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Simple Summary: As a preliminary experiment to explore the possibility of clinical application as
a future reading assist, we present CNNs for the diagnosis of ovarian carcinomas and borderline
tumors on MRI, including T2WI, DWI, ADC map, and CE-T1WI, and compare their diagnostic
performance with interpretations by experienced radiologists. CNNs were trained using 1798 images
from 146 patients and 1865 images from 219 patients with malignant tumors, including borderline
tumors, and non-malignant lesions, respectively, for each MRI sequence and tested with 48 and
52 images of patients with malignant and non-malignant lesions. The CNN of each sequence had
a sensitivity of 0.77–0.85, specificity of 0.77–0.92, accuracy of 0.81–0.87, and an AUC of 0.83–0.89,
demonstrating diagnostic performances that were non-inferior to those of experienced radiologists,
and the CNN showed the highest diagnostic performance on the ADC map for each sequence
(specificity = 0.85; sensitivity = 0.77; accuracy = 0.81; AUC = 0.89).

Abstract: Background: This study aimed to compare deep learning with radiologists’ assessments for
diagnosing ovarian carcinoma using MRI. Methods: This retrospective study included 194 patients
with pathologically confirmed ovarian carcinomas or borderline tumors and 271 patients with non-
malignant lesions who underwent MRI between January 2015 and December 2020. T2WI, DWI, ADC
map, and fat-saturated contrast-enhanced T1WI were used for the analysis. A deep learning model
based on a convolutional neural network (CNN) was trained using 1798 images from 146 patients
with malignant tumors and 1865 images from 219 patients with non-malignant lesions for each
sequence, and we tested with 48 and 52 images of patients with malignant and non-malignant
lesions, respectively. The sensitivity, specificity, accuracy, and AUC were compared between the
CNN and interpretations of three experienced radiologists. Results: The CNN of each sequence had
a sensitivity of 0.77–0.85, specificity of 0.77–0.92, accuracy of 0.81–0.87, and an AUC of 0.83–0.89, and
it achieved a diagnostic performance equivalent to the radiologists. The CNN showed the highest
diagnostic performance on the ADC map among all sequences (specificity = 0.85; sensitivity = 0.77;
accuracy = 0.81; AUC = 0.89). Conclusion: The CNNs provided a diagnostic performance that was
non-inferior to the radiologists for diagnosing ovarian carcinomas on MRI.

Keywords: ovary; carcinoma; artificial intelligence; convolutional neural network; magnetic
resonance imaging

1. Introduction

Ovarian cancer is the eighth most common cancer diagnosis and cause of cancer
death in women; there were approximately 313,959 cases and 207,252 deaths worldwide
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in 2020 [1]. Most women presenting with ovarian cancer are asymptomatic; even if they
are symptomatic, the symptoms are nonspecific and difficult to screen. For this, patients
are often already at an advanced stage at the time of diagnosis, making ovarian cancer the
“silent killer” [2]. Transvaginal ultrasonography (US) is performed to screen for ovarian
cancer with a clinically suspected adnexal mass with 82–92% accuracy [3]. However,
approximately 5–20% of adnexal masses remain uncharacterized following US. For these
indeterminate masses, although short-term follow up is an option, magnetic resonance
imaging (MRI) is a problem-solving tool [4].

MRI is a better radiologic method for differentiating between malignant and benign
ovarian tumors [4–6]. However, MRI may not be suitable for patients with massive ascites.
Among the MRI sequences, T2-weighted imaging (T2WI) has high soft-tissue contrast
resolution and is the most basic sequence for anatomical evaluation. Diffusion-weighted
imaging (DWI) and apparent diffusion coefficient (ADC) values are sensitive and relatively
specific methods for differentiating malignant from benign tumors [7,8]. Gadolinium-
enhanced MRI is also highly accurate for detecting malignant ovarian tumors [6,9]. In
2013, Thomassin-Naggara et al. published the adnexal MRI scoring system (i.e., O–RADS
MRI) for characterization of adnexal masses that were indeterminate on US. O–RADS
MRI scores range from 0 to 5, with 0 indicating an incomplete evaluation; 1 indicating a
normal ovary; 2 indicating a pure cystic mass, pure fatty mass, or pure endometriotic cyst
that is almost certainly benign; 3 indicating a low risk: a cystic tumor with no enhancing
solid tissue or a tumor containing solid tissue with a low-risk time–intensity curve on
dynamic contrast study; 4 indicating intermediate risk: a tumor containing solid tissue
with an intermediate-risk time–intensity curve; 5 indicating high risk: a tumor containing
solid tissue with a high-risk time–intensity curve. This scoring system has a sensitivity of
93.5% and a specificity of 96.6% for stratifying the risk of malignancy in adnexal masses
and is currently widely used [10]. However, the differentiation between adenomas and
malignant tumors, especially borderline tumors, based on MRI is often problematic, and
several studies have reported that a cystic tumor interpreted as benign, even on an MRI,
required further examination to exclude the possibility of it being a borderline tumor [5,11].

Convolutional neural networks (CNNs) are a class of deep learning models that
combine imaging filters with artificial neural networks through a series of successive
linear and nonlinear layers. It is considered a promising tool for diagnostic imaging
and, recently, several CNNs for diagnostic imaging have been constructed and achieved
excellent performance in image classification using radiography, US, CT, and MRI [12], and
CNN could be used as a reading assist for screening and scrutiny of ovarian cancer by MRI.

As a preliminary experiment to explore their possibility of clinical application as
a future reading assist, we present CNNs for the diagnosis of ovarian carcinomas and
borderline tumors on MRI, including T2WI, DWI, ADC map, and fat-saturated contrast-
enhanced T1-weighted imaging (CE-T1WI), and compared their diagnostic performance
with interpretations by experienced radiologists.

2. Materials and Methods
2.1. Patients

This retrospective study was approved by our local institutional review board, which
waived the need for written informed consent (approval number: R02-112). The inclusion
criteria were as follows: (a) aged above 20 years for ethical reasons; (b) pelvic MRI scan
obtained as per the protocol followed at our hospital between January 2015 and December
2020; (c) pathologically proven malignant epithelial tumors (i.e., carcinomas) or borderline
tumors of the ovary for the malignant group; (d) pathologically proven or clinically ap-
parent benign lesions in the non-malignant group. The exclusion criteria were as follows:
(a) malignant tumors in the pelvis other than the ovary; (b) past history of surgery of the
uterus or ovaries other than caesarean section, chemotherapy, or radiation therapy of the
pelvis; (c) malignant ovarian epithelial tumors mixed with non-epithelial components. A
flowchart of the patient selection process is shown in Figure 1.
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Tumor stage was comprehensively determined based on the International Federation
of Gynecology and Obstetrics (FIGO) 2014 classification using pretreatment MRI, CT,
surgical, and pathological findings. For operated cases, tumor type was determined
by pathological diagnosis, and mixed carcinomas were classified according to the most
dominant histological type.
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2.2. MRI Acquisition

MRI was performed using 3 T or 1.5 T equipment (Ingenia®, Achieva®; Philips Medical
Systems, Amsterdam, Netherlands). The protocol employed to obtain the image along
the uterine short axis included T2WI, DWI with a b value of 0 and 1000, and CE-T1WI
with gadopentetate dimeglumine 5 mmol (Magnevist® 0.5 M or Gadovist® 1.0 M; Bayer,
Wuppertal, Germany). The bolus intravenous contrast injection rate was 4 mL (2 mmol)/s
(in case of Gadovist, diluted with saline solution and injected at 4 mL/s). Further details of
these parameters are provided in Table 1.

Table 1. Acquisition parameters of magnetic resonance imaging.

Sequence Type Repetition
Time/Echo Time (ms)

Flip Angle
(Degree)

Slice/Gap
(mm)

Field of View
(mm) Matrix

T2WI 2D Turbo-spin echo 1400–6013/10–110 90 3–5/0.3–1 260–380 512 × 512–704 × 704
DWI Echo planar imaging 4068–7500/70–79 90 3–5/0–1 260–380 224 × 224–352 × 352

CE-T1WI
3D Gradient echo
spectral pre-saturation
with inversion recovery

4–5/2 10–15 2.2–3.3/0–1.6 260–380 352 × 352–704 × 704

CE-T1WI: contrast-enhanced fat-saturated T1-weighted imaging; DWI: diffusion-weighted imaging; T2WI: T2-
weighted imaging.

2.3. Data Set

To detect the most suitable sequence for the CNN in malignant/non-malignant tumor
discrimination, a total of 4 sequences were obtained: oblique axial T2WI, oblique axial DWI,
oblique axial ADC map, and oblique axial CE-T1WI.

To create a data set, only the slices in which the tumor was visualized were extracted
from the ovarian tumor, both malignant and non-malignant, based on the consensus of the
two radiologists (T.S., A.U.). For benign lesions other than ovarian tumors, the slices in
which the uterus and ovaries were visualized were extracted. The same cross-section was
extracted for all sequences.

A total of 465 patients were randomly assigned to the training and testing groups. In
the training phase, 3663 images for each sequence from 365 patients (1798 images from
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146 patients in the malignant group and 1865 images from 219 patients in the non-malignant
group) were used. In the test phase, based on the consensus of the two radiologists
(T.S., A.U.), one slice indicating a solid component, a central slice for each ovarian tumor
containing no solid components, or an image showing a normal caudal ovary in the absence
of an ovarian tumor was selected. According to O–RADS MRI, solid tissue was defined
as a lesion component that conformed to one of these morphologies: papillary projection,
mural nodule, irregular septation/wall, or other larger solid portions. Then, for each
sequence, 100 images from 100 patients (48 images of 48 malignant tumors and 52 images
of 52 non-malignant lesions) were used.

In this study, the software used was unable to handle the Digital Imaging and Com-
munications in Medicine (DICOM) images; therefore, the DICOM images were converted
into Joint Photographic Experts Group (JPEG) images that employ a lossless compression
method using a Centricity Universal Viewer (GE Healthcare, Chicago, IL, USA). Next, the
margins containing the patient information were automatically trimmed and resized to
240 × 240 pixels using XnConvert (Gougelet Pierre-Emmanuel, Reims, France).

2.4. Deep Learning Using CNNs

Deep learning was performed on a deep station entry (UEI, Tokyo, Japan) with a
GeForce RTX 2080Ti graphics processing unit (NVIDIA, Delaware, CA, USA), a Core i7-
8700 central processing unit (Intel, Santa Clara, CA, USA), and the deep learning software
Deep Analyzer (GHELIA, Tokyo, Japan).

The conditions were optimized based on the ablation and comparative studies of
the previous research as follows: a CNN with Xception architecture was used for deep
learning. Xception is characterized as depth-wise separable convolutions that enable
the use of model parameters more efficiently than the previous CNN architecture [13].
ImageNet, which comprises natural images as pre-trained data, was used for the pre-
training [14]; the optimizer algorithm = Adam (learning rate = 0.0001, β1 = 0.9, β2 = 0.999,
eps = le-7, decay = 0, and AMSGrad = false); horizontal flip, rotation (4.5◦), shearing (0.05),
and zooming (0.05) were also automatically used as data augmentation techniques. The
validation ratio (validation/training) was set at 0.1 or 0.2. Fifty, 100, and 200 epochs were
used for the training. The batch size was automatically selected by Deep Analyzer to fit
into the graphics processing unit memory.

2.5. Radiologist Interpretation

Three experienced radiologists (K.M., S.H., and M.S.), with 26, 12, and 8 years of
experience in interpreting pelvic MRIs independently, reviewed the 100 test images of each
sequence from 100 patients in random order. They evaluated each image by assigning
confidence levels to the diagnosis of malignant tumors, including borderline tumors, using
a 6 point scale (1.0, definitely malignant; 0.8, probably malignant; 0.6, possibly malignant;
0.4, possibly benign; 0.2, probably benign; 0, definitely benign). The radiologists were
blinded to the pathological and clinical findings. A duration of one week or more was
observed between each sequence interpretation.

2.6. Statistical Analysis

The age and histological type for each group were compared using the Mann–Whitney
U test and the chi-square test.

The test data set was used to calculate the sensitivity, specificity, and accuracy of
diagnosing malignant tumors. With the radiologists, 1.0–0.6 was treated as malignant,
while 0.4–0.0 was treated as non-malignant. In the CNN, the classification into malignant
and non-malignant groups was output as a continuous number from 1 to 0: 1.00–0.50 was
considered malignant, while 0.49–0 was considered non-malignant.

Receiver operating characteristic (ROC) curve analysis was performed to assess diag-
nostic performance. Moreover, the area under the receiver operating characteristic curve
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(AUC) was compared between the CNN and the radiologists with their 95% confidence
intervals, and significant differences were estimated [15].

Inter-observer agreement for the two choices of malignancy was also assessed using
kappa (κ) statistics. The κ-statistic interpreted the agreement as follows: 1.00–0.81, almost
perfect; 0.80–0.61, substantial; 0.60–0.41, moderate; 0.40–0.21, fair; 0.20–0, slight; less than 0,
none [16]. All statistical analyses were performed using SPSS software (SPSS Statistics 27.0;
IBM, New York, NY, USA). Statistical significance was set at p < 0.05.

3. Results

A total of 465 women (mean age, 50 years; age range, 20–90 years) were evaluated
across the data sets. Table 2 shows the patients’ characteristics and pathological types of
malignant and non-malignant lesions. The high percentage of stage I malignant tumors was
due in part to the inclusion of borderline tumors. In the malignant group, serous carcinoma,
clear cell carcinoma, and mucinous tumor (i.e., carcinoma and borderline tumor) had high
ratios. Although patients in the malignant group were significantly older than those in the
non-malignant group (p < 0.001), there was no significant difference between the training
and testing data in patient age or histological tumor type. In the malignant group, 116
(training, 88; testing, 28) patients were scanned at 1.5 T, and 78 (training, 58; testing, 20)
patients were scanned at 3 T. In the non-malignant group, 114 (training, 91; testing, 23)
patients were scanned at 1.5 T, and 157 (training, 128; testing, 29) patients were scanned at
3 T. All tumors in the malignant group were confirmed pathologically. Only 57 (training,
48; testing, 9) lesions in the non-malignant group were not pathologically confirmed but
were clinically apparent benign lesions including imaging findings such as small myoma
and nabothian cyst.

Table 2. Patient and lesion characteristics.

Variable
Training Data Testing Data

Malignant
Group

Non-Malignant
Group All Malignant

Group
Non-Malignant

Group All

Patients (n) 146 219 365 48 52 100

Images (slices) 1798 1865 3663 48 52 100

Age

Mean ± standard deviation (y) 55 ± 14 47 ± 13 50 ± 14 55 ± 14 45 ± 14 50 ± 15

Range (y) 20–87 21–86 20–87 22–76 20–90 20–90

Tumor stage of malignant group (n)
(I/II/III/IV) 83/17/34/22 28/3/14/3

Tumor type of malignant group (n)

Serous tumor (HGSC/LGSC/BOT) 39/1/5 14/0/1

Clear cell tumor (carcinoma/BOT) 40/0 13/0

Mucinous tumor (carcinoma/BOT) 15/18 4/6

Endometrioid tumor (carcinoma/BOT) 14/4 5/2

Seromucinous tumor (carcinoma/BOT) 4/6 1/2

Tumor type of non-malignant group (n)

Serous tumor (cystadenoma/adenofibroma) 15/6 6/1

Mucinous tumor
(cystadenoma/adenofibroma) 34/1 10/0

Seromucinous cystadenoma 2 1

Endometriosis 28 7

Mature teratoma 16 6

Leiomyoma 56 10

Uterine benign lesion other than leiomyoma 39 9

Other (including normal) 22 2

BOT: borderline tumor; HGSC: high-grade serous carcinoma; LGSC: low-grade serous carcinoma.
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For the selection of the validation ratio and epochs, among the CNNs with a sensitivity
and specificity above 0.75, a model with a validation ratio of 0.1 and 100 epochs was
adopted for T2WI, a model with a validation ratio of 0.2 and 50 epochs was adopted for
DWI, and a model with a validation ratio of 0.1 and 50 epochs was adopted for the ADC
map (Figure 2), while a model with a validation ratio of 0.2 and 200 epochs was adopted
for CE-T1WI due to the fact of their high diagnostic performance.

Cancers 2022, 14, x  6 of 12 
 

 

Mucinous tumor (cystadenoma/adeno-
fibroma)  34/1   10/0  

Seromucinous cystadenoma  2   1  
Endometriosis  28   7  

Mature teratoma  16   6  
Leiomyoma  56   10  

Uterine benign lesion other than leiomyoma  39   9  
Other (including normal)  22   2  

BOT: borderline tumor; HGSC: high-grade serous carcinoma; LGSC: low-grade serous carcinoma. 

For the selection of the validation ratio and epochs, among the CNNs with a sensi-
tivity and specificity above 0.75, a model with a validation ratio of 0.1 and 100 epochs was 
adopted for T2WI, a model with a validation ratio of 0.2 and 50 epochs was adopted for 
DWI, and a model with a validation ratio of 0.1 and 50 epochs was adopted for the ADC 
map (Figure 2), while a model with a validation ratio of 0.2 and 200 epochs was adopted 
for CE-T1WI due to the fact of their high diagnostic performance. 

 
Figure 2. Accuracy and loss of the training data (apparent diffusion coefficient map with a valida-
tion ratio of 0.1 and 50 epochs). 

Table 3 lists the diagnostic performance of the CNNs versus the radiologists. The 
ROC curves comparing them are shown in Figure 3, and the sensitivity, specificity, and 
accuracy of the CNN for each sequence were comparable to those of the three radiologists. 
No significant difference was observed between the CNN and the three radiologists ex-
cept for significantly higher AUCs on the DWI and ADC map and a significantly lower 
AUC on the T2WI for the CNN than for reader 2. The CNN showed the highest diagnostic 
performance on the ADC map with an AUC of 0.89. 

The CNN correctly diagnosed 28 of 37 carcinomas and 9 of 11 borderline tumors on 
T2WI; 31 of 37 carcinomas and 10 of 11 borderline tumors on the DWI and ADC map; 31 
of 37 carcinomas and 8 of 11 borderline tumors on the CE-T1WI as malignant tumors. 
There was one case each in which the CNN showed false negative and false positive in all 
sequences. Reader 1 had three cases with false negatives, while readers 2 and 3 had no 
cases with false negatives or false positives in all sequences. 

Figure 2. Accuracy and loss of the training data (apparent diffusion coefficient map with a validation
ratio of 0.1 and 50 epochs).

Table 3 lists the diagnostic performance of the CNNs versus the radiologists. The ROC
curves comparing them are shown in Figure 3, and the sensitivity, specificity, and accuracy
of the CNN for each sequence were comparable to those of the three radiologists. No
significant difference was observed between the CNN and the three radiologists except for
significantly higher AUCs on the DWI and ADC map and a significantly lower AUC on the
T2WI for the CNN than for reader 2. The CNN showed the highest diagnostic performance
on the ADC map with an AUC of 0.89.

The CNN correctly diagnosed 28 of 37 carcinomas and 9 of 11 borderline tumors on
T2WI; 31 of 37 carcinomas and 10 of 11 borderline tumors on the DWI and ADC map;
31 of 37 carcinomas and 8 of 11 borderline tumors on the CE-T1WI as malignant tumors.
There was one case each in which the CNN showed false negative and false positive in all
sequences. Reader 1 had three cases with false negatives, while readers 2 and 3 had no
cases with false negatives or false positives in all sequences.
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Reader 1 0.71 0.61–0.79 0.77 0.68–0.84 0.74 0.65–0.82 0.81 0.72–0.89 0.151
Reader 2 0.65 0.55–0.73 0.71 0.62–0.79 0.68 0.58–0.76 0.74 0.64–0.84 0.004 *
Reader 3 0.79 0.70–0.87 0.75 0.66–0.82 0.77 0.68–0.84 0.82 0.73–0.90 0.135

ADC map CNN 0.85 0.76–0.92 0.77 0.69–0.83 0.81 0.72–0.87 0.89 0.83–0.96 -
Reader 1 0.81 0.72–0.88 0.75 0.66–0.82 0.78 0.69–0.85 0.84 0.77–0.92 0.263
Reader 2 0.92 0.83–0.97 0.36 0.29–0.41 0.63 0.55–0.68 0.79 0.70–0.88 0.023 *
Reader 3 0.77 0.68–0.84 0.79 0.70–0.86 0.78 0.69–0.85 0.85 0.78–0.93 0.356

CE-T1WI CNN 0.81 0.73–0.86 0.92 0.85–0.97 0.87 0.79–0.92 0.86 0.78–0.94 -
Reader 1 0.73 0.65–0.78 0.92 0.85–0.97 0.83 0.75- 0.88 0.87 0.79–0.94 0.903
Reader 2 0.75 0.66–0.82 0.83 0.74–0.89 0.79 0.70–0.86 0.85 0.77–0.92 0.730
Reader 3 0.75 0.65–0.83 0.71 0.62–0.79 0.73 0.64–0.81 0.82 0.73–0.90 0.416

ADC: apparent diffusion coefficient; AUC: area under the receiver operating characteristic curve; CE-T1WI:
contrast-enhanced fat-saturated T1-weighted imaging; CI: confidence interval; CNN: convolutional neural net-
work; DWI: diffusion-weighted imaging; T2WI: T2-weighted imaging. * p < 0.05.
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Figures 4–6 show the test images of three cases in this study with different inter-
pretations by the CNN and radiologists including the confidence value. Figures 4 and 5
show the cases in which the CNN was able to make the correct diagnosis, although the
radiologists had a high rate of false-negative diagnoses. Figure 4 shows a tumor with a
slight signal difference between the solid components and the background on the T2WI,
DWI, and ADC map. Figure 5 shows a non-malignant tumor containing components that
were difficult to distinguish between solid components and mucus on the T2WI; however,
the CNN diagnosed it as a non-malignant tumor. Figure 6 shows a case in which the CNN
and the radiologists showed false negatives on the sequences other than the DWI, and
as for the radiologists, it was assumed that the misdiagnosis was due to the difficulty in
distinguishing the solid component of the ovarian tumor from the intestinal tract.
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Figure 4. A 51 year old woman with a seromucinous borderline tumor. Only the CNN could diagnose
malignant tumors on the T2WI and the DWI (the CNN confidence value: malignant = 98.5% on T2WI;
malignant = 99.9% on DWI). The CNN and reader 2 could diagnose malignant tumors on the ADC
map (the CNN confidence value: malignant = 82.1%). On the other hand, the CNN and all radiologists
could diagnose malignant tumors on the CE-T1WI (the CNN confidence value: malignant = 99.9%).
This case was a typical image of seromucinous borderline or serous borderline tumor. There was
almost no contrast between the papillary projections (arrow) showing hyperintensities on the T2WI
and the contents of the cyst, and it was difficult to identify them, other than CE-T1WI, for the
radiologists. ADC: apparent diffusion coefficient; CE-T1W1: contrast-enhanced T1-weighted imaging;
CNN: convolutional neural network; DWI: diffusion-weighted imaging.
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Figure 5. A 95 year old woman with mucinous cystadenoma. Only the CNN could diagnose
non-malignant tumors on the T2WI (CNN confidence value; malignant = 0.0%). The CNN and
all radiologists could diagnose non-malignant tumors on the DWI (CNN confidence value; malig-
nant = 0.0%). The CNNs and only one reader could diagnose non-malignant tumors on the ADC map
and the CE-T1WI (CNN confidence value: malignant = 0.0% on the ADC map and the DWI). Mucus
(arrow) showed intermediate signal intensities and was indistinguishable from solid components on
the T2WI. The septum (arrow) appeared dense on the ADC map and the CE-T1WI, making it difficult
to distinguish it from the borderline tumor. ADC: apparent diffusion coefficient; CE-T1WI: contrast-
enhanced T1-weighted imaging; CNN: convolutional neural network; DWI: diffusion-weighted
imaging; T2WI: T2-weighted imaging.
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Figure 6. A 28 year old woman with high-grade serous carcinoma. None of the CNNs or the three
radiologists could diagnose malignant tumors on the T2WI and the ADC map (CNN confidence value:
malignant = 0.0% on the T2WI; malignant = 1.5% on the ADC map). Only reader 3 could diagnose
a malignant tumor on the CE-T1WI (CNN confidence value: malignant = 0.0%). In contrast, the
CNN and all radiologists could diagnose malignant tumors on the DWI (the CNN confidence value;
malignant = 99.9%). It seemed it was difficult to distinguish the tumor (arrow) from the intestinal
tract. ADC: apparent diffusion coefficient; CE-T1WI: contrast-enhanced T1-weighted imaging; CNN:
convolutional neural network; DWI: diffusion-weighted imaging; T2WI: T2-weighted imaging.

Table 4 shows the inter-observer agreement between the CNN and the three radiolo-
gists’ assessments. The κs between the CNN and radiologists was 0.17–0.63, varying widely
and less consistent than those among the radiologists. The κs between radiologists were
low on the ADC map and varied widely.

Table 4. Inter-observer agreement between the convolutional neural network and the radiologists.

Comparison Interpreter T2WI DWI ADC Map CE-T1WI

CNN vs. radiologists 1 0.42 0.50 0.42 0.63
2 0.50 0.46 0.17 0.55
3 0.45 0.56 0.42 0.36

Between radiologists 1 vs. 2 0.58 0.60 0.45 0.63
2 vs. 3 0.68 0.50 0.39 0.52
1 vs. 3 0.77 0.58 0.84 0.64

ADC: apparent diffusion coefficient; CE-T1WI: contrast-enhanced fat-saturated T1-weighted imaging; CNN:
convolutional neural network; DWI: diffusion-weighted imaging; T2WI: T2-weighted imaging.

4. Discussion

This preliminary study presented CNNs for diagnosing ovarian carcinomas, including
borderline tumors, using several MRI sequences, demonstrating that the diagnostic perfor-
mance was not inferior to that of the experienced radiologists, under the limited conditions.

Few studies have used deep learning in the field of gynecological imaging. Urushibara
et al. recently constructed a CNN that showed good diagnostic performance for identifying
the presence of cervical cancer on T2WI [17]. Aramendía et al. developed a CAD technique
for US images that was able to discriminate between malignant and benign adnexal masses
based on a texture analysis of 145 patients [18]. Jian et al. and Li et al. constructed an MRI-
based texture analysis model to distinguish between type I and type II epithelial ovarian
cancers and borderline and malignant epithelial ovarian tumors based on T2WI+DWI+ADC
and CE-T1WI+T2WI [19,20]. Wang et al. developed a CNN that distinguishes benign from
malignant ovarian on T2WI, CE-T1WI, and clinical variables [21]. To the best of our
knowledge, this is the first image classification study of the diagnosis of ovarian tumors
using MRI images including DWI and ADC map via deep learning. It is also noteworthy
that we used entire pelvic images, not just the cropped images of the ovarian lesion alone.

Epithelial ovarian tumors can be classified into serous, mucinous, endometrioid, clear
cell, Brenner, seromucinous, and undifferentiated types. Furthermore, each is subdivided
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into benign, borderline, or malignant [22]. One of the purposes of MRI is to distinguish
malignant tumors from benign lesions and infer their histology; however, the imaging
findings of ovarian tumors differ greatly depending on their histological type. For example,
high-grade serous carcinoma typically tends to appear as small, bilateral masses often
accompanied by peritoneal dissemination [23]; mucinous tumors can be very large, and
the signal intensity of the mucinous content is variable [24]; endometrioid, clear cell, and
seromucinous tumors are associated with endometriosis [23–25]. Moreover, distinguishing
between borderline tumors and adenomas is often difficult, even for experienced radiol-
ogists [5,26,27]. However, in order to explore the potential clinical applications of CNN,
it was considered essential to distinguish borderline tumors with potentially malignant
behavior from benign lesions; therefore, borderline tumors were included in the malignant
group in this study.

The image interpretation of ovarian tumors is complicated as mentioned above. How-
ever, although our CNNs included less than 500 cases and the images used were not
cropped images of the ovarian lesions, they showed diagnostic performances equivalent
to those of experienced radiologists in our study. In addition, there was no inferiority
in diagnostic performance even for borderline tumors, which are generally difficult to
diagnose as benign or malignant. The fact that the CNN showed the highest diagnostic per-
formance with the ADC map is consistent with a previous study of the diagnosis of prostate
cancer [28], indicating that the ADC map is a suitable image for CNN-based diagnosis.

The inter-observer agreement between the CNNs and the radiologists was lower
than that between the radiologists; however, the agreement between the radiologists was
not high. Radiologists usually make a comprehensive judgment by referring to multiple
sequences; therefore, making a diagnosis using only a single sequence is difficult. For
example, in the case of ovarian endometriosis, the contrast between the background of
the cyst content showing T2 shading and the solid components is poor, and the solid
components might be noticed only on CE-T1WI. For endometriosis showing hyperintensity
on T1WI, it can be difficult to recognize the contrast enhancement of the solid components
even on CE-T1WI, and the use of a subtracted image is required. Therefore, the use of a
single sequence without multiple sequences may have undermined the overall agreement
among radiologists.

Our study had several limitations. First, each sequence was evaluated individually,
which is quite different from clinical practice in which all sequences are referenced and
comprehensively diagnosed and did not meet the definition of O-RADS MRI. It also dif-
fered from O-RADS in that it was scored by confidence level rather than malignancy for
comparison with the diagnosis made by the CNN. In addition, the lack of interpretation
in the series images is believed to be another reason why the radiologists’ performance
was worse than in past O-RADS reports. Using a combination of several sequences may
show superior diagnostic performance to the current models as reported for the CNN
of prostate cancer using fused images [28,29], and the fact that there was only one false
positive and negative in all sequences in this study is a result that can be expected to
improve the diagnostic performance of combination imaging in the future; however, our
unpublished data indicated that this case size cannot be expected to improve interpretation
of the CNN with use of a combined image set, and more training images may be required
to achieve higher diagnostic performance with combination images. Second, because the
test images were intentionally selected, selection bias was unavoidable. Third, to avoid
study complexity, we targeted only epithelial tumors, and our CNNs might not be able to
diagnose other types of malignant ovarian tumors. Fourth, although pathological findings
were used as reference, it was sometimes difficult to distinguish between borderline tumors
and adenomas, even pathologically. The non-malignant group included lesions that were
not pathologically confirmed; however, we thought that it was important to distinguish
between malignant tumors and benign lesions that were not indicated for treatment. Fifth,
this study included rare tumors, such as seromucinous tumors, and future research will be
required to demonstrate that the model achieves satisfactory performance for these rare
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tumor types. In addition, the following can be considered future improvements: deep
learning of all images acquired from all sequences based on DICOM data, while also incor-
porating clinical information such as age and tumor markers; transferring learning using
medical image training [30]; using images taken with other MRI systems for deep learning.

5. Conclusions

Although diagnostic imaging of ovarian tumors is complex, deep learning has shown
good diagnostic performance for diagnosing ovarian carcinomas, including borderline
tumors, on MRIs under the limited conditions of this study.
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