q22_AMPLICON 1.16 × 10−8

CNV-topic 7 (47)
chr1q32 2.07 × 10−50

chr1q41 2.06 × 10−27

CNV-topic 13 (14)
chr8q11 4.6 × 10−28

NIKOLSKY_BREAST_CANCER_8P12_P11_AMPLICON 3.12 × 10−27

CNV-topic 18 (16)
NIKOLSKY_BREAST_CANCER_17Q21_Q25_AMPLICON 1.1 × 10−29

chr17q23 3.2 × 10−21

CNV-topic 22 (11)
chr8p11 2.21 × 10−25

NIKOLSKY_BREAST_CANCER_8P12_P11_AMPLICON 1.03 × 10−20

CNV-topic 25 (11)
NIKOLSKY_BREAST_CANCER_8P12_P11_AMPLICON 5.21 × 10−28

chr8p11 1.1 × 10−25

CNV-topic 26 (21)
chr20q13 1.62 × 10−38

NIKOLSKY_BREAST_CANCER_20Q12_Q13_AMPLICON 1.66 × 10−34

CNV-topic 28 (5)
NIKOLSKY_BREAST_CANCER_17Q11_Q21_AMPLICON 1.17 × 10−8

chr17q21 2.96 × 10−6

This does not mean that the addition of CNV data is useless. It is only by includ-
ing CNV that we may have, as we have seen, precise information on the chromosomal
aberrations involved in breast cancer. It is also interesting to notice that this information
is somehow complementary to the one we obtained in the previous section looking at
the miRNA clusters. The chromosomal loci that we detected there are not present in this
CNV analysis because their CNV value is below the threshold we fixed to include CNVs
in the tetraSBM.

4. Materials and Methods
4.1. The Cancer Genome Atlas Data

The results published here are, in part, based upon data generated by The Cancer
Genome Atlas (TCGA) managed by the NCI and NHGRI. Information about TCGA can
be found at https://cancergenome.nih.gov, accessed on 10 February 2022. TCGA data

https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/tetrasbm/trisbm/trisbm_level_0_kind_3_metadata.csv
https://github.com/BioPhys-Turin/keywordTCGA/blob/main/brca/tetrasbm/trisbm/trisbm_level_0_kind_3_metadata.csv
https://cancergenome.nih.gov
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of breast cancer samples were downloaded through portal.gdc.cancer.gov, accessed on 10
February 2022. We selected TCGA program, TCGA-BRCA Project Id, transcriptome profiling
as Data Category. We chose Gene Expression Quantification and RNA-Seq as the Data Type
and Experimental Strategy to download gene expression data in HTSeq-FPKM. Moreover,
we downloaded the number of reads per million of miRNA mapped from the miRNA
Expression Quantification Data Type generated with the miRNA-Seq Experimental Strategy.

4.2. Metadata and Cancer Subtypes

In order to benchmark our results, we compared in Section 2 the clusters of samples
obtained by our algorithm with TCGA annotation, which we considered as our “ground
truth”. We choose the annotations available through TCGABiolinks [32,33] and, in particu-
lar, the one defined as Subtype_Selected. Those subtype annotations are provided by [66]
and are based on previously published studies [17,67] about breast cancer based on TCGA.

In other analyses, we needed to know if a sample was a primary tumor or derived
from normal tissues. Solid Normal Tissues samples are the ones with sample type 10 or 11
in TCGA barcode (10 to 19 are normal types) (https://docs.gdc.cancer.gov/Encyclopedia/
pages/TCGA_Barcode/, accessed on 10 February 2022).

We downloaded the independent Breast Cancer Consensus Subtypes (BCCS) related
to the TCGA files provided by the Supplementary files of [41].

4.3. METABRIC miRNA Landscape Data

We downloaded METABRIC data from the European Genome-Phenome archive.
We downloaded METABRIC miRNA landscape study (EGAS00000000122), in partic-

ular, Normalized miRNA expression data (EGAD00010000438) and Normalized mRNA
expression (EGAD00010000434).

4.4. nSBM: A Multibranch Stochastic Block Modeling Algorithm

We collect here some further information on the nSBM algorithm.

• The search for optimal allocation of the latent variables is performed by inheriting
and expanding [25] hierarchical Stochastic Block Modeling (hSBM) introduced in [10].
Note that the training process is performed simultaneously in all branches of the net-
work: this means that all the types of data contribute to the learning process at the same
time, without, in principle, any preference at the beginning.

• As mentioned in the main text, nSBM attempts to maximize the posterior probability
P(θ|A) that the model describes the data

P(θ|A) ∝ P(A|θ)P(θ) (1)

in a completely nonparametric [68] way. Instead of maximizing the probability of
the model, as usual, it minimizes the Description Length Σ = − log P(A|θ)− log P(θ).
We used the minimise_nested_blockmodel_dl function from graph-tool [69]. In our
setting, A is a block matrix in which each block is a “Bag of Features” (i.e., genes,
miRNAs, . . . ). It can be seen as a two-dimensional matrix whose entries wij are
the weights mentioned above. The probability of accepting the move of a node with
a neighbor t from group r to group s is [65]

P(r → s|t) = ets + ε

et + εB
, (2)

where ets is the number of edges between groups t and s; et is the total number of edges
connected to group t. From this, another advantage of a multibranch approach should
be clear: different ’omics may have their own normalization. In fact, when moving
a sample from r to s, the probability is estimated considering only the branch to which
t belongs. If the node t is a gene, ets/et is normalized, taking only into account
the mRNA expression values.

portal.gdc.cancer.gov
https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/
https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/
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• We set the algorithm so as to do a sort of model selection minimizing the Description
Length Σ 10 times and then choosing the model with the shortest Description Length.

• We used the nested, degree-corrected [68] version of the model [70] so as to obtain
in output a hierarchy of results.

• The intrinsic complexity of typical Stochastic Block Modeling algorithms is

O
(
((nm + τ)E + V ln(V)) ∗ ln(V)

ln(σ)

)
(τ, nm, and σ are hyperparameters of the model),

which equals O(V log2 V) if the graph is sparse (E ∼ O(V)) [71], where V is the num-
ber of vertices (samples, genes, and microRNAs) and E is the number of edges. If
E >> V, the complexity is not logarithmic and the CPU time needed to minimize
the description length increases as well. In this case, to reduce the CPU bottleneck,
one can apply a log-transformation to the data, which strongly reduces the number
of edges E. We ran the model on a 48-core machine with 768 GB of memory [72].

In our setting, we have V ∼ O(1 000) vertices, E ∼ O(1 000 000) edges, and the net-
work is indeed very dense. In order to reduce the number of nodes and edges, a prepro-
cessing step is needed. We shall discuss this issue in the next subsection.

We considered 1222 samples from TCGA-BRCA project and selected the 1200 with
a valid annotation from [32,33]; then, we ran the model on a tripartite network built with
normal and tumor samples from TCGA on one branch, 3000 FPKM normalized gene
expression data on a second branch and 1300 miRNA-Sequencing data on the third branch.
Note that we did not explicitly selected the known breast Cancer markers, our approach
to topic model, as already discussed in [3], took into account the whole expression pattern
and did not relay only on few specific markers.The output of the tripartite model consisted
of two hierarchical levels with 1 and 14 clusters; 11 and 331 topics; and 33 and 47 miRNA-
topics on the three branches, respectively. We ran also, as a comparison without miRNAs,
hSBM on a bipartite network and obtained levels with 2, 11, 76, 608 clusters and 5, 17, 62,
390 topics across the hierarchy.

As the output of the model, we find the probability distributions P(topic|sample)
and P(gene|topic). These probabilities are defined, in terms of entries of the program,
as follows:

P(topic|sample) =
number of half-edges on sample coming from topic

number of half-edges on sample
(3)

and

P(gene|gene-topic) =
number of half-edges to gene-topic going to gene

number of half-edges to gene-topic
. (4)

The same is true for miRNA-topics and for each and every eventual additional layer
of features.

4.5. Gene and miRNA Selection

The data provided in the atlas consisted of 1222 (∼ 1100 have both mRNA and miRNA
transcript profiles data) samples associated with almost 20,000 genes and 2000 miRNA
entries. Without preprocessing, this would have led to an adjacency matrix too big to be
handled efficiently by the algorithms.

We performed two kinds of preprocessing to reduce the number of nodes and the num-
ber of edges.

In order to reduce the number of nodes, we filtered genes and miRNAs selecting only
the highly variable ones. The highly variable are the ones with the highest dispersion
(variance over mean) with respect to the genes with the same average expression. This se-
lection was performed using the scanpy python package [73]. This analysis was performed
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separately on genes and microRNAs since they are provided by different experiments and
different normalization. We selected in this way 3000 genes and ∼ 1200 miRNAs.

Furthermore, we applied a standard approach to reduce the weights of the links and
applied a log(FPKM + 1) transformation to the data before running the topic models.
This helped us to reduce by some order of magnitudes the number of edges (as we men-
tioned above, in this class of algorithms, the weight of a link is mimed adding multiple
edges with weight 1) and the model ran several times faster.

In the Copy Number Variation analyses, we chose ∼ 1300 genes with an average CNV
> 3.5.

An interesting feature of the SBM type of algorithm is that they are typically robust
with respect to gene selection. In the analyses of this paper, we considered only highly
variable genes; however, in the supplementary material of [3], we discussed different types
of gene selections showing that they were typically leading to similar performances.

In the analysis of the METABRIC dataset, we utilized the previously selected genes
and microRNA.

4.6. Evaluation Metrics

To evaluate the agreement between the sample partitions and the annotations, we
chose the so-called “Normalized Mutual Information” (NMI), which was proposed in [40],
in a new evaluation framework for topic models. Moreover, as discussed in [3], it can
be shown that NMI is the harmonic average of two metrics that evaluate, respectively,
the completeness and the homogeneity of a partition of annotated samples [39]. A cluster
is complete if all samples with a given label are assigned to the same cluster; a partition
is homogeneous if, in a cluster, all the samples have the same annotation. In order to cor-
rectly identify the cancer subtype of a given sample, one would prefer to have a partition
in clusters that is both homogeneous and complete.

The NMI is estimated using Shannon’s entropy formula to measure the quantity
of information in the partition. The problem of this measure is that even in a random
partition, there is a residual entropy and the NMI is not zero; this effect is particularly
important in the layers of the models with high resolution (many clusters). In order
to avoid this bias, we evaluated this default NMI by randomizing the subtype annotations
of the samples. This was performed multiple (∼ 50) times, each time preserving the number
of clusters and the number of samples in every cluster; we call the average NMI on these
multiple random assignments NMI∗; this is the residual information on the considered
partition. In the results, we reported NMI/NMI∗, which measures how much information
the model learns with respect to a random assignment. It is important to stress that
this measure has no absolute value and should not be used to compare performances
on different datasets; however, it can be successfully used to compare different algorithm
in the same dataset, which is what we did in the Results section.

Description Length Σ How Well the Model Describes the Data

In addition to the NMI, it is also possible to compare different classes of topic modeling
algorithms on their ability to compress the data [65,74]. This can be addressed measuring
the description length Σ of a model, which represents, in nat units, the number of bits
a model requires to describe the data network. Unlike NMI, it has the advantage not
to rely on any ground truth. Using Σ

E (where E is the total number of edges), it is possible
to measure the quantity of information that the model requires to describe an edge. In
the models of Figure 5, hSBM requires a Σ

E ∼ 6, 26, which is greater than the 1, 4 units

required by triSBM. One can estimate the difference of the two ∆
(

Σ
E

)
' 4, 9; this can be

related to the Bayes factor [75] (being the posterior P = exp−Σ) Λ = exp ∆Σ ' e4,9 ' 102,1,
meaning that the model with miRNA is a∼ 100 times more probable description of the data
network links. The description lengths of the tetrapartite model and the model with
regulatory network are reported in Supplementary Materials (see Figure S6).
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4.7. Construction of the P(Topic|Subtype) Distributions

From the P(topic|sample) distributions, it is easy to obtain the probability
P(topic|subtype) by averaging over all samples belonging to the same subtype.

Then, by subtracting to P(topic|subtype) the mean value over the whole dataset, we
find a new set of quantities that we define as “centered” distributions (we already used
them in [3]; they have the same meaning of the normalized value of the mixture proportion
τ in [23])

P(topic|sample) = P(topic|sample)− 1
R

Σs∈samplesP(topic|s), (5)

where R is the total number of samples. This procedure can be implemented separately
both on the miRNA-topic and on the gene-topic side. The centered P(topic|sample) can be
represented as box plots, after grouping samples by their subtype. Examples of these are
the box plots reported in Figure 6 on the gene side and Figure 7 on the miRNA side.

4.8. Survival Analysis

We performed the survival analyses fitting a COX [58] model.
Our analysis began with the list of the mixtures P(topic|sample). We cleaned up

the stages’ labels, removing any additional letter (e.g., stage ia became stage i), and ended
up with four stages: i, ii, iii, and iv.

Using Genomic Data Commons tools, we downloaded TCGA metadata and, in partic-
ular, demographic.vital_status, demographic.days_to_last_follow_up, demographic.days_to_death,
demographic.gender, and diagnoses.age_at_diagnosis. We estimated the lifetime or the number
of days the patient survived after the diagnosis, using days_to_last_follow_up if the patient
was Alive and days_to_death for Dead patients. A similar approach was recently utilized
by [76].

In order to estimate whether a topic is upregulated in a patient, we evaluated the 35th
percentile of P(sample|topic) and considered it as a threshold thr. Then, we engineered
a feature as follows:

up(sample) =
{

1 P(topic|sample) > thr
0 P(topic|sample) ≤ thr

(6)

We used these data to fit the hazard with a COX model. These analyses were performed
using the lifelines Python package [77] and, in particular, the COXPHFitter module. We used
the lifetime, vital status, and the new feature as input for the fit function.

The Cox model quantified how the topic of miRNAs regulation affected the sur-
vival probability. Cox fits the hazard function conditioned to a variable h(t|x) = b0(t) ∗
eΣn

i=0bi∗(xi−x̄i). x is the vector of the n covariates considered. The hazard is defined
as the ratio of the derivative of the survival and the survival itself h(t) = −S′(t)

S(t) . S(t)
is the probability of being alive at time t, namely, the number of patients alive at time t
divided by the total number of patients. The package estimated the ratio between the haz-
ard of samples with topic upregulated and hazard of samples with topic not upregu-
lated. Therefore, we were able to estimate the exp(coe f ) or hazard ratio exp(coe f ) =

hazard of samples with topic up-regulated
hazard of samples with topic not up-regulated . Note that the coef does not depend on time but is
a sort of weighted average of period-specific hazard ratios.

4.9. Code and nSBM Software Package

The Python package to run nSBM [25] can be downloaded from GitHub ( https:
//github.com/BioPhys-Turin/nsbm, accessed on 10 February 2022) or, alternatively, can
be installed using Anaconda (https://anaconda.org/conda-forge/nsbm, accessed on on 10
February 2022) by running conda install nsbm -c conda-forge.

We discussed in this paper the application using genomics data; however, the package
is written in a way that makes it agnostic with respect to the type of data it receives
in input and to the number of branches. One can ideally integrate as many different sources

https://github.com/BioPhys-Turin/nsbm
https://github.com/BioPhys-Turin/nsbm
https://anaconda.org/conda-forge/nsbm
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(’omics) of data as needed. Eventually, it can process not only biological data, but every
kind of dataset whose input could be represented as a rectangular matrix (Bag of Words)
for each feature.

5. Conclusions

In conclusion, the nSBM model we propose here, integrating multiple sources of infor-
mation into an hSBM analysis, should be useful to extract a lot of information from tran-
scriptomics data.

• Using the python package: nSBM, inherited from hSBM [10], ready to install and
easily executable on n-partite networks, will be straightforward to address different
types of biological data.

• Second, the integration of multiple sources of data, such as microRNA expression lev-
els and the protein-coding mRNA ones, greatly improves the ability of the algorithm
to identify breast cancer subtypes.

• Third, we use our results to identify a few genes and miRNAs and characterize a few
chromosomal duplications that seem to have a particular prognostic role in breast
cancer and could be used as signatures to predict the particular breast cancer subtypes.

In conclusion, this paper released a new tool to easily integrate different sources
of data into a topic-modeling analysis.

We showed some application in a specific case (breast cancer) with some sources
of data (mRNA, miRNA, CNV). Indeed, this approach can be applied to other datasets
and, more importantly, to any possible sources of data (genomics, proteomics, lncRNA,
circRNA. . . ).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14051150/s1, Figure S1: Normalized Mutual information
of hSBM and triSBM partition compared with the Breast Cancer Consensus Subtypes of Ref. [41].
Figure S2: Validation on METABRIC dataset. Figure S3: Multivariate (Log) Hazard Ratios. Figure S4:
Normalized Mutual Information of models with samples and mRNA (hSBM), miRNA (triSBM)
and mRNA, and both miRNA and CNV (tetraSBM). Adding CNV introduces noise to the model.
Figure S5: Normalized Mutual Information of bipartite models with samples and mRNA (hSBM) and
samples with Copy Number Variation (CNV). Adding CNV introduces noise to the model. Figure S6:
Description length of different settings. Figure S7: Days of survival of different patients in clusters.
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