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Simple Summary: Biomechanical forces aggravate brain tumor progression. In this study, magnetic
resonance elastography (MRE) is employed to extract tissue biomechanical properties from five
glioblastoma patients and a healthy subject, and data are incorporated in a mathematical model that
simulates tumor growth. Mathematical modeling enables further understanding of glioblastoma
development and allows patient-specific predictions for tumor vascularity and delivery of drugs.
Incorporating MRE data results in a more realistic intratumoral distribution of mechanical stress and
anisotropic tumor growth and a better description of subsequent events that are closely related to the
development of stresses, including heterogeneity of the tumor vasculature and intrapatient variations
in tumor perfusion and delivery of drugs.

Abstract: The purpose of this study is to develop a methodology that incorporates a more accurate
assessment of tissue mechanical properties compared to current mathematical modeling by use of
biomechanical data from magnetic resonance elastography. The elastography data were derived from
five glioblastoma patients and a healthy subject and used in a model that simulates tumor growth,
vascular changes due to mechanical stresses and delivery of therapeutic agents. The model investi-
gates the effect of tumor-specific biomechanical properties on tumor anisotropic growth, vascular
density heterogeneity and chemotherapy delivery. The results showed that including elastography
data provides a more realistic distribution of the mechanical stresses in the tumor and induces
anisotropic tumor growth. Solid stress distribution differs among patients, which, in turn, induces
a distinct functional vascular density distribution—owing to the compression of tumor vessels—and
intratumoral drug distribution for each patient. In conclusion, incorporating elastography data results
in a more accurate calculation of intratumoral mechanical stresses and enables a better mathematical
description of subsequent events, such as the heterogeneous development of the tumor vasculature
and intrapatient variations in tumor perfusion and delivery of drugs.

Keywords: glioblastoma; chemotherapy; perfusion; MRI; MRE; DTI MRI; mathematical modeling;
solid stress

1. Introduction

Glioblastoma multiforme (GBM) is one of the most common primary brain tumors [1,2].
Despite the different treatments developed, it remains a devastating disease with a poor
prognosis and an overall survival of 14 to 15 months [3,4]. The response to treatment varies
from patient to patient. Thus, the development of patient-specific mathematical models
not only enables further understanding of glioblastoma development but also allows the
optimization of a patient’s treatment [5].
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Mathematical models can be divided into two categories based on the scale at which
the tumor is represented. The models can be discrete/stochastic, with an emphasis on the
microscopic scale and the interactions at the cellular level, or continuum models, which
focus on events taking place at the macroscopic scale [6,7]. Hybrid-multiscale models
have also been developed that combine elements of both microscopic and macroscopic
models [8]. GBM models most often combine the human brain geometry derived from
magnetic resonance imaging (MRI) or computer tomography (CT) with equations account-
ing for cancer cells’ proliferation and diffusion [9–11]. This modeling strategy allows
for the prediction of patterns of submicroscopic tumor invasion not detectable by MRI
images [9–11]. Some models even consider anisotropic diffusion based on data derived
from diffusion tensor imaging (DTI MRI), which allows for patient-specific predictions
of the shape and evolution of the tumor [12–14]. A probabilistic diffusion coefficients
scheme in the diffusion reaction equation has also been employed instead of fixed diffusion
parameters to improve predictions [15,16]. Furthermore, some studies focus on simulating
treatments, such as radiotherapy [17–20], while others simulate chemotherapy based on
the patient’s imaging data [21,22].

The realization that not only biological and brain physiological factors but also biome-
chanical forces drive brain tumor progression has led to the development of mathematical
models that account for tissue biomechanical properties [23,24]. The effect of the biome-
chanical properties is crucial because tumor progression is associated with the onset and
accumulation of mechanical stresses [25–28]. A source of mechanical stress is solid stress
exerted by stromal and cancer cells and the tumor extracellular matrix as a consequence
of a growing tumor, which deforms the surrounding tissues [29–32]. There are also fluid
stresses associated with the interstitial and vascular fluid pressure [33,34]. Glioma in silico
models consider the effect of stresses with either continuous or discrete approaches [35–38].
Solid stresses can directly affect glioma cell proliferation and migration [39,40]. They can
also induce blood vessel compression and dysfunction, limiting perfusion rates and, thus,
oxygen and chemotherapeutic agents’ transport into the tumor [26,41]. Oxygen levels,
in turn, affect cancer cell proliferation, tumor growth and invasion as proliferative cells
can become invasive under hypoxic conditions [23,35,40,42–46]. Thus, the normalization
of brain tumor blood vessels to restore vessels’ hyper-permeability and compression can
lead to improved perfusion and therapeutic efficacy [47,48]. The incorporation of tissue
mechanics on tumor growth models improves predictions on preclinical models and also
helps distinguishing radiation necrosis from tumor progression in patients [49,50].

For a better understanding of the biomechanical tumor microenvironment, a detailed
quantification of the mechanical properties of the normal and tumor brain is required.
Magnetic resonance elastography (MRE) is a promising imaging technique, which allows
for noninvasive quantification of the mechanical properties of tissues by applying external
vibrations [51]. Biomechanical properties provide information about tissue stiffness, which
is related to the magnitude of mechanical stresses developed in the tumor. Even though
MRE has been used for studying brain cancer in patients and animal models [52,53], it
has not been used in simulations of brain tumor development, omitting the importance of
biomechanical properties in tumor progression.

To this end, we present a mathematical model that incorporates not only conventional
anatomical and DTI MRI data but also considers MRE data for a more realistic represen-
tation of the biomechanical properties and mechanical stresses in healthy and malignant
brain tissues. The model combines the elastography data of a healthy subject’s brain with
those of five patients with GBM. Our model simulates tumor progression by assuming
that the non-uniform distribution of mechanical stresses promotes proliferation towards
low-stress regions [54–58]. This allows for predictions of patient-specific anisotropic tumor
growth, non-uniform vessel compression and heterogeneous distribution of functional tu-
mor vessels. Heterogeneous vascular density, in turn, determines chemotherapeutic agents’
transport, posing limits to effective drug delivery [41]. The model highlights the important
relationship of elastography data with tumor anisotropic growth, vascular density and
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chemotherapy delivery and can be a valuable tool for optimizing cancer treatment by using
patient-specific noninvasive medical imaging.

2. Materials and Methods
2.1. Application of MR Imaging Data in the Model

MR imaging was performed on a 3T clinical MRI scanner (Ingenia, Philips Medical
Systems, Best, The Netherlands) using a 32-channel head coil. Anatomical T1-weighted,
T2-weighted and fluid attenuated inversion recovery (FLAIR) images, as well as DTI MRIs
and MRE data, were acquired for five patients, using imaging parameters as in [59], also
shown in Table S2. The MRE was performed using a gravitational transducer [60] attached
on the side of the head, inducing shear waves of 50 Hz into the brain. The MRE acquisition
lasted 5.5 min, with further details about acquisition and processing listed in reference [61].
Patients were between 53 and 75 years (median 60 years), with two female patients and
three male patients. All patients had IDH-wildtype glioblastomas, and tumor sizes ranged
from 41 cm3 to 110 cm3 (median 60 cm3). Imaging was performed before any treatment.
For a healthy subject (a 34-year-old woman), the MRE imaging was extended to cover the
entire brain.

Storage and loss modulus values were derived from the MRE data using a localized
divergence-free finite element reconstruction [61,62]. The MRE data for both the patients
and the healthy subject were converted from a digital imaging and communications in
medicine (DICOM) format to Matlab format. Diffusion tensors were derived from the
DTI MRI scan of the healthy subject. This was performed using the Diffusion Toolkit
(Massachusetts General Hospital, Boston, MA, USA) following a similar procedure as in
a previous study [13]. Diffusion tensors were converted to Matlab matrix format too.

A brain geometry employed in a previous study [24] was used here. To reduce compu-
tational demands, only the gray matter and white matter regions were included. Generation
of the 3D geometry was performed using ScanIP (Simpleware Ltd., Mountain View, CA,
USA [24]. The geometry was then imported in COMSOL Multiphysics (COMSOL, Inc.,
Burlington, MA, USA). Inside the brain geometry, a small spherical tumor, with a radius of
5 mm, acting as the initial tumor seed, was added in the same position for all cases to avoid
host tissue mechanical heterogeneities.

A mesh was generated in COMSOL Muliphysics (COMSOL, Inc., Burlington, MA,
USA). A finer mesh was used inside and around the tumor domain compared to the rest of
the brain in order to improve accuracy and reduce computational cost. The mesh included
two types of elements: 1008 prisms that form boundary layers at the tumor boundary and
34,468 tetrahedra for the rest of the geometry.

The storage and loss modulus and diffusion tensors derived from the healthy subject
were interpolated in the brain domain. This was done by using a Matlab’s built-in inter-
polation function (scatteredInterpoland with the method set to natural interpolation) to
interpolate the data existing in the Matlab matrixes to the nodes of the finite elements in
COMSOL Multiphysics. The same interpolation was used for the patient’s data to the initial
tumor seed. This required a deformation of the patient’s data prior to the interpolation, as
shown in Figure S1.

For each patient dataset, a rectangular parallelepiped containing the tumor data was
extracted. For each patient’s data, the rectangular parallelepiped had the smallest possible
dimensions that fitted inside the tumor domain. The parallelepiped was deformed into
a cube and then interpolated to the initial tumor seed. For each simulation performed, the
tumor seed was subjected to each patient’s elastography data and to the same surrounding
elastography data of the normal tissue (derived from the healthy subject). This was done to
examine the effect of different tumor elastography properties on the tumor growth.

Figures 1 and 2 depict the shear modulus values, G, which are used for the constitutive
equation of the normal and brain tumor material model.
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Figure 2. Patients’ tumor shear modulus, G, derived from MRE as it was fitted on the initial tumor 
seed of the model. The value for the constant shear modulus case is the average value of patient’s 1. 
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where ω is the radial frequency, τm is the characteristic decay time and G is the shear 
modulus [63]. In the model, we only considered elastic effects as transient effects due to 
tissue viscoelastic properties associated with the characteristic decay time were assumed 
negligible due to the relatively slow growth/deformation rates. 

2.2. Kinematics of Tumor Growth 
Tumor growth is based on principles of continuum mechanics. The deformation gra-

dient tensor, 𝐅𝐅, was decomposed into two components [64,65]. 

F = Fe·Fg, (3) 

Figure 1. Healthy subject’s shear modulus, G, of the brain derived by MRE. The value for the constant
shear modulus case also considered for comparison is the average of the healthy subject’s data.
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The complex shear modulus G∗(ω) can be written as G∗(ω)= G′(ω)+G′′(ω), where
G′ and G′′ are the storage and loss modulus calculated by MRE and given by

G′(ω)= G
(ωτm)2

1 + (ωτm)2 , (1)

G′′(ω)= G
ωτm

1 + (ωτm)2 , (2)

where ω is the radial frequency, τm is the characteristic decay time and G is the shear
modulus [63]. In the model, we only considered elastic effects as transient effects due to
tissue viscoelastic properties associated with the characteristic decay time were assumed
negligible due to the relatively slow growth/deformation rates.

2.2. Kinematics of Tumor Growth

Tumor growth is based on principles of continuum mechanics. The deformation
gradient tensor, F, was decomposed into two components [64,65].

F = Fe·Fg, (3)

where Fe is the elastic (reversible) component of F that is related to the stress response of the
material. Fg is the inelastic (growth, irreversible) component of F. The diagonal components
of Fg correspond to the growth stretch ratios in the x,y,z direction (λgx, λgy, λgz).
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Fg =

 λgx 0 0
0 λgy 0
0 0 λgz

. (4)

The elastic component of the deformation gradient tensor is calculated as,

Fe= F·Fg
−1, (5)

and the growth stretch ratios are calculated as [54,66],

1
λga

dλga

dt
= Γarg , a = x, y, z, (6)

where λga is the growth stretch ratio in each direction (α = x,y,z) and rg is the mass growth
per unit of the current mass. The anisotropic growth multiplier, Γa, defines the distribution
of the growth term, rg, among the three directions (x,y,z) and is written as,

Γa= ΓΣ
−1 exp(A σs

aa/k), a = x, y, z, (7)

ΓΣ= exp(A σs
xx/k)+ exp

(
A σs

yy/k
)
+ exp(A σs

zz/k). (8)

σs is the Cauchy stress, k is the bulk modulus of the tumor and ΓΣ is defined in a way
that ∑

a
Γa= 1 is satisfied. A is a parameter describing the degree of anisotropy [66]. When

A = 0, the Equation (6) becomes
3
λg

dλg

dt
= rg, (9)

the growth stretch ratios, λga, become the same and the model accounts for isotropic tumor
growth [67]. For A > 0, the larger the value of A, the higher the degree of anisotropy, and
growth occurs mostly at the directions of lower stress magnitude [55–58].

The growth term, rg, depends on the oxygen concentration in the tissue, cox, and the
cancer cell density, Tcel [13],

rg =
k1 cox

k2+cox
Tcel, (10)

where k1, k2 are growth rate parameters.

2.3. Stress Balance

According to the biphasic theory for soft tissues [68], the total stress tensor, σtot, can
be expressed as the summation of the solid phase stress tensor, σs, and the stress tensor,
piI, due to the effect of the interstitial fluid pressure pi,

∇ ·σtot= 0 ⇒ ∇ · (σs−piI)= 0. (11)

The Cauchy stress tensor, σs, is expressed as [69],

σs= J−1
e Fe

∂W
∂FT

e
, (12)

where Je = detFe and W is the strain energy density function of the tissue [70].

W =
G
2
(I1−3) +

k
2
(Je−1)2, (13)

where G is the shear modulus calculated from the elastography data and I1 is the first
invariant of the elastic Green–Cauchy deformation tensor.
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2.4. Cancer Cell Density

Cancer cell density, Tcel, was normalized by division with a reference initial value of
107cells/cm3 [71]. Thus, the initial value was set to 1 for the tumor region and to 0 for the
host tissue. Tcel is given by the diffusion–reaction equation,

∂Tcel
∂t

+∇·(−D T(x)∇Tcel) = R, (14)

Rtumor= rg =
k1 cox

k2+cox
Tcel, (15)

Rhost = ρcellTcel, (16)

where DT(x) is the inhomogeneous and anisotropic diffusion tensor acquired from the DTI
MRI [13,16,72]. In the tumor region, cancer cell proliferation is associated with oxygen
supply. The cancer cells that escape the tumor domain due to diffusion were assumed to
have a constant proliferation rate, ρcell.

2.5. Interstitial Pressure-Fluid Velocity

Normal and tumor tissues have properties similar to those of a porous medium.
According to Darcy’s law, the interstitial fluid velocity is given by

vf= −kth ∇pi, (17)

where kth is the hydraulic conductivity of the interstitial space [73]. The mass balance
gives [74,75],

∇·
(

vf
)
= LP Sv (pv−pi)−LPl Svl (pi−pvl). (18)

The first term of the right-hand side of Equation (18) describes the fluid flux entering
from the blood vessels and the second term the flux exiting through the lymphatic system.
LP is the blood vessels’ hydraulic conductivity, and pv is the vascular pressure. LPl, Svl and
pvl are the corresponding parameters for the lymphatic vessels [76].

2.6. Oxygen Transport

The rate of change of oxygen concentration in the tissue was modeled with a convection
diffusion equation that includes a source and a sink term [77,78]. The source term is due to
oxygen supply from the blood vessels and the sink term describes oxygen consumption by
cancer cells:

∂cox

∂t
+∇·

(
coxvf

)
= Dox ∇2cox −

Aox cox

cox+kox
Tcel+Perox Sv (c iox−cox), (19)

where Sv is the vascular density, Dox the oxygen diffusion coefficient, Aox and kox are
oxygen uptake parameters, ciox is the oxygen concentration in the vessels, vf is the fluid
velocity and Perox is the vascular permeability of oxygen defined as the oxygen diffusion
coefficient divided by the length of the vessel wall.

2.7. Vascular Density

Cancer cell infiltration was studied in our previews work [13]. Thus, in this study, we
emphasize the anisotropic tumor growth governed by the effect of elastography data and
how that affects stresses and the vasculature. The vascular density was considered as the
vascular surface area, S, per unit volume,

S = πdLvwN, (20)

where d and Lvw are the diameter and length of the vessel and N is the number of vessels.
By the assumption that the solid stresses do not affect the length or the number of vessels
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but only the diameter due to compression [41], and by dividing the vascular density with
a reference vascular density

Sv

Sv0
=
πdLvwN
πdoLvwN

=
d

do
. (21)

The functional vascular density can be expressed as [41],

Sv= (d/do) Sv0, (22)

where Sv0 is the vascular density of the host tissue and d/do is the degree of vessel
compression assumed to be affected only by the solid stress levels, as described in [41].
The compression is assumed to be affected by the average bulk stress. The average bulk
stress is expressed as the trace of the solid Cauchy stress. Initially, the vascular density was
assumed to have the value of Sv0 in both the tumor and host tissue. In the tumor region,
due to the development of stresses, the degree of vessel compression d/do changes as the
tumor grows and, thus Sv decreases in a stress-dependent manner.

2.8. Drug Transport
2.8.1. Drug Transport in the Tumor Interstitial Space

The therapeutic agent can exist in three states: it can travel freely through the interstitial
space (cf) of the tumor, bind to cancer cells (cb) and get internalized by the cells (cint). The
equations describing the three states are [79].

∂cf
∂t

+∇ ·
(

cfv
f
)
= Df∇2cf+Qsta −

koncecf
Φ

+koffcb, (23)

dcb
dt

=
koncecf

Φ
−koffcb−kintcb, (24)

dcint

dt
= kintcb. (25)

The free drug that travels in the tumor interstitial space, cf, can be transferred due to
convection and diffusion, where Df is the diffusion coefficient of the drug in the interstitial
space and vf is the fluid velocity. Moreover, the free drug is transferred across the tumor
vessel wall (Qsta). The remaining terms describe the binding, unbinding and internalization
of the drug; ce is the concentration of cell surface receptors and kon, koff and kint are the
binding, unbinding and internalization rate constants, respectively; Φ is the volume fraction
of cells accessible to the drug.

2.8.2. Drug Transport across the Tumor Vessel Wall: Starling’s Approximation

Starling’s approximation was employed for the transport of drugs across the vessel walls

Qsta= PerSv(C iv−cf) + LpSv(p v−pi)(1− σ f)Civ, (26)

where Per is the vascular permeability of the drug, σf the reflection coefficient and Civ is
the vascular concentration of the drug expressed as a bolus injection:

Civ= exp(–(t–t 0)/kd), (27)

where t0 is the time of drug injection and kd the blood circulation decay. The parameters
Lp, Per and σf are expressed as a function of the vessel wall pores and the size of the
drug [41,80]:

Lp =
γr2

0
8ηLvw

, (28)

Per =
γHD0
Lvw

, (29)
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σf= 1–w, (30)

where γ is the fraction of the vessel wall surface area occupied by pores, r0 the pore radius,
η the viscosity of blood plasma and Lvw the thickness of the vessel wall. H and w describe
the steric and hydrodynamic interactions of the drug with the pores of the vessel wall that
hinder diffusive and convective transport, respectively, and D0 is the diffusion coefficient
of a particle in free solution given by the Stokes–Einstein equation. By ignoring electrostatic
interactions, H and w become [80],

H =
6πF
Kt

, (31)

w =
F(2− F)Ks

2Kt
, (32)

where F is the partition coefficient expressed as,

F = (1− λ)2, (33)

where λ is the ratio of the drug size to the vessel wall pore size and Kt and Ks are expressed
as [80](

Kt
Ks

)
=

9
4
π2
√

2(1− λ)−5/2

[
1+

2

∑
n=1

(
an
bn

)
(1− λ)n

]
+

4

∑
n=0

(
an+3
bn+3

)
λn. (34)

2.9. Solution of Model Equations

At all internal boundaries/interfaces of the computational domains, COMSOL automat-
ically assigned continuity. For the calculation of the displacement fields and stresses, the
external surfaces of the brain were considered to have a fixed boundary (u = 0). For the trans-
port equations, a no flux boundary condition was assumed at the external surface of the brain.
The values of the model parameters are summarized in Table S1 [13,41,45,75,76,78,79,81–89].

3. Results
3.1. Elastography Data Affect Mechanical Stress Distribution and Induce Anisotropic Tumor Growth

We first set out to examine how the incorporation of elastography data by the model
affects the magnitude and distribution of intratumoral mechanical stresses and the growth
pattern of the tumor. Figure 3 illustrates the comparison of a tumor with a constant
averaged shear modulus and a tumor based on the elastography data for isotropic growth,
as well as the effect of anisotropic growth.

The incorporation of elastography data into the model results in a non-uniform distri-
bution of mechanical stresses, which, in turn, affects the functional vascular density (due
to vessel compression, Equation (22) and, thus, the distribution of the drug taken up by
cancer cells. The non-uniform spatial distribution of the vasculature can be observed in
Table 1 when comparing the standard deviation of the vasculature of the constant modulus
case to that of the cases where MRE data were used. The constant case has a 2.6–2.7 times
smaller standard deviation and, thus, a narrower variation in the vascular density values
and a more uniform distribution. The standard deviation of the drug’s spatial distribution
in the constant modulus case is higher compared to the MRE cases due to the lack of vessel
compression at the periphery, where the highest drug transport is observed.

Incorporation of anisotropic growth (i.e., A > 0) allows for the development of more
realistic, non-spherical tumor shapes and growth towards the region of lower stresses.
Interestingly, an increase in the anisotropic parameter, A, does not have a large effect on
the shape of the tumor. The overlap of the tumor shapes is displayed in Figure S2. By
evaluating the similarity with the Sorensen–Dice coefficient of the two anisotropic cases,
we get a value of 0.9748. Therefore, it seems that the effect of elastography data on the
model predictions is dominant compared to the effect of the degree of anisotropy.
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Figure 3. Mechanical stress, vascular density and drug concentration taken up by cancer cells for
elastography data of patient 1. A cut plane at the center of the tumor is displayed to visualize
the interior of the tumor. Results are presented at day 43 of the simulation. Comparison among
isotropic and anisotropic tumor growth by varying the degree of anisotropy (A) is shown. For the
constant elasticity case, the average value of the shear modulus was used in the tumor region and
the average value of the normal brain for the rest of the brain. A drug of 2 nm in diameter was used
to simulate small therapeutic molecules, whereas the tumor vessel wall pore size was set to 200 nm.
The bulk mechanical stress is displayed (i.e., the trace of the stress tensor), and the negative sign
denotes compression.

Table 1. Mean and standard deviation values of the spatial distribution of the vascular density and
drug concentration in the tumor for the 4 cases considered in Figure 3.

Constant-Isotropic
(A = 0)

MRE-Isotropic
(A = 0)

MRE-Anisotropic
(A = 25)

MRE-Anisotropic
(A = 50)

Vascular Density
(1/cm)

Mean 50.263 47.560 46.933 45.524
Standard
Deviation 7.014 18.942 18.267 19.261

Drug Concentration
Mean 18.954 17.726 18.471 18.282

Standard
Deviation 6.292 5.970 4.436 4.723

Subsequently, we repeated the simulations using the MRE data of the other four
patients (Figure 4), with each inducing a different stress distribution in the tumor, which,
in turn, caused a different anisotropic tumor growth and, thus, different non-spherical
tumor shapes.

3.2. Elastography Data Reveal Distinct Functional Vascular Density Distribution among Patients

Vessel compression owing to mechanical stresses causes a reduction in the vessel diam-
eter that limits the area of the lumen available for blood flow. This can have a detrimental
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effect on tumor perfusion and the functionality of the vessels as the higher the magnitude
of stresses the more compressed the vessels become. Figure 5 shows the variation in the
magnitude and distribution of the vascular density for the five different patient elastogra-
phy datasets as a result of the differences in the intratumoral distribution of mechanical
stresses (Figure 4). The mean and standard deviation values of the vascular density inside
the tumor for the five patients can be found in Table S3.
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3.3. Elastography Data Affect Intratumoral Drug Distribution

Abnormal development of vessels during tumor-induced angiogenesis results in
vessel hyper-permeability and openings in the tumor vessels wall that can be hundreds
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of nanometers large [89]. For larger vessel wall pores, the tumor interstitial fluid pressure
is uniformly elevated and equals the vascular pressure owing to fluid communication
between the vascular and extravascular space of the tumor (Figure 6) [27]. As a result, there
is no pressure gradient across the tumor vessel wall nor inside the tumor. Furthermore,
there is a steep pressure gradient at the periphery of the tumor as the fluid pressure drops
from high values in the tumor interior to normal levels at the interface with the host tissue.
For smaller pores in the vessel wall, the distribution of the interstitial fluid pressure is
smoother and does not reach the value of the vascular pressure. These observations are well
documented in the literature and are typical for the pathophysiology of solid tumors [33,34].
Our data suggest that the incorporation of MRE data does not change the magnitude and
elevation of the interstitial fluid pressure.
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Figure 6. Interstitial fluid pressure for various vessel wall pore sizes. A comparison among
the isotropic-constant elastic properties case and the anisotropic-elastography case (for patient 1)
is shown.

For larger pores, the lack of pressure gradients eliminates drug transport through con-
vection inside the tumor, and, thus, diffusion becomes the dominant transport mechanism
(Equation (26)). Thus, the drug accumulates at the tumor periphery, where both convection
and diffusion are prominent, and is washed out from the tumor to the host tissue (Figure 7).

In Table 2, we observe a decrease in the mean values and the standard deviation as we
decrease the vessel wall pore size inside the tumor. That means that the establishment of
a smooth pressure gradient for smaller vessel wall pore sizes resulted in a more uniform
distribution of the drug inside the tumor.

Importantly, incorporation of MRE data can affect model predictions of drug distri-
bution independently of the size of the vessel walls (Figure 7). This is further observed
by the mean and standard deviation of the spatial distribution of the drug in the constant
versus the MRE cases (Table 2). The use of MRE data in the model leads to predictions
of heterogeneous mechanical stress and vascular density distribution. Regions of lower
functional vascular density exhibit reduced drug delivery, which results in a heterogenic
distribution of the drug.

Next, we repeated the simulations for the delivery of drugs of different sizes: 2 nm,
70 nm and 150 nm, accounting for small molecules and for nanoparticles (Figure 8).
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A comparison between the isotropic-constant elastic properties case and the anisotropic-elastography
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Table 2. Mean and standard deviation values of the spatial distribution of drug concentration in the
tumor for the 6 cases considered in Figure 7.

Vessel Wall Pore Size in
Tumor (nm) 100 200 300

Constant Elasticity
Drug Concentration

Mean 10.185 18.954 24.223
Standard
Deviation 0.919 6.292 14.162

MRE Drug
Concentration

Mean 9.361 18.282 23.736
Standard
Deviation 2.656 4.723 8.886

For the constant elastic properties scenario, the drug distribution is symmetric in the
radial direction. This is not the case when the MRE data are included, in which regions of
lower functional vascular density exhibit reduced drug delivery. The reduced drug delivery
in the MRE cases can be further observed by the decrease in the standard deviation when
comparing them with the corresponding constant elasticity values (Table 3). Moreover,
smaller drugs can be transferred faster through the pores of the vessels and delivered in
larger amounts to cancer cells. Alternative versions of Figures 7 and 8 using the same
colorbar for all the drug sizes can be found in Figures S3 and S4.

Finally, we employed the elastography data of all the patients to investigate the
different patterns of drug delivery within patients (Figure 9).

The results show that the incorporation of patient-specific elastography data can
affect the delivery and intratumoral distribution of the drugs. Regions of lower functional
vascular density vary among patients, and this results in a distinct drug distribution for
each patient. To compare these five cases, we evaluated the fraction of the tumor that
receives a drug concentration greater than a specific value (Table 4). This fraction varies
by more than 10-fold among the patients. The analysis was also repeated for the cases
displayed in Figures 7 and 8 and can be found in Tables S4 and S5, respectively. These
results further support that tumor elastic properties can affect drug delivery.
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the isotropic-constant elastic properties case and the anisotropic-elastography case (patient 1) is
shown. All results are displayed at day 43 of the simulation following a drug injection at day 41. The
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Table 3. Mean and standard deviation values of the drug concentration inside the tumor domain of
the 6 cases of Figure 8.

Drug Size (nm) 2 70 150

Constant Elasticity
Drug Concentration

Mean 18.954 9.221 1.201
Standard
Deviation 6.292 4.413 0.575

MRE Drug Concentration
Mean 18.282 8.957 1.185

Standard
Deviation 4.723 3.114 0.413
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Table 4. Fraction of the tumor that receives a drug concentration greater than 20 (dimensionless units)
for the 5 patients at day 43 of the simulation.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Volume Fraction
(Drug Concentration > 20) 0.375 0.173 0.027 0.038 0.206

4. Discussion

The important role of mechanical forces in tumor progression and therapy is well
established [26–32,41]. Yet, the incorporation of tissue mechanics in mathematical models
of brain tumors is not thoroughly studied. Here, we developed a methodology for more
accurate calculation of brain tumor mechanics and highlighted its importance for vascular
changes and the delivery of therapeutic agents. We included MRE data for a more realistic
incorporation of the mechanical properties of both the tumor and host tissue, which led
to a more accurate calculation of the intratumoral distribution of mechanical stresses. In
addition, to further improve the accuracy of our calculations, we applied a methodology
for anisotropic tumor growth, allowing the tumor to grow in non-spherical shapes. We
considered that mechanical stresses induce vessel compression and modeled the delivery
of drugs of various sizes.

The incorporation of elastography data resulted in a non-uniform distribution of
mechanical stresses. The incorporation of anisotropic growth allowed the development
of a more realistic non-spherical tumor shape and growth towards the regions of lower
stresses. The non-uniform mechanical stresses induced a non-uniform distribution of
vascular density due to vessel compression. This resulted in a non-symmetric distribution
of drugs where regions of lower functional vascular density exhibited reduced drug delivery.
Stress distribution, vascular density distribution and drug delivery are unique for each
patient’s MRE data, and, thus, the inclusion of MRE data allows patient-specific predictions.

Smaller pores of the vessel wall induced a smoother distribution of interstitial fluid
pressure. The incorporation of MRE data did not change the magnitude and elevation of
interstitial fluid pressure. Smoother pressure gradients caused a more uniform distribution
of drug inside the tumor. In addition, our results suggest that smaller drugs can be
transferred faster through the pores of the vessels and delivered in larger amounts to the
cells compared to larger drugs. Overall, our findings can be used to improve treatment
response assessment and evaluation of pharmacological strategies as MRE is a noninvasive
imaging technique that can be added to patients’ MR examination. MRE is an emerging
imaging technique that has been used in several studies of patients with brain tumors [90].
Currently, there is no commercial system available for brain MRE, limiting its potential as
a routine part of brain cancer imaging. The patients in our study were all imaged prior
to any treatment, but using MRE on patients after surgical tumor resection is clinically
feasible and currently ongoing at our institution as part of a clinical trial and with minimal
implications (NCT03951142).

Several simplifying assumptions were made in this study. For the host tissue, elastog-
raphy data of a healthy subject were used because the clinical patient scans did not cover
the entire brain, only 4.65 cm, covering the tumor. Because the patients differ from healthy
subjects in terms of MRE values [59], more accurate results would have been obtained if
the specific patient’s elastography of the host tissue was used. In addition, patients’ MRE
values were obtained at one time point during tumor development and, thus, in the model,
the elastic properties were assumed constant during tumor progression. That is not usually
the case. Due to changes in the cellular and extracellular matrix components, the compres-
sion of the tumor and the host tissue changes during tumor progression. These effects can
result in changes in the stiffness of the tumor [26,32,91,92]. The incorporation of temporal
variations in the elastic properties would be expected to change our results quantitatively.
However, the main conclusions of our study concerning the role of mechanical forces in
tumor vasculature and drug delivery are not expected to be altered by this. Furthermore,
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the evolution of the tumor in the model was related to the simulation time-step and not the
actual time for tumor growth. This was done due to the absence of individual tumor growth
rates. Moreover, the timepoint of the injection of chemotherapy was also an assumption.
The same timepoint of injection was used for all the cases to enable direct comparison
among different simulations. Finally, the isotopic neo-Hookean constitutive equation might
not be sufficient to fully describe the mechanical response of brain tumors because of the
heterogenous structure of the GBM. However, studies have shown that the state of stress
of the tumor is largely determined by the properties of the host and tumor tissue and not
from the selection of the constitutive equation being used [30].

5. Conclusions

The presented methodology and results led to the conclusion that incorporating the
tissue elastic properties assessed by MRE and anisotropic growth into mathematical models
can result in more accurate predictions of the distribution of mechanical stresses in tumors.
This produces an improved mathematical description of subsequent events that are closely
related to the development of mechanical stresses, including the heterogeneity in the
functional vasculature of the tumor and intrapatient variations in tumor perfusion and
delivery of drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14040884/s1, Table S1: Values of model parameters, Table S2: Scan parameters for
patients and healthy subject, Table S3: Mean and standard deviation values, vascular density and
drug concentration inside the tumor domain of the 5 patients at day 43 of the simulation, Table S4:
Fraction of the tumor that receives drug concentration greater than 20 for the 6 cases of Figure 7,
Table S5: Fraction of the tumor that receives drug concentration greater than 20 for the 6 cases of
Figure 8, Figure S1: Deformation and interpolation of the patient’s data to the initial tumor seed:
(A) T1c MRE space used to locate the tumor region of each patient; (B) tumor data of each patient;
(C) deforming the data into becoming a cube; (D) interpolating the data of the cube to each initial
tumor seed; (E) initial tumor seed with data, Figure S2: Overlap of the tumor shapes displayed in
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