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Supplementary Figures 

 
Figure S1. Principal component analysis (PCA) to investigate the variance for The Cancer 
Genome Atlas (TCGA) cohorts for Lower Grade Glioma (LGG) and Glioblastoma Multiforme 
(GBM). (A) Original data from the GDC repository. (B) Unified cohorts from the UCSC Xena 
repository. (C) Batch effect correction of unified cohorts for the leek parameter with 532 
surrogate variables. (D) Batch effect correction of unified cohorts for the be parameter with 48 
surrogate variables. 
  



 
Figure S2. Machine learning analysis was performed on 100 randomly selected genes with 10 
various seed values to investigate the bias for TCGA cohorts of LGGs and GBMs. All five 
machine learning methods were applied, viz. SMO, IBk, Bagging, J48 and JRip (see section ML 
evaluation). (A) Original data from the GDC repository. (B) Unified cohorts from the UCSC 
Xena repository. (C) Batch effect correction of unified cohorts for the leek parameter with 532 
surrogate variables. (D) Batch effect correction of unified cohorts for the be parameter with 48 
surrogate variables. (E) Student’s t-test results for particular cases a-d corresponding to 
subplots (A-D).  



 
Figure S3. Data evaluation to localize and remove bias from the glioma cohorts (A) PCA for 
unified cohorts from the UCSC Xena repository. (B) Clustering of 1-10 PCs of unified cohorts 
from the UCSC Xena repository. (C) Gaussian mixtures (GM) were detected from PC1. In 
GM2-based sample sets, two GBMs were included in the mixture and excluded in further 
analyses. (D) PCA was performed on LGG and GBM samples selected based on GM1. (E) 
Batch effect correction performed on LGG and GBM samples selected based on GM1 for the 
leek parameter with 232 surrogate variables. (F) Batch effect correction for the be parameter 
with 30 surrogate variables performed on samples selected based on GM1. (G) The final data 
set was based on GM1 after batch effect correction and filtration for protein-coding genes (H-
I) Evaluation of LGG samples included in GM1 based data set. 



 
Figure S4. The global and local analysis of the data structure for TCGA glioma cohorts. (A) 
PCA and (B) t-SNE for decision class selected based on GMs. (C) PCA and (D) t-SNE for tissue 
source sites (TSSs). t-SNE plots were created for seed 1. Remaining TSSs included groups of 
samples equal to or less than 10. 
  



 
 

 
Figure S5. Machine learning analysis was performed on 100 randomly selected genes with 10 
various seed values to investigate the bias for TCGA cohorts of LGGs and GBMs. All five 
machine learning methods were applied, viz. SMO, IBk, Bagging, J48 and JRip (see section ML 
evaluation). (A) unified cohorts from the UCSC Xena repository. (B) GM2 samples from 
unified cohorts from the UCSC Xena repository. (C) Batch effect correction of 259 GM2-based 
samples for the leek parameter with 232 surrogate variables. (D) Batch effect correction of 259 
GM2-based samples for the be parameter with 30 surrogate variables. (E) The final data set is 
based on GM1 after batch effect correction and filtration for protein-coding genes. (F) 
Student’s t-test results for particular cases a-e corresponding to subplots (A-E).  



 
Figure S6. The evaluation of samples in GM2 consisting of the vast majority of LGGs. (A) PCA 
for LGGs based on GM2 samples. (B) PCA for LGGs based on GM2 samples for protein-coding 
genes only. (C) Machine learning evaluation of GM2 samples for discerning between GII and 
GIII. (D) Machine learning evaluation of GM2 samples for discerning GII and GIII for protein-
coding genes only. (E) Evaluation of fraction of statistically significant genes discerning 
between GII and GIII with all genes (case a) and protein-coding genes only (case b). (F) The 
proportion of grades within a GM2-based data set for LGGs. For machine learning evaluation 
(C, D) all five methods were applied, viz. SMO, IBk, Bagging, J48 and JRip (see section ML 
evaluation). 



 
Figure S7. The evaluation of other clinical factors within GM1- and GM2-based data sets. (A) 
PCA for GM1 for LGGs and their sex information. (B) PCA for GM2 for LGGs and GBMs and 
their sex information. (C) The variation of the age of LGG samples is based on GM1. (D) The 
variation of the age of LGG and GBM samples is based on GM2. Pearson correlation (r) value 
is marked in the plot caption. 
  



 
Figure S8. Expression profiles for six common differentially expressed genes (DEGs) were 
selected based on the intersection of the DEGs list between GII vs. GIII and LGG vs. GBM. 
Gene expression profiles were generated based on TCGA cohorts. P values were marked on 
boxplots as ns (P > 0.05), * (P ≤ 0.05), ** (P ≤ 0.01), and *** (P ≤ 0.001). 
  



 
Figure S9. Expression profiles for six common DEGs were selected based on the intersection 
of DEGs list between GII vs. GIII and LGG vs. GBM. Gene expression profiles were generated 
based on the Chinese Glioma Genome Atlas (CGGA) batch 1 cohort. P values were marked 
on boxplots as ns (P > 0.05), * (P ≤ 0.05), ** (P ≤ 0.01), and *** (P ≤ 0.001). 
  



 
Figure S10. Expression profiles for six common DEGs were selected based on the intersection 
of DEGs list between GII vs. GIII and LGG vs. GBM. Gene expression profiles were generated 
based on the CGGA batch 2 cohort. P values were marked on boxplots as ns (P > 0.05), * (P ≤ 
0.05), ** (P ≤ 0.01), and *** (P ≤ 0.001). 
  



 
Figure S11. Variability in DNA methylation data from TCGA based on samples selected upon 
GM modeling for (A) GM2 and (B) GM1. Explained variation is given in parenthesis. 
  



 
Figure S12. DNA methylation status of six common DEGs for GII vs. GIII. P values were 
marked on boxplots as ns (P > 0.05), * (P ≤ 0.05), ** (P ≤ 0.01), and *** (P ≤ 0.001). 
  



 
Figure S13. DNA methylation status of six common DEGs for LGG vs. GBM. P values were 
marked on boxplots as ns (P > 0.05), * (P ≤ 0.05), ** (P ≤ 0.01), and *** (P ≤ 0.001). 
  



 
Figure S14. The Monte Carlo feature selection (MCFS) evaluation of thresholds was 
performed for choosing a threshold for selecting top features. (A) All 20 MSigDB collections 
for GII vs. GIII. (B) All 20 MSigDB collections for LGG vs. GBM. 
  



 
Figure S15. Evaluation of MSigDB collections with R.ROSETTA rule-based learning for 
classifying glioma grades using ssGSEA scores based on TCGA cohorts. (A) Top three 
MSigDB collections for classifying GII vs. GIII. (B) Top three MSigDB collections for 
classifying LGG vs. GBM. (C) Merged top three MSigDB collections for two RBMs classifying 
GII vs. GIII (right bar), and LGG vs. GBM (left bar). 
  



 
Figure S16. Evaluation of MSigDB collections with R.ROSETTA rule-based learning for 
classifying glioma grades using ssGSEA scores based on CGGA batch 1. (A) Top three 
MSigDB collections for classifying GII vs. GIII. (B) Top three MSigDB collections for 
classifying LGG vs. GBM. (C) Merged top three MSigDB collections for two RBMs classifying 
GII vs. GIII (right bar), and LGG vs. GBM (left bar). 
  



 
Figure S17. Evaluation of MSigDB collections with R.ROSETTA rule-based learning for 
classifying glioma grades using ssGSEA scores based on CGGA batch 2. (A) Top three 
MSigDB collections for classifying GII vs. GIII. (B) Top three MSigDB collections for 
classifying LGG vs. GBM. (C) Merged top three MSigDB collections for two RBMs classifying 
GII vs. GIII (right bar), and LGG vs. GBM (left bar). 
  



 
Figure S18. Rule-based network displaying the most relevant co-enrichments of annotations 
obtained from (A, B) the BioCarta collection for the GII vs. GIII model and (C, D) the GOBP 
collection for the LGG vs. GBM model. The networks show 20 most connected nodes obtained 
from the top 10% based on the rule connection from a set of significant rules (FDR-adjusted P 
value < 0.01). Connection values of nodes and edges represent a strength of co-enrichment 
from the classifier. Subnetworks were generated separately with respect to the decision class 
for each RBM.  
  



 
Figure S19. Rule-based network displaying the most relevant co-enrichments of annotations 
obtained from (A, B) PID for the GII vs. GIII model and (C, D) WP collections for the LGG vs. 
GBM model. The networks show 20 most connected nodes obtained from the top 10% based 
on the rule connection from a set of significant rules (FDR-adjusted P value < 0.01). Connection 
values of nodes and edges represent a strength of co-enrichment from the classifier. 
Subnetworks were generated separately with respect to the decision class for each RBM.  
  



 
Figure S20. Validation of top MSigDB collections: CGP for GII vs. GIII and GOCC for LGG vs. 
GBM. Heatmaps were generated based on cohort (A, B) CGGA batch 1 and (C, D) CGGA 
batch 2. Values of total correlation among two variables and a decision class given in nats. 
  



 
Figure S21. Validation of top MSigDB collections: BioCarta pathways for GII vs. GIII and 
GOBP for LGG vs. GBM. Heatmaps were generated based on cohort (A, B) CGGA batch 1 and 
(C, D) CGGA batch 2. Values of total correlation among two variables and a decision class 
given in nats. 
  



 
Figure S22. Validation of top MSigDB collections: PID for GII vs. GIII and WP for LGG vs. 
GBM. Heatmaps were generated based on cohort (A, B) CGGA batch 1 and (C, D) CGGA 
batch 2. Values of total correlation among two variables and a decision class given in nats. 
 
  



Supplementary Captions for Tables S1-S8 
Table S1. Computational methods and R packages that were used in this study. 
Table S2. GM1 and GM2 subsets retrieved from GM modelling of PC1. 
Table S3. A list of significant DEGs for G2 vs. G3 (FDR  < 0.001). 
Table S4. A list of significant DEGs for LGG vs. GBM (FDR < 0.001). 
Table S5. Significant enrichment results (FDR < 0.05) for  G2 vs. G3 DEGs from gProfiler. 
Table S6. Significant enrichment results (FDR < 0.05) for LGG vs. GBM DEGs from gProfiler. 
Table S7. A list of significant rules (FDR < 0.01) for G2 vs. G3 RBM built for the CGP collection. 
Table S8. A list of significant rules (FDR < 0.01) for LGG vs. GBM RBM built for the GOCC 
collection.  
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