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Simple Summary: Single-cell sequencing technologies are growing, advancing, and supporting new
opportunities to better understand cancer. A variety of technologies are available that analyze the
human transcriptome, genome, epigenome, and proteome, enabling integrated datasets. As a result,
these integrated datasets contribute to new mechanistic insights and areas with therapeutic potential.
This review summarizes the various single-cell sequencing techniques and provides examples of
recent high-impact findings from the utilization of these technologies. Additionally, the translational
relevance of these technologies and their use in clinical trials is described, along with the future
potential for novel findings using these innovative methods.

Abstract: Single-cell sequencing encompasses a variety of technologies that evaluate cells at the
genomic, transcriptomic, epigenomic, and proteomic levels. Each of these levels can be split into
additional techniques that enable specific and optimized sequencing for a specialized purpose. At
the transcriptomic level, single-cell sequencing has been used to understand immune-malignant
cell networks, as well as differences between primary versus metastatic tumors. At the genomic
and epigenomic levels, single-cell sequencing technology has been used to study genetic mutations
involved in tumor evolution or the reprogramming of regulatory elements present in metastasized
disease, respectively. Lastly, at the proteomic level, single-cell sequencing has been used to identify
biomarkers important for predicting patient prognosis, as well as biomarkers essential for evaluating
optimal treatment strategies. Integrated databases and atlases, as a result of large sequencing experi-
ments, provide a vast array of information that can be applied to various studies and accessed by
researchers to further answer scientific questions. This review summarizes recent, high-impact litera-
ture covering these aspects, as well as single-cell sequencing in the translational setting. Specifically,
we review the potential that single-cell sequencing has in the clinic and its implementation in current
clinical studies.

Keywords: single-cell sequencing; large integrated databases; immunotherapy; personalized
medicine; cancer

1. Single-Cell Sequencing Technologies and Integrated Databases

Single-cell sequencing evaluates heterogeneity in cellular populations at the transcrip-
tomic, genomic, epigenomic, and proteomic levels [1,2]. This methodology is frequently
used to understand changes that occur in disease states and is especially helpful for analyz-
ing tumors that exhibit various morphological and phenotypic profiles. Over the years, this
technology has rapidly advanced to generate multiple single-cell sequencing techniques,
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all of which are used for specialized and unique purposes. There are a variety of current
technologies that help understand individual profiling (i.e., profiling at the transcriptomic
level) or multiomics profiling (i.e., profiling at the transcriptomic and genomic levels) of
single cells [3] that we briefly summarize in this review.

Transcriptomic Analysis: Unlike RNA sequencing (RNA-seq) that measures tran-
scripts in a group of different cell types, single-cell RNA sequencing (scRNA-seq) evaluates
the transcriptomic status of specific populations of single cells [3,4]. Microdroplet and mi-
crowell protocols allow for the simultaneous barcoding and handling of thousands of single
cells [3]. Technologies, such as Smart-seq, Smart-seq2, Quartz-Seq and CEL-seq, measure
mRNAs that are isolated from a single cell [1,3,5]. These various mRNA sequencing meth-
ods achieve different purposes. For example, Smart-seq technologies measure full-length
transcripts. Quartz-Seq analyzes the 3′ end of transcripts and CEL-seq barcodes and pools
samples before mRNA linear amplification [1]. A recent study transcriptionally profiled
371,223 cells from colorectal cancer and adjacent normal tissues of 28 mismatch repair-
proficient and 34 mismatch repair-deficient tumors [6]. Interestingly, this work showed that
T cells are organized in structured cell neighborhoods within a tumor. Overall, the authors
provide datasets containing cellular states, gene networks, and tumor transformations
across a large number of individuals with colorectal cancer. Hubs of interacting malignant
and immune cells were identified to understand spatially organized immune-malignant
cell networks. Studies such as this demonstrate the power of this technology for analysis of
interacting cellular programs. Transcriptomic analysis is also being interrogated to under-
stand metastatic cancers and how primary tissues compare with micrometastases. Using
single-cell RNA sequencing methods and looking at patient-derived-xenograft models
of breast cancer, one group uncovered that both primary tumors and micrometastases
showed transcriptional heterogeneity [7]. However, it was found that tissues showing
micrometastases displayed a distinct profile that predicted poor prognosis. Specifically, this
distinct profile in micrometastases contained mitochondrial oxidative phosphorylation as a
top pathway upregulated in these tissues. This indicates that targeting pathways involving
mitochondrial oxidative phosphorylation may attenuate metastases observed in breast
cancer patients. Lastly, transcriptomic analysis is being applied to tumor evolution. A
robust study published in Cancer Cell analyzed the transcriptome of mouse lung tumors
using scRNA-seq. The transcriptome was analyzed starting from the pre-neoplastic state all
the way to advanced states, such as adenocarcinoma [8]. The authors revealed that diversity
in transcriptomics increases as the tumor progresses into advanced stages. They also uncov-
ered that a high-plasticity cell state (HPCS) is adopted during the tumorigenesis process,
and this HPCS displays a high capacity for differentiation along with a high proliferation
rate. A HPCS was also found to increase chemoresistance in mice, as well as contribute to
their poor survival. Transcriptomics and multiplexed ion beam imaging combined with
scRNA-seq were also used to study human cutaneous squamous cell carcinoma (cSCC)
and normal skin tissues [9]. Tumor and stromal cell subpopulations, spatial niches where
interactions occur and communicating gene networks were all identified. In addition, using
a combination of single-cell and spatial data allowed for the mapping of ligand-receptor
networks to specific cell types in the context of a tumor. For example, tumor keratinocyte
ligands were used to predict modulation of tumor microenvironment-specific cell-type
signatures. Similarly, scRNA-seq has been used to understand the molecular and cellular
dynamics in metastatic lung cancer to uncover new diagnostic and therapeutic targets [10].
Cancer cell subtypes were identified from 208,506 cells in normal tissues all the way to
tissues showing signs of early metastatic disease. Both immune and stromal changes were
observed throughout this trajectory. This helps set the stage for how the microenvironment
becomes both immunosuppressive and pro-tumoral as a tumor begins to advance.

Genomic Analysis: Single-cell whole-genome sequencing (scWGS) methods are used
to evaluate germline or somatic mutations [11]. More specifically, the multiple displacement
amplification (MDA), multiple annealing and loop-based amplification cycles (MALBAC),
degenerate oligonucleotide-primed PCR (DOP-PCR) and PicoPLEX techniques are all used
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to uniformly amplify genomic DNA in individual cells [1,3]. Approaches that combine
transcriptome and genome sequencing in single-cell multiomics analyses have been gener-
ated, including single-cell triple omics sequencing (scTrio-seq), genome and transcriptome
sequencing (G&T-seq), gDNA-mRNA sequencing (DR-seq), simultaneous isolation of ge-
nomic DNA and total RNA (SIDR) and TARGET-seq [1,3,12]. By combining transcriptome
and genome approaches, a deeper and more comprehensive analysis of cellular activities
can be performed to better understand normal versus pathological states [1,12]. In addition,
key data that may not be apparent in transcriptome studies, may be evident in genomic
approaches, or vice versa. scWGS methods are being used to understand how mutations in
B lymphocytes are linked to aging and cancer [13]. Interestingly, mutations in human B
lymphocytes were found to significantly increase with age, reflecting genetic signatures
closely related to B cell cancers. scTrio-seq has been used to understand colon cancer
lineages to study mutations, the transcriptome and the methylome in colon cancer primary
tumors and metastatic tumors from patients [14]. This work found that the DNA demethy-
lation degrees in cancer cells correlated with the density of the heterochromatin-associated
nuclear element 1. During tumorigenesis and progression, heterochromatin regions ex-
hibit aberrant DNA demethylation. The study presented here reveals new discoveries
for the understanding of tumor evolution and the link between DNA methylation and
genetic lineages.

Epigenomic Analysis: The cell lineage and differentiation status of individual cells
can be analyzed using single-cell sequencing epigenomic technologies investigating DNA
methylation and chromatin states [1]. Single-cell bisulfite sequencing (scBS-seq), single-cell
reduced representation bisulfite sequencing (scRRBS), single-cell whole-genome bisulfite se-
quencing (scWGBS), single-nucleus methylcytosine sequencing (snmC-seq) and single-cell
combinatorial indexing for methylation (sci-MET) are all used to measure DNA methylation
profiling [15]. To measure histone protein modifications, droplet-based chromatin immuno-
precipitation (Drop-ChIP) captures a single cell in a droplet containing a cell-specific
barcode to generate chromatin fragments that can then be analyzed in ChIP-seq [1,3]. To
study open chromatin, various techniques, such as single-cell DNase sequencing (scDNase-
seq), single-cell combinatorial indexing assays for transposase-accessible chromatin with
sequencing (sci-ATAC-seq), single-cell assays for transposase-accessible chromatin using
sequencing (scATAC-seq), nucleosome occupancy and methylation sequencing (NOMe-
seq) and single-cell micrococcal nuclease sequencing (scMNase-seq) are used [16]. There
are several methods combining the analysis of chromatin, along with the transcriptome,
including single-cell combinatorial indexing chromatin accessibility and mRNA (sci-CAR),
single-nucleus chromatin accessibility and mRNA expression sequencing (SNARE-seq) and
single-cell nucleosome methylation and transcription sequencing (scNMT-seq) [1,3]. Epige-
nomic datasets were produced with the use of bisulfite and ChIP-seq in normal prostate
tissues, as well as localized versus metastasized prostate cancers to find reprogrammed
regulatory elements present in metastasized disease [17]. In addition, the presence of
metastasis-specific enhancers can be uncovered using these epigenomic datasets [17]. Alto-
gether, these datasets contribute to the understanding of the epigenetics behind prostate
cancer oncogenesis. Epigenetic studies such as this can be applied to other cancers as well.

Proteomic Analysis: Single-cell proteome sequencing is more difficult to accomplish.
One reason for this is that proteins cannot be amplified like mRNA or DNA [1,18]. However,
there are methods that measure the transcriptome and proteome of a single cell. These
methods include the proximity ligation assay for RNA (PLAYR), proximity extension as-
say/specific RNA target amplification (PEA/STA), cellular indexing of transcriptomes and
epitopes by sequencing (CITE-seq) and finally, the RNA expression and protein sequencing
assay (REAP-seq) [1]. One group generated single cell transcriptome to protein prediction
with a deep neural network (cTP-net) to impute surface protein abundances for scRNA-seq
data [19]. Results from this study indicated that REAP-seq and CITE-seq data can be
used to predict surface protein abundances for new scRNA-seq datasets. CyToF is a mass
cytometry method that analyzes multiple proteins tagged with labels. It has previously
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been alternatively used or combined with scRNA-seq in cancer immunity studies [3,20].
For example, single-cell mass cytometry (CyToF) is commonly used to classify cell surface
proteins of immune cells into specific cell classifications. This is critical for studies inves-
tigating immune cell compositions in the tumor microenvironment. Although not at the
single-cell level, mass spectrometry approaches are commonly used for large proteomic
analyses and may provide value in studies where single-cell proteome sequencing is not
feasible. Proteomic analysis using the mass spectrometry approach parallel reaction moni-
toring (PRM) of extracellular vesicles and particles (EVPs) was performed in ~400 human
samples to reveal that EVP proteins can be used as biomarkers for cancer detection and
for determining cancer type [21]. The Cancer Cell Line Encyclopedia (CCLE) has recently
been expanded through quantitative profiling using mass spectrometry of proteins across
375 cell lines to reveal additional information that has not yet been uncovered using RNA
or DNA technologies that aid in cancer research [22]. New correlations not available by
interrogating RNA methods were uncovered. Specific protein complexes were found to be
associated with translation and mutations.

Large Integrated Databases and Atlas Projects: With the development of new single-
cell sequencing techniques and the generation of large data sets, there has been collaboration
and integration to produce publicly available databases. The Human Cell Atlas (HCA)
was designed to generate reference maps of all human cells by providing open single-
cell genomics data sharing [23]. The many studies included in the HCA are available at
https://data.humancellatlas.org/explore/projects, accessed on 14 January 2022. Single cell
sequencing data compiled by the HCA reflects information for many diseases, including
cancer. For example, a recent cervical cancer study included in the HCA project compared
tumor-derived endothelial cells to normal endothelial cells. With the use of scRNA-seq,
this study identified that there was a higher expression of metabolism-related genes in
tumor-derived endothelial cells [24]. Overall, intra-tumoral heterogeneity and transcrip-
tional activities of endothelial cells in cervical cancer were nicely identified. Another study
included in the HCA project characterized tumor-infiltrating immune cells using single
cell RNA-seq. This study successfully profiled over 40,000 immune cells from eight breast
cancer carcinomas, and matched normal breast tissues, blood and lymph nodes [25]. In-
creased heterogeneity of intratumoral cells of both lymphoid and myeloid cell lineages were
observed. This resulted in the conclusion that continuous phenotypic expansions specific
to the tumor microenvironment are apparent relative to normal tissues, highlighting the
importance of the characterization of tumor-infiltrating immune cells.

An extensive cell atlas of the human lung was created using droplet- and plate-based
single cell RNA sequencing of 75,000 human cells across all lung tissue compartments,
along with a multi-pronged cell annotation approach [26]. This lung cell atlas will aid in
identification of functions and interactions achieved through development and disease
states. More specifically, it revealed the presence of a high level of plasticity of cell-types
and specific gene expression profiles during the evolution of the lung. Similarly, a large-
scale, single-cell atlas for breast cancer ecosystems was generated to identify new precision
medicine approaches [27], while another study used scRNA-seq data to identify unique
breast epithelial clusters from healthy breast tissues [28]. Interestingly, certain genes were
found to be co-expressed along with the estrogen receptor (ER) in a large number of breast
cancer tissue samples, indicating a clinically relevant subclassification of ER positive breast
cancers. Lastly, a single-cell atlas for osteosarcoma has been generated to explore intratumor
heterogeneity and provide new therapeutic strategies for this cancer-type [29].

Multiple other single-cell atlases have also been created to study the composition of
normal tissues and to better understand the physiology of healthy states versus disease
states. One study combined human liver scRNA-seq data to characterize heterogene-
ity between the different datasets and define dominant phenotypes across immune cell
populations [30]. This work was performed in the healthy liver to better understand
immune-related diseases that occur in this tissue. Another study used four scRNA-seq
datasets to gain insight into normal liver architecture and gene expression and to generate
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a portal [31]. This portal contains updated information and allows for the compilation
of a comprehensive array of data available to any scientist investigating liver diseases.
Compiled datasets and portals such as this allow for the analysis and comparison of spe-
cific genes across the different liver datasets. Some other examples include a single cell
transcriptomic atlas analyzing different human cardiac arteries to identify cell populations
associated with vascular physiology [32]. A kidney single-cell atlas identified myeloid
heterogeneity in the progression and regression of kidney disease [33]. A single-cell tran-
scriptome atlas of the adult human retina identified multiple cell populations to better
understand retinal biology and disease [34]. Furthermore, a single-cell atlas was gener-
ated to study the differences between mouse and human prostate tissues to investigate
heterogeneity and conservation of epithelial progenitors [35].

Not only has single-cell transcriptome profiling been used to study a single organ at
a time, it has also been implemented to identify the characteristics of 15 different human
organs [36]. This helps better understand the mechanisms behind disease in multiple tissues.
The Single Cell Type Atlas of the Human Protein Atlas aims to map all human proteins
by integrating antibody-based imaging and RNA-seq technologies [37]. By compiling
multiple tissues into one platform, an immense amount of data will be available to identify
interesting associations and relationships. There is a surge of novel work generating these
atlases that will provide a rich array of information to understand multiple cancer-types.
These atlases will also provide knowledge for cancer-related mechanisms and new ways
for targeted therapy. As discussed, they will also provide information on normal tissue
physiology to better understand how disease states form in the first place. The number
of new publications presenting single-cell atlases over the last couple of years is striking
compared to the number published over 5 years ago. Table 1 summarizes examples of the
different single-cell atlases and large integrated data bases created over the last few years.
This table includes the data sets that are discussed in this review.

Table 1. A compilation of the summarized single-cell atlases and databases.

Site/Disease Species References

Cervical cancer Human [24]
Breast cancer Human [25,27,28]

Lung Human [26]
Osteosarcoma Human [29]

Liver Human [30,31]
Cardiac arteries Human [32]

Kidney Human [33]
Retina Human [34]

Prostate Human, Mouse [35]
15 organs Human [36]
13 tissues Human [37]

2. Translational Relevance of Single-Cell Sequencing Technologies

As previously mentioned, single-cell sequencing data can help predict alterations
present at the transcriptomic, genomic, epigenomic, and proteomic levels in healthy versus
malignant cells. There are several reports using single-cell analysis to analyze the tumor
microenvironment [38] and to measure the presence of certain cell types before and after
treatment with specific therapeutics. One example is a study performed on a treatment-
refractory bladder cancer patient. In this study, scRNA-seq was used to understand the
tumor microenvironment [39]. Similarly, single-cell analyses were performed in renal
cell carcinomas compared to benign kidney tissues. This work provided insight into the
biology behind how renal cell carcinoma develops and how it responds to therapy [40].
Furthermore, single-cell profiling is being ran to uncover molecular checkpoint or activation
targets within tumors and to identify how a patient responds to targeting a certain protein
or pathway. For example, genome wide analyses of DNA have been pursued to identify
mutations that can tailor the way one is treated [41]. These strategies are critical in cases
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where patients are not responsive to standard treatments. Situations like this frequently
occur as a result of the complexity and heterogeneity of diseased tissues between individu-
als. As a result, there appears to be a bright future for the use of scRNA-seq methods for
personalized therapies (illustrated by Figure 1).
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Single-cell sequencing has also been used to study circulating tumor cells. Specific
modifications of single-cell sequencing technologies have been produced to better handle
these studies. A new technology that is termed Hydro-seq has been optimized to surpass
issues of blood contamination frequently observed when using scRNA-seq. Hydro-seq can
be used when studying circulating tumor cells and allows for high throughput analysis of
these cells [42]. As shown in the example of breast cancer, Hydro-seq successfully enabled
the high capture and purification of circulating tumor cells. More specifically, this study
identified targets in breast cancer and tracked cell markers that can monitor metastasis
as well as response to treatment [42]. The use of single-cell sequencing can also help
identify new molecular signatures that can be used to analyze the response a patient has to
a particular treatment. A study performed in myeloma identified the most significantly
altered pathways during progression that can be used to determine prognosis and treatment
stratification [43]. In another study, results from scRNA-seq revealed an upregulation of
programmed death-ligand 1 (PDL1) [39]. As a result, the patient included in the study was
treated with a PDL1 inhibitor. After treatment, a favorable response was observed. Single-
cell technology has also been used to identify the presence of immunotherapy persister cells
after PDL1 blockade, a population that may be targeted using combinational strategies [44].

Combinational strategies are often needed, and single-cell analysis may help iden-
tify potential combinational therapies. Identifying new combinations helps tremendously
with immunotherapy strategies where most patients do not respond to monotherapy as a
first-line treatment [45]. In a recent study, single-cell RNA sequencing was performed to
show that a combinational strategy using both an RAS inhibitor and IR820 nanocapsule-
augmented sonodynamic therapy suppressed hepatocellular carcinoma and modulated
immunity through differentially expressed genes [46]. In a similar study, single-cell se-
quencing was performed on CD45+ tumor-infiltrating lymphocytes (untreated controls
or PDL1 and AB680 CD73 inhibitor treated) to find that CD73 inhibition is distinct from
PDL1 inhibition [47]. This work also observed that inhibition of CD73 along with PDL1
may produce a synergistic effect in colorectal cancer. Single-cell sequencing has recently
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also been used to describe changes in tumors after treatment. This technology is also
utilized to identify how these changes are associated with drug tolerance as well as in-
hibition of tolerant cell populations along with combination strategies [48]. A single-cell
study performed in breast cancer tissues showed that there are pre-existing genotypes
resistant to chemotherapy. These genotypes have the ability to further adapt after being
exposed to chemotherapeutics. This contrasts with transcriptional profiles that can adapt
in response to chemotherapy [49]. There is great promise that scRNA-seq studies will
provide information for every cell type in a tumor where alterations may be associated with
patient demographics, diagnostics, therapeutics, and prognostic factors. It is possible that
in the near future, scRNA-seq will be used clinically to develop a personalized medicine
regimen for the treatment of each individual patient. Tumors will be analyzed based on
cell composition, along with specific proteins being expressed that can be targeted, and this
may ultimately achieve a response that is optimal for each patient [41].

There are currently a handful of clinical trials being conducted world-wide that are
implementing single-cell sequencing technology. In one clinical trial (Clinicaltrials.gov,
accessed on 14 January 2022; Identifier NCT04927611), single-cell sequencing technology
is being used to study the molecular features, tumor heterogeneity and cell subtypes of
neuroendocrine neoplasms (NENs). Another trial (NCT04162691) aims to understand
how genetics play a role in thymoma by understanding intratumoral heterogeneity using
scRNA-seq. Lung cancer patients with bone metastases are being studied to identify a
risk prediction model of bone-related events that can be based on single-cell sequencing
(NCT04568291). Another ongoing trial is evaluating the proteomic and phenotypic signa-
tures of prostate needle-core biopsies to better understand the malignant progression of
prostate cancer (NCT02313623). Immune cell composition of bronchoalveolar lavage fluid
from cancer patients diagnosed with cancer-therapy induced pneumonitis is being evalu-
ated in the NCT04807127 trial to identify diagnostic biomarkers and therapeutic targets. A
single-cell approach is being studied in NCT04807114 to identify biomarkers of efficacy and
toxicity for immune checkpoint inhibitors in non-small cell lung cancer. Single-cell RNA
sequencing is being used to explore the heterogeneity, identify tumor specific markers and
explore the tumor microenvironment composition of lymphoma (NCT04434833). Gene
expression at the single cell level is being analyzed in nasal and bronchial samples to
understand the immune environment and complex interactions present in the respiratory
tract (NCT04204291). Other trials are investigating the heterogeneity of dendritic cells
in the colon and non-small cell lung cancer tumor microenvironment (NCT04789252) or
the immune microenvironment in non-Hodgkin’s lymphoma patients (NCT04696692).
Table 2 summarizes selected examples of the ongoing clinical trials adopting various
single-cell sequencing technologies that are related to cancer therapy. There are other trials
being performed using single-cell sequencing technology for the study of other diseases.
These diseases include COVID-19 and inflammatory illnesses, such as psoriatic arthritis
(Clinicaltrials.gov NCT04261010).

Table 2. Ongoing cancer-related clinical trials utilizing single-cell technologies.

Clinical Trial ID Trial Name Site/Disease

NCT04927611 Single-cell Sequencing and Establishment of Models in
Neuroendocrine Neoplasm Brain, neuroendocrine neoplasm

NCT04162691 Single Cell Sequencing Analysis of Thymoma Thymus, thymoma

NCT04568291 CTC in Lung Cancer Patients With Bone Metastases Lung cancer, bone metastasis

NCT02313623 MR-US Image Fusion Targeted Biopsy for Single-cell Prostate
Cancer Research Prostate cancer

NCT04807127 A Single-cell Approach to Identify Biomarkers of Pulmonary
Toxicity for Immune Checkpoint Blockade Lung, pneumonitis

Clinicaltrials.gov
Clinicaltrials.gov
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Table 2. Cont.

Clinical Trial ID Trial Name Site/Disease

NCT04807114 A single-cell Approach to Identify Biomarkers of Efficacy and
Toxicity for ICI in NSCLC Lung, non-small cell lung cancer

NCT04434833 A Single-cell Transcriptome Study in Patients with
Non-Hodgkin’s Lymphoma Lymph nodes, Non-Hodgkin’s Lymphoma

NCT04204291 Project A4sc- An Atlas of Airways at a Single Cell Level (A4sc) Lung, chronic respiratory diseases

NCT04789252 Heterogeneity of Dendritic Cells in Colon and Non-small Cell
Lung Cancer (TUM-DC) Colon and Non-small cell lung cancers

NCT04696692 Single-cell Map of Immune and Lymphoma Cells in B-cell
Non-Hodgkin’s Lymphoma (SIMILY) B-cell Non-Hodgkin’s Lymphoma

NCT04261010 TNF and IL23 Blocking Agents Gene Expression Ratios in the
Psoriatic Arthritis Synovium_(TIGERS) Study (TIGERS) Psoriatic arthritis

3. Conclusions

Despite the success and recent expansion of single-cell technology that allows us to
seek answers to many previously unknown questions, the field of single-cell data science
still faces challenges. These range from generating the best data possible to analyze, and
consistency and integration with other datasets uploaded to databases. At the data genera-
tion level, mapping cells and states at specific resolution levels may pose a major challenge.
Specific approaches, such as hierarchical stochastic neighbor embedding (HSNE), manifold
learning and metric learning are being implemented to overcome this issue [50]. With an
increase in resolution, there may be a decrease in the stability of supporting signals, which
can lead to uncertainties regarding the data. Improved analysis tools are needed to ensure
strong data quality. There is also an emphasis on defining flexible statistical frameworks to
uncover complex gene expression patterns. Current methods can be improved through
integration with approaches that acknowledge confounding variables and complex batch
effects [50]. Also, better methods are needed to allow for the integration of single-cell data
across experiments and measurement types. Lastly, we need to promote the collaboration of
research communities to support the standardization of single-cell genomics data uploaded
to consortiums and used by the research community [23]. As technology improves and
more optimization studies are performed for specific purposes, modifications of current
single-cell sequencing techniques will occur as shown in the case of Hydro-seq in the
analysis of circulating tumor cells [42]. Another layer of challenges includes the difficulty
in translating findings from sequencing studies into the clinic. Technical issues, such as
variations in sample preparation and handling, must be addressed before streamlining
and using these methods in a clinical setting world-wide [41]. It is also important that
these methods are utilized in testing multiple, large enough cohorts to ensure reliable and
accurate results [41]. After layers of validation, these methods can be routinely used in the
clinic. It will be interesting to see what another decade of using this technology brings and
how it can continue to improve the field of cancer therapy, as well as fields focused on other
diseases, as these technologies help pave the way for the future of science and medicine.
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