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Simple Summary: Aberrant glycosylation is a common feature of many cancers, and it plays cru-
cial roles in tumor development and biology. Cancer progression can be regulated by several
physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix
interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis.
Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohy-
drate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor
immunotherapy approaches. This review summarizes the strategies developed in cancer immunother-
apy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in
clinical oncology.

Abstract: Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence
tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a
set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation
lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective
cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-
Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H,
SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer
immunotherapy targeting TACAs, including different antibody developments, the production of
vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use,
such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different
TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a
result of recent developments in technologies used for cancer control.

Keywords: tumor glycans; cancer immunotherapy; cancer glycobiology; monoclonal antibodies;
cancer vaccines; CAR-T cells

1. Introduction

As the immunotherapy of cancer is a rapidly evolving field, advances in understanding
the basic principles regulating the immune response are crucial. Significant progress
in antibody engineering, as well as in adoptive cellular therapies, has determined that
immunotherapy is one of the pillars of cancer treatment [1]. Three strategies achieved
significant progress in clinical oncology: (A) monoclonal antibody (mAb) production
against cancer molecular targets [2]; (B) immune checkpoint inhibitor development [3]; and
(C) CAR-T lymphocyte generation [4].

Glycosylation is a complex form of post-translational modification, affecting over
50% of cell proteins and constituting a key regulator of many eukaryotic processes [5].
Aberrant glycosylation is a common feature of many cancers and plays crucial roles during
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all steps of tumor development [6]. Tumorigenesis and cancer progression can be regulated
by glycosylation [7,8], controlling several physiopathological processes, such as cell–cell
adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation,
invasion, metastasis, and angiogenesis [9–11]. Glycans can serve as a source for the devel-
opment of novel clinical biomarkers [6], providing a set of specific targets for therapeutic
intervention [8,12]. Different mechanisms of aberrant glycosylation lead to the formation of
TACAs suitable for selective tumor targeting therapy [13]. In parallel, TACAs can interact
with antigen-presenting cells through their interaction with glycan-binding receptors (such
as SIGLECs, MGL, DC-SIGN), thus inducing immunosuppressive signals [14]. Based on
these observations, several strategies using glycan-modified nanoparticles have been devel-
oped to improve antitumor immune responses [15]. Deeper knowledge of the structural
and functional features of TACAs drives rational drug design, as well as novel antitumor
immunotherapy strategies.

Aberrant glycosylation in cancer may occur in both glycoproteins and glycolipids.
Among the best-characterized TACAs, we found truncated O-glycans (Thomsen-nouveau,
Tn; Thomsen-Friedenreich, TF; and sialyl-Tn, STn), gangliosides (GD2, GD3, GM2, GM3,
fucosyl-GM1), Globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic
acid. For more than twenty years, these TACAs have demonstrated potential usefulness
in strategies for cancer immunotherapy [12,16]. In an attempt to classify and select tumor-
associated antigens, the National Cancer Institute of the United States performed a com-
parative analysis following predefined objective criteria according to potential therapeutic
effect, expression level, immunogenicity, and percentage of positive cells [17]. A listing of
75 tumor-associated antigens was established, and 9 of them were TACAs. The disialogan-
glioside GD2 was the best positioned TACA, in 12th place. The rest of the TACAs in the list
are as follows: three other gangliosides (GD3, fucosyl-GM1, and GM3), Globo H, polysialic
acid, as well as Tn, sialyl Tn, and sialyl-Lewis A (Table 1).

Table 1. Main tumor glycans targeted for cancer therapy.

Tumor Glycan Glycan Type Structure * Type of Cancer Function in Cancer Therapeutic Strategy

GD2 Ganglioside
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Melanoma  

Lung 

Colon 

Breast 

Cell growth 

Metastasis 

mAb 14F7hT  

Anti-idiotypic mAb 

Racotumomab 

Synthetic vaccine 

Fucosyl-GM1 Ganglioside 
 

SCLC 
The role in cancer is 

unclear 

Human mAb  

BMS-986012 

Globo H Globoside 
 

Colon, Ovary, 

Breast, Prostate, 

Gastric, Lung,  

Endometrial,  

Pancreatic 

Angiogenesis 

Immunosuppression 

Vaccine 

mAb OBI-888 

ADC OBI-999 

Tn antigen 
O-GalNAc  

mucin-type  
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Immuno- 

suppression 

Antibodies  
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Cell growth 
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SLeA 
Glycoprotein 
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Breast, Colon, 

Gastric, Lung, 

Ovarian, Pan-

creas 

Metastasis 

Abs MVT-5873 

177Lu- MVT-1075 

Vaccine 

SLeX 
Glycoprotein 

Gangliosides 
 

Colon, breast 

melanoma, 

lung, liver 
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Invasion 

Metastasis 

SLeX -liposomes  

anticancer drug delivery 

LeY 
Glycoprotein 
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Lung, Ovarian, 

Fallopian tube, 

Breast 

Metastasis 

mAb hu3S193 

m3s193 BsAb 

DCA SGN-15 

CAR-T cells 

Poly-sialic 

acid 

Glycoprotein 

Glycolipids 

  

Neuroblastoma 

Breast, Pan-

creas 

Lung 

Metastasis 

Cell growth 

Abs MY.1E12, 

OL.28, MAB735 

Vaccine 

* Colored symbols represent the following monosacharides: yellow square: N-Acetylgalactosa-

mine (GalNAc); blue square: N-Acetylglucosamine (GlcNAc); violet diamond: Sialic acid (NeuAc); 
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Therapeutic approaches involving TACAs have been diverse and include active im-
munity induced by vaccines, as well as monoclonal antibodies developed by genetic
engineering. More recently, technologically advanced strategies, including bi-specific anti-
bodies and chimeric antigen receptor-T (CAR-T) cells for anti-TACA, have been evaluated.
However, as most TACA are poorly immunogenic, inducing of T cells independent immune
responses, they must be conjugated to carrier proteins or be chemically modified to induce
an effective antitumor immune response [18]. Much research has been conducted for anti-
cancer vaccine development involving TACAs, and four of these studies achieved phase III
clinical trials: Theratope® (sTn), GM2-KLH, OPT-822 (Globo H) and Racotumomab® [18].
On the other hand, passive antitumor immunotherapies consist of unconjugated antibod-
ies displaying intrinsic cytolytic activity (antibody-dependent cell-mediated cytotoxicity,
ADCC; antibody-dependent cellular phagocytosis, ADCP; complement-dependent cytotox-
icity, CDC), antibodies conjugated to radionuclides (radioimmunotherapy), and antibodies
conjugated to toxins (immunotoxins) or drugs (ADC). Some examples include antibodies
specific to glycolipids (such as GM2, Globo H, and LeY), which can mediate cancer cell
killing and tissue destruction by CDC [19], and antibodies recognizing aberrant expression
of the O-glycosylated Tn antigen on the surface of cancer cells, inducing ADCC [20]. The
use of Dinutuximab, a chimeric anti-GD2 antibody (ch14.18), for high-risk neuroblastoma
(NB) treatment is a milestone, being the first new agent targeting a TACA approved by
the U.S. Food and Drug Administration (FDA) in 2015 [21]. This review will focus on
tumor glycans as targets for cancer therapy using different immunological approaches,
considering their stage of progress in clinical trials.

2. Glycosphingolipids

Glycosphingolipids (GSLs) comprise a heterogeneous group of membrane lipids
formed by a ceramide backbone covalently linked to a glycan moiety by a β-glycosidic
bond [22]. Over 300 different GSLs are synthesized by enzymes localized in the ER and
Golgi apparatus, integrating signaling components, assembly of glycosylating machinery
and GSL trafficking, although not completely understood to date [23]. GSLs are ubiquitous
components of cell membranes and are particularly abundant on the surfaces of animal
cells, where they play an important role in molecular signaling, cellular adhesion, and
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motility [24]. In vertebrate animal tissues, they are subdivided into three major series:
globo-, ganglio-, and neolactoseries [22].

The main GLSs characterized as TACAs are Globo H [25], the stage-specific embryonic
antigens-3 and -4 (SSEA-3 and SSEA-4) [26], and the glycosphingolipids containing sialic
acid such as the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3 [7]. These
GSLs can affect cancer development by controlling cell adhesion, motility, and growth [27],
the epithelial–mesenchymal transition and metastatic development [28], as well as drug
resistance [29].

2.1. GD2

Thus far, the most relevant TACA concerning its clinical utility in antitumor im-
munotherapy is the disialylganglioside GD2. It is synthetized uniformly and abundantly
in most neuroblastomas, melanomas, and retinoblastomas, as well as in several Ewing’s
sarcomas [30], but it is not expressed in normal tissues, except for a weak expression in
the brain, peripheral sensory fibers, and skin melanocytes [31]. GD2 promotes tumor cell
proliferation, motility, migration, adhesion, invasivity, and confers apoptosis resistance,
depending on cancer type [32]. Thus, anti-GD2 mAbs are able to directly induce cellular
death without the involvement of immune mechanisms, thus combining apoptosis and
necrosis features in tumor cell lines expressing GD2 [33,34]. GD2 is important for cancer
cell survival and can suppress T cell activation and dendritic cell maturation when released
into circulation [35].

Several anti-GD2 mAbs have been successfully tested in clinical practice, including
chimeric 14.18 (ch 14.18) (NCT00026312) [36], humanized 14.18 (hu 14.18) [37], and human-
ized 3F8 (hu3F8) [38,39]. Passive immunotherapy with the anti-GD2 antibody Dinutuximab
(ch14.18) became the first approved immunotherapeutic drug targeting a glycan antigen.
Dinutuximab (Unituxin™, United Therapeutics Corporation, Silver Spring, MD, USA) is
an IgG1 human/mouse chimeric Ab produced in mouse myeloma cell line SP2/0 [40],
approved by the Food and Drug Administration (FDA) in 2015 for high-risk pediatric
neuroblastoma treatment in combination with granulocyte-macrophage colony-stimulating
factor (GM-CSF), interleukin-2 (IL-2), and 13-cis retinoic acid (RA) [21]. Subsequently, Dinu-
tuximab beta (ch14.18.CHO; Qarziba™, EUSA Pharma, Hemel Hempstead, UK), produced
in Chinese hamster ovary (CHO) cells, was approved by the European Commission in 2017
for treatment in high-risk neuroblastoma patients. Both antibodies are currently part of the
standard-of-care of neuroblastoma. Regarding immunological mechanisms, Dinutuximab
binds to GD2 and induces ADCC as well as CDC and subsequent neuroblastoma cell death
by recruiting granulocytes and natural killer cells from peripheral blood mononuclear
populations [41,42]. More recently, the FDA granted accelerated approval to humanized
mAb Hu3F8 (Naxitamab, DANYELZA®) in combination with GM-CSF for relapsed or
refractory high-risk neuroblastoma in the bone or bone marrow, based on overall response
rate and duration of response in two clinical trials (NCT03363373 and NCT01757626).
Recently, another clinical trial (NCT04560166) began evaluating Naxitamab and GM-CSF
in combination with irinotecan and temozolomide for patients with primary refractory
high-risk NB or in their first relapse. Table 2 shows selected clinical trials of antibodies
targeting TACAs.
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Table 2. Selected clinical trials of antibodies targeting tumor glycans.

Target Drug Candidate Phase Cancer Type Status
Time Period

CT ID
Refs

GD2

hu 14.18
(Dinutuximab) III High risk

Neuroblastoma

Active, not
recruiting

October 2010–
September 2021

NCT00026312 [36]

hu3F8 (Naxitamab)
+ GM-CSF II High risk

Neuroblastoma
Recruiting

4/2018–11/2027 NCT03363373

hu3F8 + GM-CSF I/II High risk
Neuroblastoma

Active, not
recruiting

12/2012–12/2023

NCT01757626
[43,44]

Naxitamab
hu3F8 + GM-CSF +

irinotecan and
temozolomide

II Recurrent
Neuroblastoma

Recruiting
11/2021–10/2026 NCT04560166

Dinutuximab
hu 14.18 +
GM-CSF

II Lung cancer
Osteosarcoma

Active, not
recruiting

11/2015–10/2021
NCT02484443

hu3F8 + GM-CSF II Osteosarcoma Recruiting
7/2015–7/2022 NCT02502786 [45]

hu14.18-IL2 II Melanoma Completed
12/2007–11/2019

NCT00590824
[46,47]

I 131 mAb 3F8 +
bevacizumab I Neuroblastoma Completed

8/2006–9/2015 NCT00450827

I 131 mAb 3F8 I

Central nervous
system,

Leptomeningeal
metastases

Active, not
recruiting

1/2006–1/2022
NCT00445965

Hu3F8-Bispecific
antibody

(GD2-CD3)
I/II

Neuroblastoma
Osteosarcoma
Solid Tumors

Recruiting
2/2019–2/2022 NCT03860207 [48]

Anti-GD2/CD3
bispecific antibody

(Nivatrotamab)
I/II SCLC Recruiting

8/2021–12/2024 NCT04750239

GD3
PF-06688992

Anti-GD3/drug
conjugated

I Stage III/IV
Melanoma

Completed
5/2017–1/2020 NCT03159117

Human Chimeric
Ab KW2871

(ecromeximab)
I/II Stage IV

Melanoma
Terminated

11/2004–2/2015
NCT00199342

[49]

Human Chimeric
Ab KW2871

(ecromeximab) +
high dose IFN-α2b

II Metastatic
Melanoma

Completed
3/2008–2/2018

NCT00679289
[50]
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Table 2. Cont.

Target Drug Candidate Phase Cancer Type Status
Time Period

CT ID
Refs

fucosyl-GM1
BMS-986012 +

platinum +
etoposide

I/II SCLC
Active, not
recruiting

11/2016–4/2021
NCT02815592

BMS-986012 I/II Relapsed/refractory
SCLC

Active, not
recruiting

11/2014–6/2022

NCT02247349
[51]

BMS-986012 +
carboplatin +
etoposide +
nivolumab

II Extensive-stage
SCLC

Recruiting
3/2021–9/2024 NCT04702880

Globo H

OBI-888 I/II
Advanced and
metastatic solid

tumors

Recruiting
5/2018–12/2022 NCT03573544

OBI-999
immunotoxin I/II Locally advanced

solid tumors

Active, not
recruiting

12/2019–12/2023
NCT04084366

Tn antigen
Anti- TA-MUC1

(PankoMab-
GEX™)

I Solid tumors Completed
11/2009–5/2021

NCT01222624
[52]

Anti- TA-MUC1
(PankoMab-

GEX™)
II

Recurrent Ovarian
cancer, Fallopian
cancer, Peritoneal

cancer

Completed
9/2013–10/2020

NCT01899599
[53]

Anti- TA-MUC1
(Gatipotuzumab) +

anti-EGFR
(Tomuzotuximab)

I Solid tumors Completed
11/2017–7/2021

NCT03360734
[54]

TF antigen
yttrium Y 90-m170

cyclosporine
paclitaxel

I Breast cancer Unknown
3/2001–9/2013

NCT00009763
[55]

yttrium Y 90-m170
cyclosporine

paclitaxel
I Prostate cancer Unknown

3/2001–9/2013
NCT00009750

[55]

LeA
hu mAb-5B1
(MVT-5873) +
FOLFIRINOX

1
Pancreatic cancer

or CA19-9 positive
malignancies

Recruiting
1/2016–1/2023 NCT02672917

hu mAb-5B1
(MVT-5873) 2 Operable tumors

expressing CA19-9
Recruiting

11/2019–12/2024 NCT03801915 [56]
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Table 2. Cont.

Target Drug Candidate Phase Cancer Type Status
Time Period

CT ID
Refs

LeY

hu3S193 1 SCLC Completed
2/2004–6/2015 NCT00084799 [57]

hu3S193 2

Fallopian tube,
Ovarian cancer,

Primary peritoneal
cancer

Completed
5/2008–6/2012

NCT00617773
[58]

SGN-15 +
docetaxel 2 NSCLC Completed

1/2003–10/2011
NCT00051571

[59]

In melanoma, the antitumor activity of the hu14.18-IL2 immunocytokine was eval-
uated in a minimal residual disease setting (NCT00590824), and prolonged tumor-free
survival was seen in some treated melanoma patients at risk of recurrence [46]. Toxicity of
the radiolabeled 131I-mAb 3F8 intrathecal was first evaluated in refractory neuroblastoma
(NCT00450827), and a phase II trial is ongoing to evaluate the radiolabeled antibody for the
treatment of central nervous system cancer or leptomeningeal metastasis of several tumors
expressing GD2 (NCT00445965).

Currently, several clinical trials are also assessing anti-GD2 treatments in other tumors
expressing disialylganglioside. In osteosarcoma, Dinutuximab combined with GM-CSF
in recurrent patients to characterize the pharmacokinetics and toxicity (NCT02484443),
and Hu3F8 along with GM-CSF in patients in remission, evaluating its effectiveness in
preventing recurrence (NCT02502786). In addition to unlabelled anti-GD2 mAbs, other
therapeutic approaches include the development of immunocytokines, immunotoxins,
antibody–drug conjugates, radiolabeled antibodies, targeted nanoparticles, vaccines, CAR-
T cells, as well as bispecific antibodies (BsAbs, antibodies with two binding sites directed at
two different antigens [48,60]).

BsAbs targeting GD2 offer great promise in anticancer therapy [61]. Some of these
BsAbs combining anti-GD2 with anti-immune cell receptors are the anti-GD2 mAb 7A4/anti-
Fc gamma RI (CD64) [62], the murine 5F11-scFv/anti-CD3 [63], the humanized hu3F8-
scFv/anti-CD3 [62], and hu3F8/anti-CD3 [64]. This strategy brings the immune cells into
close proximity with cancer cells and leads to killing them through perforin/granzyme-
mediated, non-MHC-restricted, specific antitumor cytotoxicity. Some of these BsAbs
have also shown a powerful antitumor response in neuroblastoma models [62,65] and
are currently being evaluated in clinical trials. A phase I/II trial is assessing the toxicity,
pharmacokinetics, and antitumor activity of hu3F8-CD3 in relapsed-refractory neurob-
lastoma, osteosarcoma, and other GD2-expressing solid tumors (NCT03860207), while
another multicentric trial is evaluating it in small cell lung cancer (SCLC) (NCT04750239).
Recently, a novel strategy using a bispecific-trifunctional antibody (trABs) combining an
IgG molecule of both anti-GD2 and anti-CD3 specificity, as well as the innate immunity
activation via their functioning Fc-fragment, was able to induce a better antitumor response
compared with mAb ch14.18 [66].

GD2, being a “self” antigen, is a poor immunogen and it is difficult to induce a specific
anti-GD2 immune response in vivo. With the aim of improving its immunogenicity, GD2
conjugated to the keyhole limpet hemocyanin (KLH) as a carrier protein was assayed with
QS-21 or OPT-821 as adjuvants. A bivalent vaccine, containing GD2- and GD3- linked to
KLH, with OPT-821 as adjuvant, was first evaluated in high-risk neuroblastoma patients
in a phase I trial designed to find the maximally tolerated dose and antibody responses
against GD2 and/or GD3. Such a response was observed in 12 of 15 patients, and the
disappearance of minimal residual disease (MRD) was documented in 6 of 10 patients [67];
moreover, a larger, phase II trial (NCT00911560) is currently demonstrating robust antibody
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responses, associating higher anti-GD2-IgG1 titer with improved survival [68]. A trivalent
vaccine, containing GM2-GD2- and GD3- also linked to KLH, with OPT-821, was evaluated
in patients with metastatic sarcoma, inducing mostly the IgM response, without clinical
benefit (NCT01141491). Table 3 shows selected clinical trials of antitumor vaccines based
on TACAs.

Table 3. Selected clinical trials of anti-cancer vaccines based on tumor glycans.

Target Drug Candidate Phase Cancer Type Status/
Time Period

CT ID
Refs

GD3

BEC2 + BCG III Small cell lung
cancer

Completed
September

1998–April 2010

NCT00037713
[69]

BEC2 + BCG III Lung cancer
Completed
September

1999–July 2012

NCT00006352
[70]

BEC2 + BCG III Lung cancer Completed
3/1998–3/2012

NCT00003279
[71]

Glycolyl GM3

Racotumomab I Pediatric tumors Completed
2/2011–7/2015

NCT01598454
[72]

Racotumomab II High risk
Neuroblastoma

Active, not
recruiting

11/2016–9/2022
NCT02998983

Racotumomab II NSCLC Completed
9/2009–7/2014 NCT01240447

Racotumomab III NSCLC Unknown
9/2010–7/2016 NCT01460472

Globo H
OPT-822/OPT-821

+
cyclophosphamide

II Metastatic breast
cancer

Completed
12/2011–9/2020

NCT01516307
[73]

OBI 822(adagloxad
simolenin)/OBI-

821
III Triple negative

breast cancer
Recruiting

12/2018–12/2027 NCT03562637

Tn antigen

MAG-Tn3 + AS15 I Breast cancer
Active, not
recruiting

2/2015–12/2021

NCT02364492
[74]

STn antigen
STn/KLH

(THERATOPE®) III Metastatic breast
cancer

Completed
1/1999–3/2013 NCT00003638 [75]

STn/KLH
(THERATOPE®) II Metastatic breast

cancer
Completed

8/2002–1/2008
NCT00046371

[76]

TF antigen

TF(c)-KLH + QS21 1 Prostate cancer Completed
6/1998–3/2013

NCT00003819
[77]

Lewis
sialyl Lewis

A-KLH + QS21
Metastatic breast

cancer
Completed

3/2007–1/2020 NCT00470574 [78]
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Table 3. Cont.

Target Drug Candidate Phase Cancer Type Status/
Time Period

CT ID
Refs

Polysialic acid
Polysialic

acid-KLH + QS21 II Small cell lung
cancer

Completed
8/1998–6/2013

NCT00004249
[79]

Polyvalent
vaccines

Bivalent vaccine
(GD2L/GD3L) +

OPT-821
I/II Neuroblastoma

Active, not
recruiting

5/2009–5/2023

NCT00911560
[67,68]

Trivalent vaccine
GM2/GD2L/GD3L-
KLH conjugated +

OPT-821

II Sarcoma Completed
6/2010–3/2017

NCT01141491
[68]

Globo-H-GM2-
STn-TF-Tn-KLH-

QS21
I Ovarian cancer Completed

11/2010–03/2017
NCT01248273

[80]

Globo-H-GM2-
LeY-MUC1-32(aa)-
STn(c)-TF(c)-Tn(c)-

KLH conjugate
vaccine- QS21

High risk breast
cancer

Completed
03/2001–12/2015 NCT00030823

GD2L, GD3L,
Globo H, fucosyl

GM1, and
N-propionylated

polysialic acid
-KLH + OPT-821

I Small cell lung
cancer

Completed
05/2011–01/2016 NCT01349647

2.2. GD3

GD3 is another di-sialic ganglioside only synthetized during development and in
pathological conditions such as neurodegenerative illnesses [81], as well as in cancers of a
neuroectodermal origin [82]. It is also detected in neural stem cells in which it interacts with
EGFR to sustain EGF-induced downstream signaling to maintain the self-renewal capability
of these cells [83]. ST8SIA1, also known as GD3 synthase (GD3S), is the only enzyme that
regulates the biosynthesis of GD3 and GD2. It has been demonstrated that overexpression of
GD3 and GD3S in glioblastoma stem cells plays a key role in tumorigenesis by expression of
stemness genes and self-renewal potential [84] and the enzyme is frequently overexpressed
in other tumors such as breast cancer, melanoma, lung cancer, and hepatocarcinoma, leading
to GD3S being proposed as novel drug targets in cancer [85]. GD3 was reported to be a
melanoma-associated ganglioside, detected in the majority of human melanoma tissues and
cell lines, but not in normal melanocytes [86]. While GD2 and GD3 enhanced cell growth,
GD3 might also contribute to cell invasion. Using a real-time adhesion assay in a melanoma
cell model, Ohkawa et al. demonstrated that GD3 positive cells exhibited stronger adhesion
properties than controls in an extracellular matrix, especially to collagen type I and type
IV [87]. Upregulation of GD3 has been associated with melanoma progression, brain
metastases, and poor outcomes [88].

GD3 is considered a marker of neuroectoderm origin in tumors, and several mAbs have
been developed from mice immunized with the human melanoma cell line SK-MEL-28,
e.g., R24 [89]; 2B2, IF4 and MG-21 [90]; K641 [91]. MAb R24 was further characterized as
anti-GD3 with reactivity restricted to melanocytes, neuronal and glial cells in the central
nervous system, parotid and adrenal cells [92], and it exhibited activation of complement
and ADCC in preclinical models [93]. Multiple clinical trials have been conducted using
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R24 alone or in combination with other drugs, exhibiting variable rates in clinical responses;
however, a significant concern was human anti-mouse antibodies’ (HAMA) production [93].
A mouse–human chimeric R24 (chR24) molecule was constructed, but chR24 demonstrated
a lower level of binding to GD3 than mouse R24 [94]. In the last three years, a clinical
trial phase I for a novel drug conjugated monoclonal antibody (PF-06688992), composed
of humanized anti-GD3 huR24 linked to a chemotherapeutic agent, was conducted in
stage III-IV melanoma patients (NCT03159117). The purpose of the study was to evaluate
the safety and efficacy of this drug that had never before been given to people; results
are still forthcoming. Another monoclonal antibody characterized by a high affinity for
GD3 is KM641 [91], found to cause in vitro cytotoxicity by both CDC and ADCC. The
chimeric version of this antibody (KW2871, ecromeximab) demonstrated, in preclinical
and phase I studies, biodistribution, long half-life, and lack of immunogenicity in patients
with metastatic melanoma [95]. Other clinical trial confirmed safety and established the
maximum tolerated dose of 40 mg/m2 (NCT00199342) [49]. However, a subsequent phase
II study in metastatic melanoma conducted by Tarhini et al., combining ecromeximab
with high dose of interferon-α2, looking for progression-free survival and response rate,
concluded that, although generally well tolerated and with low immunogenicity, the clinical
benefit was limited in this combination, suggesting the need to evaluate other strategies
(NCT00679289) [50]

Considering vaccine strategies, because GD3 is poorly immunogenic, Chapman and
Houghton developed anti-idiotypic mAbs against the well-characterized anti-GD3 mAb
R24 and confirmed that BEC2 could mimic GD3 gangliosides and induce anti-GD3 IgG
in rabbits [96]. BEC2 was evaluated in melanoma patients, comparing BCG and QS21 as
adjuvants [97], and as BEC2/BCG gave better results; thus, it was evaluated further in other
cancers. In 1999, Grant et al. evaluated BEC2/BCG as an adjuvant therapy in patients with
SCLC who had completed standard therapy and achieved substantially better survival than
those observed in a prior group of similar patients (NCT 00037713) [69]. However, two later
phase III studies in SCLC patients with limited disease, receiving five vaccinations of BEC2
(2.5mg)/BCG vaccine, failed to demonstrate improvements in survival, progression-free
survival, or quality of life in the treated group (NCT00006352; NCT00003279) [70,71].

2.3. Fucosyl-GM1

The ganglioside fucosyl-GM1 (FucGM1) is a tumor-associated antigen strongly de-
tected in a large percentage of human SCLC but absent in most normal adult tissues [98,99].
The restricted normal tissue detection and the overexpression on SCLC suggest that
FucGM1 could be an attractive target for both active and passive immunotherapy against
this highly aggressive cancer [100]. Vaccination with synthetic fucosyl-GM1-KLH conjugate
induces an antibody response against cancer cells expressing fucosyl GM1 and CDC against
SCLC cells [101,102]. However, the antibody response is comprised predominantly of
low-affinity IgM antibodies, while the IgG response to this vaccine was low (only one of six
patients at the highest dose had an IgG antibody titer of 1:80 or greater) [102].

The potential therapeutic effect of the mAbs anti-FucGM1 was established in vivo
for the first time in experimental models, demonstrating growth inhibition of SCLC tu-
mors [103] and a rat hepatoma tumor [104]. More recently, a novel non-fucosylated fully hu-
man IgG1 antibody (BMS-986012), specific to FucGM1, was developed [105]. BMS-986012
showed high binding affinity for FcγRIIIa (CD16), resulting in enhanced ADCC, as well
as CDC and ADCP against FucGM1-expressing tumor cell lines [105]. This mAb induced
tumoral regression in a SCLC xenograft model (DMS79). Antitumor activity was enhanced
when BMS-986012 was combined with cisplatin or etoposide standard-of-care therapy.
These preclinical data support the evaluation of BMS-986012 in a phase I/II clinical trial as
first-line therapy in patients with extensive-stage SCLC (NCT02815592). Initial results of
another phase I/II study evaluating BMS-986012 alone and in combination with nivolumab
in patients with relapsed/refractory SCLC (NCT02247349) demonstrate that this mAb is
well tolerated and shows evidence of antitumor activity in some patients [51]. Finally,
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an ongoing phase II study is evaluating whether BMS-986012 in combination with carbo-
platin, etoposide, and nivolumab is able to improve overall survival in newly diagnosed
extensive-stage SCLC patients compared with carboplatin, etoposide, and nivolumab
alone (NCT04702880).

2.4. GM3

Ganglioside GM3 is widely distributed in essentially all types of animal cells, and
overexpressed in several types of human cancers, such as melanomas, lung, and brain
cancers [106,107]. Its detection at the surface of tumor cells is an important factor in
determining the metastatic phenotype [108,109]. It has been demonstrated that GM3
density may affect antigenicity. The mAb M2590 reacts with melanoma cells, but not with
corresponding normal tissue [110]; it was unexpectedly proven that the identified epitope
was GM3. The recognition of this molecule does not occur in a monomeric state, and it
was shown that a high ganglioside density was required for the reactivity of M2590 mAb,
suggesting that the cancer specificity displayed by this antibody is established by the
recognition of a more densely packed cluster state of GM3 [111].

Several variants of GM3 are relevant in oncology. The de-N-acetyl GM3 (d-GM3),
a variant exhibiting a free amino group at position 5 of the sialic acid instead of the
acetyl group, was found in melanoma, and it was demonstrated that it enhances cell
migration and invasion [112]. A great interest in antitumor immunotherapy was demon-
strated for the variant GM3, which contains N-glycolylneuraminic acid (Neu5Gc) instead
of N-acetylneuraminic acid (Neu5Ac) [113]. GM3(Neu5Gc) is widely synthetized in most
mammals, but not in normal human cells, due to an inactivating mutation in the hu-
man cytidine monophospho-N-acetylneuraminic acid hydroxylase gene [114]. In contrast,
GM3(Neu5Gc) is often highly detected in human cancers, such as melanoma, colon, breast,
and lung cancer [115–118], a phenomenon that has been attributed to Neu5Gc metabolic
incorporation into cancer cells from dietary sources, particularly red meat [116]. The
ganglioside GM3 (Neu5Gc) is a neoantigen with promising possibilities for cancer im-
munotherapy [119]. Several GM3 (Neu5Gc)-targeting antibodies have been developed,
and the best characterized are the mouse IgG1 mAb14F7 [120] and its humanized variant
14F7hT [121]. Additionally, 14F7hT shows potent in vivo antitumor ADCC on a solid
mouse myeloma model [122], as well as on SKOV3 human ovarian carcinoma cell and
Lewis lung carcinoma (3LL) mouse tumors [123].

Considering that gangliosides display low immunogenicity, a strategy for vaccine
development was the solubilization of the hydrophobic outer membrane proteins of
Neisseria meningitidis with GM3 (Neu5Gc) to form small-sized proteoliposomes (VSSP)
(GlycoVaxGM3-NeuGcGM3/VSSP) [124]. This vaccine was reported as safe and immuno-
genic [119]. Vaccination of melanoma patients [125] and breast cancer patients [126,127]
induced high titers of antibodies IgM and IgG anti-GM3 (Neu5Gc). In melanoma patients,
the GlycoVaxGM3 vaccine improved overall survival of metastatic patients after first-line
chemotherapy [128]. GlycoVaxGM3 clinical effectiveness was also evaluated in metastatic
breast cancer patients, and overall survival was higher in vaccinated patients [129].

Another strategy to induce an immune response by anti-TACA is the use of peptide
structures simulating the tumor glycan, such as immunization with anti-idiotypic antibod-
ies, following the theory of idiotypic network proposed by Jerne [130]. This strategy is
feasible as a means by which to induce an immune response against some TACAs, such as
GD2 [131] and GD3 [97]. Although several preclinical studies using anti-idiotypic antibod-
ies supported their utility as antitumor vaccines, human studies have been disappointing
and anti-idiotypic vaccines failed in clinical trials [132]. However, promising results were
obtained with the anti-idiotype vaccine Racotumomab (Vaxira®), which mimics the ganglio-
side GM3 (Neu5Gc). The first step in Racotumomab development was mice immunization
with liposomes containing GM3 (Neu5Gc), and the result was the mAb P3 (IgM), which
recognized different cancers expressing GM3 (Neu5Gc). Subsequently, mice immunization
with the mAb P3 conjugated to the carrier protein KLH led to the obtaining of anti-idiotype
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mAb 1E10 (IgG) (Racotumomab) [133]. A phase I clinical trial of Racotumomab was con-
ducted in children with a diagnosis of cancers expressing N-glycolylated gangliosides,
resistant to conventional therapy (NCT01598454), confirming a favorable toxicity profile
up to a dose of 0.4 mg, and most patients elicited an immune response [72]. Currently, a
phase II trial is ongoing in patients with high-risk neuroblastoma (NCT02998983). Two clin-
ical trials evaluated this mAb in advanced lung cancer (NCT01240447 and NCT01460472).
Vaxira® has reached the market and is the first approved anti-idiotype vaccine (in Argentina
and Cuba) as an active immunotherapy agent for advanced non-small cell lung cancer
(NSCLC) treatment. It was found that anti-GM3 (Neu5Gc) Abs induced by Racotumomab
vaccination can mediate an antigen-specific ADCC response against tumor cells in NSCLC
patients [134]. In the same way, an immunological response producing IFNγ was found in
metastatic breast cancer patients treated with Vaxira® [135].

2.5. Globo-Series

GSLs of the globo-series, such as stage-specific embryonic antigen 3 (SSEA-3), SSEA-4,
and Globo-H, are specifically synthetized on pluripotent stem cells and cancer cells. They
are known to be associated with various biological processes such as cell recognition, cell ad-
hesion, and signal transduction [26,136]. Among them, the most prevalent cancer-associated
antigen is Globo-H ceramide (GHCer), which is overexpressed in several cancers, including
breast, gastric, lung, ovarian, endometrial, pancreatic, and prostate cancers [99,137]. The
detection of GHCer in normal tissues is restricted to the luminal surface of glandular tissues,
usually not accessible to the immune system [25]. GHCer could be transferred from cancer
cells into non-tumor cells located in tumor microenvironment, such as endothelial cells,
promoting angiogenesis [138], as well as into T cells, inhibiting IL-2, interferon-γ, and IL-4
secretion, promoting immunosuppression [25]. The specific expression of GHCer in tumor
cells, as well as its role promoting tumor progression, makes this antigen an attractive
target for anticancer immunotherapies.

GHCer-targeted immunotherapy in breast cancer has generated encouraging results,
and a vaccine containing Globo H–KLH conjugate plus the immunological adjuvant QS-21
has been shown to be safe, along with induction of humoral antibody responses, in
two phase I clinical trials carried out in patients with relapsed prostate cancer [139] and
metastatic breast cancer [140]. More recently, a multi-national randomized phase II trial of
Globo H–KLH with adjuvant OBI-821 vaccine was evaluated in 348 patients with metastatic
breast cancer (NCT01516307). The authors found that, although there was no difference in
progression-free survival between patients treated with Globo H vaccine and those treated
with placebo, in the vaccinated group, those patients who mounted anti-Globo H responses
had significantly better progression-free survival than the placebo group [73]. Based on
these promising results, a global phase III trial in triple-negative breast cancer is ongoing
(NCT03562637).

Regarding passive immunotherapy, tumor growth inhibition (TGI) was found in
mice xenografted with human breast cancer MCF7 cells by treatment with anti-Globo-H
(mAb VK9) and anti-SSEA4 (mAb MC813-70), showing 45% and 24% TGI, respectively,
and 56% of TGI in combination treatment; this indicated that SSEA4 and Globo-H may
play a synergistic role in regulating tumor growth [141]. Ruggiero et al. demonstrated that
mAb MC-813-70 is rapidly internalized into triple-negative breast cancer cells following its
binding to a specific target at the plasma membrane, accumulating in acidic organelles [142].
As such, conjugating this antibody with the saporin toxin, these authors developed an
immunotoxin able to reduce the viability of breast cancer cells in vitro and in vivo. Fur-
thermore, a novel antibody–drug conjugate (OBI-999), derived from an anti-Globo-H mAb
conjugated with a monomethyl auristatin E (MMAE), displays excellent tumor inhibition
in different animal models, including breast, gastric, pancreatic, and lung cancers [143].
Further work is needed to validate these novel drugs for the treatment of solid tumors;
hence, two phase I/II clinical trials are currently evaluating the safety, pharmacocynet-
ics, and therapeutic activity of the anti-globo H mAb OBI-888 in multiple advanced and
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metastatic solid tumors (NCT03573544), as well as the immunotoxin OBI-999 in advanced
solid tumors (NCT04084366).

3. Simple Mucin-Type O-Glycan Antigens

Simple mucin-type O-glycosylated TACAs, such as the Tn antigen (CD175), the TF
antigen (or T antigen, CD176), and the sialyl-Tn antigen (STn, CD175s), are attractive
targets for anticancer therapies because they are detected in most carcinomas and are
usually absent in healthy tissues [144]. Mucin-type GalNAc O-glycans are built up by
a sequential step-by-step process in the Golgi apparatus, starting with the addition of a
N-acetyl-galactosamine (GalNAc) to a serine or a threonine residue, whose result is the
core GalNAcα-O-Ser/Thr (Tn antigen). This initial key step of the O-glycosylation pro-
cess is catalyzed by the UDP-GalNAc:polypeptide-N-acetyl-galactosaminyl-transferases
family (GalNAc-T) [145]. GalNAcα-O-Ser/Thr is then further elongated by other glycosyl-
transferases to generate complex O-glycans. For example, the Tn structure is the acceptor
substrate for core 1 β3-galactosyltransferase (C1GalT1) to generate the core 1 disaccharide
O-glycan Galβ1-3GalNAcα-O-Ser/Thr, (TF antigen). Moreover, addition of sialic acid to the
Tn antigen, catalyzed by the ST6GalNAc-I, results in the sialyl-Tn antigen synthesis. The sia-
lylation of the Tn antigen blocks further elongation of the saccharide chain. These truncated
O-glycan antigens are observed at the earliest stages of cellular malignant transforma-
tion [146–148] and are significantly associated with tumor progression through various
mechanisms affecting adhesion properties of cancer cells, stabilizing receptor expression
on the cell surface allowing stronger signaling, and triggering immune suppression by
binding to tolerogenic dendritic cells or modulating NK cells action by competitive lectin
binding [149–151].

3.1. Tn Antigen

Different mechanisms can cause the cumulative expression of the Tn antigen found
in cancer cells. Defects in the chaperone Cosmc due to epigenetic silencing or muta-
tions, essential for the activity of the C1GalT1 enzyme, [152,153], but also changes in
the expression and organization of different glycosyltransferases, as well as relocation
of GalNAc-transferases [154,155], can play a role. Several mAbs recognizing the Tn
antigen have been generated using different immunization strategies. Some of these
antibodies are CU-1 [156], Ca3638 [157], MLS128 [158], BRIC 111 [159], 5F4 [160], HB-
Tn1 [161], PMH1 [162], 83D4 [163], SM3 [164], 237mAb [165], PankoMab [166], 5E5 [167],
KM3413 [168], 2154F12A4 [169], GOD3-2C4 [170], Kt-IgM-8 [171], 6C5 [172], and Remab6 [173].
Although the chemical structure of the Tn determinant is known to be GalNAcα-O-Ser/Thr,
its immunological definition is more complicated, and some antibodies clearly require more
complex epitopes than a single Tn residue. Indeed, some anti-Tn antibodies require the
involvement of additional amino acids in the antigenic determinant. This is the case for the
mAb FDC-6, which reacts specifically with a Tn on a hexapeptide sequence (VTHPGY) at
fibronectin [174]; PMH1 can react with single or multiple Tn on a specific MUC2 apomucin
peptidic chain [162]; mAb 237 is directed to a Tn-glycopeptide in murine podoplanin [165].
Several mAbs such as B27.29 [175], SM3 [164], PankoMab [166], and 5E5 [167] specifi-
cally recognize the Tn-MUC1 peptide, while mAb 6C5 is specific for a Tn-peptide epitope
in dysadherin/FXYD5 [172]. These observations indicate that the neighboring peptide
backbone could be an important factor that modulates the structure of the Tn epitope. In
addition, the mAb PODO447 reacts with an unusual terminal motif (N-acetylgalactosamine
beta-1, GalNAcβ1), predominantly found on the Podocalyxin (Podxl) protein core [176],
a glycomotif rarely found in normal eukaryotic cells. Although some proteins are able to
recognize a single Tn determinant, such as mAb Kt-IgM-8 [171] and plant lectins (VVLB4
and Salvia sclarea) [163,177], other anti-Tn monoclonal antibodies require at least two con-
secutive Tn residues for binding, such as MLS128 [178], 83D4 [163], KM3413 [168], and
Remab6 [173]. This fact may be related to a higher specificity in cancer cell recognition.
In addition, we demonstrate that the Tn backbone (serine or threonine) is important for
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some aspects of mAbs binding. Using synthetic Tn-based vaccines, we generated a panel
of anti-Tn monoclonal antibodies able to recognize tri-Tn build on different backbones
such as S*S*S*, S*T*T* or T*T*T* (S = Serine; T = Threonine; * = GalNAc). For example, the
mAb 15G9 specifically recognized S*S*S* but failed to bind to the other structures [179].
These antibodies exhibited differentiated recognition by immunohistochemistry in human
breast and colon cancer, demonstrating that the amino acid carrier of the GalNAc (Ser vs.
Thr) could play a key role in anti-Tn specificity for cancer detection. This fact involves an
additional complexity regarding the apparently simple structure of the Tn-antigen. The
great variety of anti-Tn antibodies developed, exhibiting high differences in recognition
patterns, demonstrates that, for several of them, the determinant GalNAcα-O-Ser/Thr is a
necessary condition, but it may still be insufficient. In the same way, functional evaluation
of different anti-Tn antibodies with arrays of synthetic saccharides, glycopeptides, and
O-glycoproteins, demonstrates similar variability in fine specificity [180,181].

In vivo experiments showing a reduction in tumor growth mediated by anti-Tn an-
tibodies can be explained by different mechanisms: (i) antibody-dependent cellular cyto-
toxicity (ADCC) [20,166,168,170,182,183]; (ii) antibody-induced complement-dependent
cytotoxicity (CDC) [171]; (iii) inhibition of cancer cell adhesion to lymphatic endothe-
lium [169]; and (iv) direct blocking of receptor signaling, such as epidermal growth factor
receptor and insulin-like growth factor I receptor [184]. These different mechanisms may
be strongly dependent not only of the antibody class but also of the fine specificity of
each antibody.

With the aim of using anti-Tn antibodies as immunotherapeutic agents in cancer treat-
ment, chimeric or humanized antibodies were generated from the variable region sequences
of existing murine monoclonal antibodies: (i) cKM3413 is a mouse–human chimeric IgG1
antibody generated from the mAb KM3413 [168]. In vitro assays with Jurkat cells (a hu-
man T-lymphoid leukemia cell line) revealed that cKM3413 induced ADCC and direct
killing activity with cross-link antibodies. In vivo experiments with Jurkat-inoculated
C.B-17/lcr-scid Jcl mice showed significantly better survival in the group treated with
cKM3413 compared with the PBS control group, suggesting the therapeutic potential of
this antibody. (ii) Remab6 is a chimeric human IgG1 antibody [173] derived in part from
the murine mAb Ca3638 [157]. Remab6 showed high specificity for cancer tissues. Its
antitumor activity has not yet been reported. (iii) Natural MUC1 Abs from breast cancer
patients reacted more strongly with GalNAc peptides than with the naked 60-mer peptide,
indicating that a MUC1 glycopeptide could be a better vaccine [185]. The mAb 5E5 recog-
nizes an immunodominant cancer-specific epitope, Tn-MUC1 (in the GSTA region), not
covered by immunological tolerance in MUC1-humanized mice [167]. Moreover, 5E5 has
been shown to lyse MCF-7 and T47D breast cancer cells via both ADCC and CDC [182].
Recently, it was found that humanized mAb 5E5 antibodies (CIM301-1 and CIM301-8) are
potent enhancers of NK cell activation and cytotoxicity in vitro in MUC1-Tn/STn-positive
tumor cells [183]. It was observed that, by removing the fucose on the N-glycan of the Fc
tail (antibody CIM301-8), an increase in Fc-binding affinity to the FcγRIIIa was achieved,
leading to enhanced ADCC by a potentiated NK cell response. (iv) PankoMab also recog-
nized an immunodominant Tn-MUC1 determinant located in the PDTRP region [166]. This
antibody showed high and specific ADCC-mediated lytic activity using human peripheral
blood mononuclear cells (PBMC) as effector cells. PankoMab-GEX™ is a fully humanized
antibody derived from PankoMab, also known as Gatipotuzumab, glycoengineered to
achieve enhanced Fc-mediated antitumor activity [52]. A phase I clinical trial in patients
with advanced solid tumors, mostly colon and ovarian cancers, demonstrated that the drug
was safe and well tolerated (NCT01222624). Following promising preliminary efficacy in
patients with ovarian cancer, a phase II was conducted in patients with recurrent ovarian,
fallopian tube, or primary peritoneal cancer to evaluate the efficacy of PankoMab-GEX vs.
placebo in maintaining response after chemotherapy (NCT01899599). However, this study
failed to demonstrate an improvement in progression-free survival [53]. Another phase
I trial in solid tumors evaluated the combination of Gatipotuzumab with an anti-EGFR
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antibody (NCT03360734), demonstrating feasibility and antitumor activity in colorectal
cancer (CRC) and NSCLC patients [54]. (v) We generated and characterized the mAb
Chi-Tn, a chimeric mouse/human antibody containing mAb 83D4 VH and VK variable
regions and the constant region of IgG1κ human immunoglobulin [186]. The mAb 843D4
was generated from splenocytes of mice immunized with a human breast cancer [187]
and required at least two consecutive Tn residues for antigen binding [163]. The binding
of 83D4 is not influenced by the peptide structure [179]. The Chi-Tn antibody induced
the rejection by ADCC of a murine breast cancer in 80% to 100% of immunocompetent
mice, with this activity being strongly potentiated by cyclophosphamide [20]. The Chi-Tn
rapidly internalizes into cancer cells and delivers cytotoxic drugs in active form, and the
conjugated auristatin F exhibited efficient antitumor activity in vivo [188]. In addition,
ChiTn enhanced internalization of nanoparticles containing docetaxel, inducing a strong
reduction in the viability of human lung cancer cells [189].

Regarding the usefulness of the Tn antigen to induce immunological antitumor re-
sponse, the first studies were performed by George Springer, using red blood cells express-
ing Tn/TF antigens. Immunization of advanced breast cancer patients with these antigens
induced immune responses correlated with better survival, suggesting a novel strategy
for cancer treatment [190]. However, the first synthetic Tn vaccine reported in clinical
trials, a palmitoyl-Tn conjugate, failed to induce anti-Tn responses [191]. The fact that the
binding of some anti-Tn monoclonal antibodies requires several consecutive Tn residues to
recognize tumor cells is consistent with the fact that this antigen is known to be displayed
as clusters on native mucins. This provided the basis for the rational design of glycopeptide-
based anticancer vaccines containing glycotopes organized in clusters. Kuduk et al. [192]
observed that clusters of three consecutive Tn residues, covalently linked to the carrier
protein KLH, were able to induce high IgM and IgG anti-Tn antibody titers in mice. These
antibodies were strongly reactive with the Tn positive human colon cancer cell line LSC,
but not with the Tn-negative LSB cell line. A fully synthetic Tn immunogen that does not
require a protein carrier, called multiple antigenic glycopeptide (MAG), was developed
carrying the Tn antigen associated with a T-helper epitope (initially a poliovirus peptide).
It was found that the MAG containing the tri-Tn glycotope was much more efficient than
the mono-Tn analogue in promoting the survival of mice grafted with the mammary
adenocarcinoma TA3/Ha cell line in immunotherapeutic experimental settings [193]. To
ensure a broad coverage within the human population, the tetanus toxoid-derived peptide
TT830-844 was selected as a T-helper epitope in MAG-Tn because it can bind to HLA-DRB
molecules, largely expressed in the population [194]. This MAG-Tn-TT, in association with
AS15, has been found to be well tolerated in non-human primates and induced robust
Tn-specific IgM and IgG responses [194]. The MAG-Tn-TT vaccine was recently evaluated
in seven patients with localized breast cancer with a high-risk of relapse. This phase I
clinical trial (NCT02364492) demonstrated that all vaccinated patients developed high
levels of Tn-specific antibodies that killed Tn-expressing human tumor cells through a CDC
mechanism [74].

However, the Tn antigen, besides inducing antitumor immune response, can also
favor tumor immune tolerance, explaining at least in part the failure of some vaccine
strategies. For example, Tn is recognized by the tolerogenic lectin—macrophage galactose
C-type lectin (MGL)—expressed by dendritic cells and macrophages, which allows these
cells to suppress T cell immunity [195] and promote angiogenesis [196], thus playing a
role in cancer progression. In addition, overexpression of Tn antigen in mouse MC38
colorectal cancer cells increased myeloid-derived suppressor cells and decreased CD8+ T
cell infiltration, promoting an immune-suppressive tumor microenvironment [197].

3.2. Sialyl-Tn Antigen

STn is often coexpressed with Tn and, as Tn, its detection is low or null on normal
cells or tissues, depending on mAb used. Aberrant STn expression is associated with
dysregulation of the O-glycosylation machinery, including imbalanced expression of Cosmc



Cancers 2022, 14, 645 16 of 42

and STn synthase (ST6GalNAc-I). De novo STn expression via ST6GalNAc-I transfection
can change a tumor’s malignant phenotype [151], leading to more aggressive cancer cell
behavior, decreasing cell–cell aggregation and increasing tumor growth, extracellular matrix
adhesion, migration, invasion, and metastases [198–200]. In addition, it was demonstrated
that STn-expressing cancer cells impair maturation of DCs, endowing a tolerogenic function
and therefore limiting their capacity to trigger protective antitumor T cell responses [201].

The first evidence of STn detection in cancers was obtained by B72.3 mAb, produced
by somatic fusion of splenocytes from mice immunized with human breast cancer mem-
branes [202]. B72.3 is immunoreactive with a high molecular weight glycoprotein complex,
designated tumor-associated glycoprotein TAG-72 [203]. The second-generation antibody
CC49 was generated following mice immunization with TAG-72 molecules affinity purified
by B72.3 [204]. Two other anti-STn mAbs, TKH2 [205] and HB-STn1, were generated by
mice immunization with ovine submaxillary mucin (OSM). In the same way as anti-Tn an-
tibodies, some anti-STn mAbs display better recognition when antigens are clusters of STn.
For example, mAbs B72.3 and MLS 102 strongly bind glycoproteins bearing STn-trimers
but exhibit poor interactions with monomeric-STn glycoproteins [206]. Similar results
were observed by Ogata et al. for mAbs TKH2 and B72.3, both reacting with trimeric STn,
but mAb TKH2 demonstrated greater binding than mAb B72.3 to monomeric STn [207].
Reddish et al. observed that mAb B72.3 chiefly recognized STn-serine clusters, but also
exhibited cross-reactivity with the non-sialylated Tn-serine clusters [208]. By contrast, the
mAb CC49 showed strong reactivity with STn-serine clusters and weak reactivity with
Tn-serine clusters.

Compared to B72.3, mAb CC49 has an affinity constant about six times higher and has
shown a 16-fold increase of tumor/blood ratio in human xenografts in athymic mice [209].
Murine CC49 and its humanized version (huCC49) [210] have been evaluated in phase
I/II radioimmunotherapy clinical trials with encouraging results. Intraperitoneal radioim-
munotherapy with 177Lu-CC49 was well tolerated and seems to have antitumor activity
against chemotherapy-resistant ovarian cancer in the peritoneal cavity [211–213]. In a
phase II clinical trial, radioimmunotherapy with 131I-CC49 in hormone-resistant metastatic
prostate cancer, in combination with IFN, enhanced tumor uptake and antitumor effects
compared to a prior phase II trial of 131I-CC49 alone [214]. Myelotoxicity is dose-limiting
because of prolonged circulation time in the plasma, and HAMA responses were observed
in most patients. To ameliorate these problems, a CH2 domain-deleted humanized CC49
(HuCC49∆Ch2) was developed [215]. Recently, in a murine model of ovarian cancer
radioimmunotherapy using 225Ac-Labeled DOTAylated-huCC49 antibody, a significant
reduction in tumor growth was observed in a dose-dependent manner, and survival was
improved by more than three-fold compared with the untreated control group, without
significant off-target toxicity [216]. Another therapeutic strategy with anti-STn antibodies
is drug delivery. PEG-immunoliposomes (PILs) were prepared by conjugation of Fab’
fragments of huCC49 to target STn-overexpressing cancer cells [217]. These anti-TAG-72
PILs were able to adhere to the surface of TAG-72-overexpressing LS174 T human colon
cancer cells more effectively than conventional liposomes. Intravenous administration of
the anti-TAG-72 PILs, containing plasmids encoding antiangiogenic proteins, significantly
inhibited in vivo growth of LS174 T tumors and angiogenesis in the tumor tissues [217].
Anti-STn antibody drug conjugate was generated using CC49 and MMAE, an antimitotic
agent that inhibits cell division by blocking the polymerization of tubulin [218]. In the
murine model of ovarian cancer OVCAR3, CC49-Br-MMAE-treated mice exhibited an
average of a 15.6-day delay in tumor growth and a 40% increase in survival vs. controls.
In addition, the anti-STn mAb SF3 MMAE conjugation demonstrated significant tumor
growth inhibition in breast and colon STn-expressing tumor xenograft cancer models,
without overt toxicity [219].

The most evaluated agent targeting STn was a vaccine (Theratope) that attained
phase III clinical trials. This vaccine consists of a synthetic construct of STn disaccharide
conjugated to the KLH that has been designed by the biotech company Biomira (Alberta,
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Canada) [220]. In murine mammary carcinoma models, Theratope immunization induced
potent antibody responses that delayed tumor growth [221]. Patients receiving Theratope
had a significantly improved survival by 12.1 months and developed anti-STn humoral
immune responses [222]. However, no overall benefit of Theratope was observed in a
large phase III clinical trial in metastatic breast cancer patients (NCT00003638 [75], and
only modest clinical efficacy was achieved in women with metastatic breast cancer who
received concurrent endocrine therapy and Theratope (NCT00046371) [76]. Theratope’s
lack of efficacy in the phase III clinical trial could be due to the broad variability of STn
expression in breast cancer tissues [75,223].

3.3. TF Antigen

TF is found in relatively low levels in a lot of normal tissues, but is present in much
higher level in carcinomas, and is associated with invasiveness, tumor growth, and high
metastatic potential. This is due, at least in part, to increased interaction of cancer cells via
TF with members of the endogenous galactoside-binding galectins [224]. TF expression can
be determined by different factors including the balance of glycosyltransferases, but also
sugar nucleotide transporters and epimerases expression acting synergistically [225]. The
TF disaccharide is linked O-glycosidically to the hydroxy amino acid serine or threonine
in α-anomeric configuration, but there is an important structural difference between the
TF-α disaccharide and the TF-β linked, which can have subtle implications in antibody
recognition. Anti-TF antibodies exist in the blood serum of healthy people, originating
via cross-reaction with gastrointestinal bacteria, exhibiting TFα-affinity [226]. Although
their cancer-related modifications, such as a decrease in anti-TF-specific IgM and increased
sialylation, have been linked to cancer and prognosis, suggesting usefulness as biomark-
ers [227,228], there is still insufficient evidence to validate an anti-TF antibody signature in
clinical settings [229].

Classically, TF identification was performed by peanut agglutinin (PNA), although
this lectin binds to glycans harboring terminal Galβ found in normal tissues, thereby
showing cross-reaction. As a result, great efforts have been made to produce useful specific
tools, and several monoclonal antibodies have been developed using different strategies
with synthetic or natural TF antigens for mice immunization. Most of them exhibit a
cross-reaction between TF-α and TF-β, and controversial results regarding TF expression
in cancer have added complexity to the subject. Several antibodies developed in the 1980s
and early 1990s have been reviewed in detail by Hanisch and Baldus [230], and we will not
add to these reviews. However, we would like to mention some mAbs that show potential
therapeutic utility.

The mAb JAA-F11, developed by Rittenhouse-Diakun et al. [231], an IgG3 specific to
the TF-α, demonstrated tumor growth inhibition and a decrease in lung metastasis in the
breast cancer metastatic model 4T1 [232]. A lack of reactivity with TF-β is important for
immunotherapy, considering that this structure is synthetized on glycolipids of normal
tissues such as kidney, as well as regenerating respiratory epithelial cells and NK-cells,
which can affect tumor growth [233]. Ferguson et al. also demonstrated growth inhibition in
a large panel of human breast cancer cell lines [234]. Taken together, the specificity of mAb
JAA-F11 and its antitumor growth and antimetastatic effects suggest the potential of this
antibody for targeted immunotherapy. As such, humanization of JAA-F11 was performed,
obtaining constructs with excellent specificity to TF-α, with lower immunogenicity and
able to produce ADCC. This humanized antibody (hJAA-F11) internalized into tumor
cells; despite the important demonstration that both naked antibody and amaytansine
conjugated antibody (hJAA-F11-DM1) suppressed in vivo tumor progression in a human
breast cancer xenograft model in SCID mice [235], no clinical trials have yet been conducted
for this antibody.

Using synthetic carbohydrate haptens linked to human serum albumin (HSA) as a
carrier protein, Longenecker et al. generated several mAbs [236] with specificities for
TF-α, TF-β, and Tn antigens. One of them (170H.82), binding to both forms of TF antigen,
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reacts with breast, lung, and colon cancers. This antibody labelled with technetium-99m
demonstrated improved images in assessing distant metastases in patients with breast
cancer [237]. Phase I clinical trials were conducted to study the effectiveness of radiolabeled
m170 antibody (Y90 MOAB m170) plus cyclosporine, as well as paclitaxel, in treating
patients who have recurrent or refractory metastatic breast cancer (NCT00009763) and
metastatic prostate cancer that had not responded to hormone therapy (NCT00009750).
Toxicity was limited to marrow suppression and cyclosporine was effective in preventing
HAMA reaction [55].

Another strategy targeting TF-antigen showing potent and selective antitumor ac-
tivity is a peptide specific for TF-α conjugated to the alkylating subunit of the cytotoxin
duocarmycin [238]. Duocarmycin is a cytotoxin exhibiting effective antitumor activity in
breast and ovarian cancer treatment when conjugated to trastuzumab. The smaller size
of the peptides compared to antibodies improved the penetration into solid tumors. An
evaluation on different human cell lines confirmed that the peptide-duocarmycin is active
in cell lines expressing TF-α.

Regarding vaccine approaches, TF cluster (c)-KLH conjugate vaccine plus QS21 was
evaluated in patients with relapsed prostate cancer (NCT00003819) [77]. All doses induced
high-titer IgM and IgG antibodies against TF. The results justify the inclusion of TF(c) at
a dose of 1 microg as a relevant antigenic target in multivalent phase II vaccine trials in
patients in the high-risk minimal disease state.

3.4. Parasite Glycans and Cancer Immunotherapy

We have characterized human cancer-associated simple O-glycan structures in several par-
asites [239]. First, we described the presence of Tn and STn antigens in Echinococcus granulosus,
a cestode parasite causing cystic echinococcosis disease [240], as well as in other species
belonging to the two main helminth phyla [241–243]. In addition, the sialyl-Tn antigen
was detected in Trypanosoma cruzi, the protozoan parasite that causes Chagas’ disease [244].
One of the major challenges in the development of an efficient anticancer vaccine is to
overcome immune tolerance to tumor-associated antigens (TAA), as well as to the immune
evasion strategies developed by tumors [245]. After demonstrating that different TACA are
found in parasites, we generated the hypothesis that molecules from these organisms could
be useful in developing antitumor vaccines or therapies because TAA from evolutionarily
distant organisms should be useful for overriding tolerance problems encountered with
human TAA-based cancer therapeutic approaches. We found that immunization with
mucin peptides derived from E. granulosus could induce antitumor activity by increasing
the frequency of activated NK cells and providing splenocytes with the capacity to mediate
the killing of cancer cells [246]. In addition, we observed that vaccination with E. granulosus
antigens from human hydatic cyst fluid (HCF) inhibited colon cancer growth via induc-
tion of antitumor immunity [247]. Furthermore, immunization with T. cruzi components
from epimastigotes (Tce) reduced colon and mammary cancer development in two rat
models reproducing human carcinogenesis [248]. Recently, working with a LL/2 lung
cancer mouse model, we found that depletion of NK1.1+ cells reduced HCF-induced mouse
survival [249]. In addition, oxidative treatment of human HCF with sodium periodate
abolished the antitumor activity induced by HCF-vaccination, indicating that glycoconju-
gates are necessary to induce antitumor responses by E. granulosus molecules [249]. Similar
results were observed when oxidative treatment with sodium periodate was performed
on T. cruzi extracts (Freire et al., manuscript in preparation). It is therefore essential to
characterize in detail the parasite glycans responsible for antitumor activity induction, and
to elucidate the immunobiological mechanisms mediating tumor rejection so as to advance
the development of a new type of anticancer treatment.

4. Lewis Antigens

Type I and type II Lewis antigens are terminal fucosylated carbohydrate structures
belonging to the human histoblood group system, differing only in their glycosidic bonds



Cancers 2022, 14, 645 19 of 42

(Galβ1-3GlcNAc and Galβ1-4GlcNAc, respectively). H1, H2, LewisA (LeA), LewisB (LeB),
LewisX (LeX), and LewisY (LeY) are synthetized in exocrine epithelial cells by fucosyltrans-
ferases (FUTs) enzymes [250]. These antigens are associated with healthy and pathological
conditions and, as cancer-associated antigens, they could be promising targets for novel
approaches in personalized medicine [251]. Lewis antigens and their sialylated forms
have been largely associated with disease progression and dissemination in cancer pa-
tients. CA19.9, which recognize sialyl-LeA (SLeA), has been widely used as a serological
tumor marker in gastrointestinal and pancreatic cancers. However, its performance is
not accurate enough for clinical use [252]. Although its tissue expression exhibits some
conflicting results, probably due to differences in used antibodies, most studies related
SLeA detection with worse prognosis [253]. In NSCLC, SLeA and its isomer SLeX are
carried by carcinoembryonic antigen, and mediate tumor cells binding to E-selectins on
endothelial cells, enhancing metastatic potential [254]. As a therapeutic target, SLeA has
attracted interest, and fully human mAbs from individuals immunized with a SLeA–KLH
vaccine have been developed, while 5B1 (IgG1) demonstrated improved overall survival
in animal models [255]. This antibody, named MVT-5873, was evaluated in pancreatic
cancer in combination with gemcitabine and nab-paclitaxel, demonstrating itself to be safe
and tolerable [256]; it is being further evaluated in CA19-9 positive malignancies in combi-
nation with FOLFIRINOX (NCT02672917). On the other hand, peri-operative MVT-5873
treatment is being evaluated in operable tumors expressing CA19-9, assessing safety and
efficacy for improving survival (NCT03801915) [56]. MVT-5873 was also evaluated in
combination with MVT-1075 (the same Hu mAb 5B1 conjugated to CHX-A”-DTPA and
radiolabelled with 177Lutetium) in a radioimmunotherapy phase II trial in patients with
CA19-9-positive tumors. Preliminary results were associated with predicted manageable
hematologic toxicities and MVT-1075 demonstrated target accumulation [257]. Another
antibody targeting sialyl-di-LewisA is FG129, an IgG1κ and its chimeric form CH129, which
was drug-conjugated MMAE or maytansinoid (DM1 and DM4), demonstrating promising
results in preclinical models; it is a good candidate for evaluation in clinical trials [258].

Furthermore, mAbs anti-LeY have also been developed and evaluated as potential
drugs for cancer therapy. The murine mAb 3S193 (IgG3), generated by immunization with
the MCF-7 breast cancer cell line, showed high specificity for LeY antigen [259]. Then,
the humanized version hu3S193 was constructed, demonstrating potent immune effector
function, with higher ADCC and CDC than its murine counterpart [260]. In clinical studies,
it demonstrated itself to be safe, with a strong ability to target tumors, justifying further
investigation [57,261] (NCT00084799). However, in a phase II study in gynecological
cancers (NCT00617773), the clinical benefit of hu3S193 was modest [58]. Another strategy
assessed for this antibody was a second-generation CAR-T anti-LeY evaluated in acute
myeloid leukemia, demonstrating feasibility and durable in vivo persistence [262]. Recently,
a novel bi-specific antibody was produced, targeting LeY and CD3 (m3s193 BsAb), which
showed strong T cell recruiting and antitumor activity in gastric cancer animal models,
and suggested potential interest for gastric cancer therapy [263]. Another anti-LeY specific
mAb, the chimeric BR96 [264], was drug conjugated to doxorubicin (SGN-15), and it
was evaluated in clinical trials in combination with docetaxel for NSCLC (NCT00051571),
demonstrating safety and suitability in second- and third-line treatment [59]. In contrast, in
metastatic breast cancer, it showed limited clinical antitumor activity and gastrointestinal
toxicities [265].

Considering vaccine strategies, SLeA could be an interesting candidate as it is highly
detected in several epithelial malignancies, including gastrointestinal, colon and pancreatic
cancer, as well as breast cancer and SCLC, but not in counterpart normal tissues. However,
considering its structural similarities with other widely expressed blood group-related
carbohydrates, cross-reaction may be a major concern. Ragupathi et al. demonstrated that
SLeA-KLH conjugate, plus saponin adjuvant, induces high titers of antibodies specific
for SLeA, reacting with SLeA-expressing human cancer cells and mediating complement
lysis [266]. Evaluated in a pilot study in metastatic breast cancer patients, the results
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confirmed the safety and immunogenicity of the product, and the authors proposed its
inclusion in polyvalent constructs (NCT00470574) [78].

Regarding SLeX, it is a TACA found in different carcinomas (e.g., breast, ovarian,
melanoma, colon, liver, lung, and prostate cancer). However, it is also detected on neu-
trophils, monocytes, and certain T lymphocytes [267]. It is the most important ligand for
selectins, particularly E-selectin, which is expressed on the surfaces of endothelial cells,
facilitating the leukocyte extravasation to sites of inflammation [268]. Pro-inflammatory
cytokines IL-1β, IL-6 and TNF-α could increase the expression of SLeX in cancer cells [269].
Interactions between SLeX of cancer cells and endothelial E-selectin seem to favor the
hematogenous metastasis of the overexpressing tumor cells, leading to poor prognosis [270].
Knock down of α-1,3-fucosyltransferase in a colon cancer cell line downregulates SLeX
expression and decreases selectin binding and metastatic capacity [271]. Several mAbs spe-
cific for SLeX have been developed: FH6 [272], CSLEX-1 [273], AM-3 [274] and KM93 [275],
which are useful to identify SLeX in different cancer types. Although several lines of evi-
dence have shown the association between SLeX and the prognosis of patients with breast
cancer, colorectal cancer, and NSCLC [276,277], these antibodies have not yet been clini-
cally applied [267]. Strategies with mAbs anti-SLeX have not yet given significant results
in cancer treatment, including the recently generated mouse/human chimeric CSLEX-1
antibody [278].

Vaccine development using SLeX has not generated significant contributions either.
One strategy to induce immunogenic reaction in melanoma was the injection of SLeX over-
expressing polyvalent melanoma cell vaccine (MCV), which consists of three melanoma
cell lines (M10-v, M24, and M101) cryopreserved and irradiated [279]. In the melanoma
C57BL/6j animal model, better outcomes were observed with high titers of IgM and
low titers of IgG, while a high IgG:IgM rate was correlated with worse outcomes [280].
Searching for a switch to a T-dependent response, immunizations with peptides that
mimic SLeX proved to be effective in stimulating anti-SLeX specific immune response,
and following challenge with Meth-A fibrosarcoma cells, CDC was observed [281]. Be-
sides, small molecule drugs that mimic the structures SLeA and SLeX can potently inhibit
their functional binding to selectins and are validated drug targets in the pharmaceutical
industry [276]. Among other anticancer strategies, SLeX-modified liposomes have been
generated, which are able to inhibit adhesion of cancer cells by competition with ligands
and can also be useful for anticancer drug delivering to cancer cells neighboring endothelial
cells expressing E-selectin [282,283]. Finally, an interesting observation is that cimetidine,
a histamine H2 receptor antagonist inhibiting stomach acid production, dramatically im-
proves survival in patients with colorectal cancer exhibiting high concentrations of SLeX
and SLeA in tumor cells [284]. Cimetidine is able to block E-selectin expression on vascular
endothelium, and this inhibits adhesion of cancer cells to endothelial cells [285], suggesting
that cimetidine can prevent metastasis development by suppression of E-selectin/SLeX
and SLeA interaction. Similar results have been observed for gastric cancer [286] and
hepatocellular carcinoma [287].

5. Polysialic Acid

The glycan modification process, attaching monomeric sialic acid entities onto the
nonreducing end of the glycan tree, forms a polysialic acid tail (PSA) synthesized as α2,8-
linked homopolymers of Neu5Ac subunits, ranging from 2 to 400 units, on glycoproteins
or glycolipids [288]. In humans, a limited number of glycoproteins can undergo polysia-
lylation by enzymes of the α2,8-sialyltransferase (ST8Sia) family, resident in the Golgi
apparatus. These enzymes show high substrate specificity for the synthesis of sialylated
chains of different lengths (ST8SiaIII for oligo sialic with fewer than seven monosaccharides
and ST8SiaII/ST8SiaIV for higher degree of polymerization up to 400 units) [289]. It was
demonstrated that the autopolysialylation of ST8SiaII/ST8SiaIV was required for recogni-
tion and subsequent polysialylation of substrates such as neuropilin-2 (NRP-2), SynCAM 1,
and NCAM [290]. Although PSA is virtually absent in most adult tissues, it is re-expressed
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during the progression of some malignant tumors, such as neuroblastoma [291], breast
cancer [292], laryngeal squamous cell carcinoma [293], pancreatic cancer [294], non-small
cell lung cancer [295], and small cell lung cancer [296]. The most important physical feature
of PSA is its anti-adhesive effect, favoring invasion and metastasis, but PSA chains also
allow for the regulation of signal transduction via influencing the access of ligands to their
receptors. For example, PSA-NCAM favors direct binding to fibroblast growth factor 2
(FGF2) and brain-derived neurotrophic factor (BDNF), thus supporting cellular growth
and survival [297]. Moreover, polysialylated NCAM, NRP-2, and SynCAM 1 can stimulate
various growth factor receptors in cancer cells, promoting oncogenesis via tyrosine kinase
pathways, and immune escape of tumor cells by the interaction of PSA with inhibitory
siglecs and protecting them from cytotoxicity [298].

The restricted detection of PSA in normal human tissues, in contrast to the abundant
expression in some cancers, suggests the rationale for immunological therapy, and several
highly specific monoclonal antibodies have been developed: MY.1E12 [299], OL.28 [300],
MAB735 [301]. However, no clinical trial has yet been conducted for cancer therapy,
although a recent construction and characterization of a chimeric human IgG with MAB735
specificity, drug-conjugated to the tubulin-binding mayntansinoid DM1, demonstrated
rapid endocytosis and cytotoxicity against tumor cells expressing PSA, encouraging future
evaluations of safety and efficacy in clinical trials [302].

Considering vaccine approaches, immunization with N-propionylated PSA-KLH con-
jugate plus immunological adjuvant QS21 in patients with small cell lung cancer demon-
strated itself to be safe and able to induce high-titer antibody responses, with 10 µg being
the lowest optimal immunogenic dose (NCT00004249) [79]. Following these results, N-
propionylated PSA was incorporated into a pentavalent vaccine that included four other
glycolipids overexpressed in small cell lung cancer (NCT01349647).

6. Polyvalent TACA Vaccines

Although monovalent vaccination has resulted in immunologic responses, the het-
erogeneity of tumor TACA expression suggests that a multivalent approach to generate
a broader immune response is preferable. Different strategies have been evaluated for
polyvalent TACA vaccine development. A tri-antigenic vaccine, containing Globo H, LeY,
and Tn antigens, elicited immune response against each antigen in animal models, and
it may result in the recruitment of both humoral and T cell-mediated immune responses
against tumors in human patients [303]. A hexavalent vaccine, prepared using GM2, Globo
H, LeY, glycosylated MUC-1-32mer and Tn and TF antigens in a clustered formation, KLH
conjugated and mixed with QS-21, was evaluated in 30 high-risk prostate cancer patients,
inducing significantly high antibody titers in at least two of the six antigens [304]. Another
heptavalent vaccine, containing GM2, Globo-H, LeY, Tn-MUC1, and clusters of Tn, STn,
and TF, was prepared, mixing TACA individually conjugated to KLH with the adjuvant
QS21. Eight of nine patients developed responses against at least three antigens, mainly
against Globo-H, Tn-Muc1, Tn, STn, and TF [305]. This vaccine was then improved, pro-
ducing a unimolecular pentavalent vaccine containing the antigens Globo-H, GM2, STn, TF,
and Tn conjugated to KLH, [306], and it was evaluated in a phase I clinical trial in ovarian
cancer patients (NCT01248273) [80]. This unimolecular pentavalent vaccine demonstrated
itself to be safe and immunogenic, and all but 1 of the 24 vaccinated patients (96%) ex-
hibited antibody responses against at least one of these antigens, and 20 patients (83%)
responded against at least three antigens after vaccination. The longest progression-free
survival was observed in a patient who developed an IgM response to all five antigens
present in the vaccine, while the only patient whose immune response was null to any of
the antigens had the shortest progression-free survival. On the other hand, this strategy of
polyvalent vaccines has been evaluated in other tumors such as breast cancer with Globo-
H-GM2-Lewis-Y-MUC1-32(aa)-STn(c)-TF(c)-Tn(c)-KLH conjugate + QS21 (NCT00030823);
and SCLC with GD2L, GD3L, Globo H, fucosyl GM1, and N-propionylated polysialic acid
-KLH conjugate + OPT-821 (NCT01349647). A pilot study of a polyvalent vaccine-KLH
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conjugate + OPT-821, given in combination with bevacizumab, was conducted in patients
with recurrent epithelial ovarian, fallopian tubes, or primary peritoneal cancer who are in
second or greater clinical remission (NCT01223235), demonstrating it to be safe.

7. CAR-T Cells

CAR-T cells combine the specificity of an antibody with the cytolytic capacity of T
cells in an MHC-independent manner [307]. These therapies have proved successful for
hematological malignancies, but in solid tumors, multiple challenges need to be over-
come, including identification of new tumor-associated antigens, the limited infiltration
of CAR-T cells to tumor sites, and the immunosuppressive effect of the tumor microen-
vironment [308]. In this way, some TACA have demonstrated usefulness for antitumor
CAR-T engineering, and the most notable developments have been achieved with anti-GD2,
anti-MUC1/MUC1-Tn, and anti-STn.

7.1. CAR-T Cells Targeting GD2

At the beginning of the century, Rossig et al. published one of the first CAR-targeting
GD2, demonstrating in vitro that first-generation CAR-T cells derived from 14.G2a anti-
bodies recognized and lysed GD2 positive cancer cells in an antigen-specific manner [309].
The first clinical trial used Epstein Barr Virus (EBV)-specific T cells, engineered with first
generation CAR targeting GD2, recruited 11 patients with neuroblastoma. This therapy
was demonstrated to be safe, and four out of eight patients had evidence of tumor necrosis
or regression, including a sustained completed remission [310]. A subsequent study of the
same group reported the long-term analysis of the mentioned trial in a total of 19 patients,
including the first cohort, demonstrating persistence of circulating CAR-T cells for at least
four years [311]. A third generation of CAR-T cells targeting GD2, incorporating CD28 and
OX40 signaling domains (GD2-CAR3 T cells), administered after lymphodepletion by cy-
clophosphamide and fludarabine, and in combination of the PD-1 inhibitor pembrolizumab,
demonstrated itself to be safe, but with modest clinical responses [312]. A humanized
scFv derived from the anti-GD2 K666 antibody was used for a second-generation CAR-T
production, which was evaluated in a phase I study in refractory/relapsed neuroblastoma
patients (NCT02761915), but no patients presented objective clinical response, although
three of the six patients who received higher amounts of CAR-T cells in lymphodepleting
conditions showed antitumor activity and signs of immune activation without on-target
off-tumor neurotoxicity [313]. Recently, Yu et al. published preliminary results of a phase I
clinical study (NCT02765243) using autologous fourth generation CAR-T cells engineered
to expresses an anti-GD2 derived from humanized mouse 3F8 scFv, a CD3-zeta domain,
a 41BB domain, a CD28 extracellular and intracellular domain and an inducible caspase
9 domain, named 4SCAR-GD2 T cells [314]. The inducible caspase 9 domain allows the
elimination of CAR-T cells by administration of the agent AP1903 if necessary. For the
first 12 enrolled patients, this therapy demonstrated an antitumor effect and manageable
toxicities, indicating its potential to benefit children with refractory and/or recurrent neu-
roblastoma. Interestingly, it was recently observed that myeloid-derived suppressor cells
(MDSC) increased in peripheral blood of neuroblastoma patients after administration of
CAR-T cells targeting GD2 in the case of relapse and loss of response. Moreover, in patients
treated with CAR-T cells, the frequency of circulating polymorphonuclear (PMN) MDSCs
inversely correlates with the levels of CAR-T cells, resulting in more elevated levels in
patients who did not respond or lost response to CAR-T treatment. This study highlights
the prognostic value of PMN-MDSC and places it as an interesting target for therapeutic
agents in order to protect CAR-T cells from detrimental actions (NCT03373097) [315].

Gene engineering of natural killer (NK) cells rather than T cells could be a safer
alternative to targeting GD2-positive cancers because they have a shorter life span. CAR-
NKT cells co-expressing a GD2-specific CAR and Il-15 have shown encouraging results
in preclinical trials using several xenograft models of neuroblastoma. This CAR-NKT
demonstrated superior in vivo persistence, tumor infiltration, and antitumor activity in a
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metastatic neuroblastoma mouse model, while no evident toxicity was observed, providing
reasons for a first in-human CAR-NKT cell clinical trial (NCT03294954) [316]. Preliminary
results from three patients demonstrate that this treatment is safe and suggest that CAR-
NKT cells can be expanded to a clinical scale [317].

In addition to neuroblastoma, CAR-T cells targeting GD2 have been evaluated for
treatment of other cancers expressing this ganglioside. Third-generation CAR-T cells de-
rived from the anti-GD2 scFv 14.G2a showed antitumor activity in murine xenograft cancer
models of melanoma [318], and Yu et al. demonstrated that second generation CAR-T cells
with the same anti-GD2 specificity induced rapid tumor regression in melanoma patient-
derived xenograft models [319]. However, although promising, this therapy exhibits some
limitations in melanoma patients, including off-target toxicity and resistance, reviewed
by Soltantoyeh et al. [320]. This is an active development field and there are currently
16 ongoing phase I/II clinical trials using CAR-T targeting GD2 in different cancers to
improve clinical outcomes (NCT03373097, NCT04099797, NCT04539366, NCT04430595,
NCT01953900, NCT03635632, NCT03423992, NCT04196413, NCT04429438, NCT03721068,
NCT01822652, NCT04637503, NCT03294954, NCT03356782, NCT00085930, NCT04433221).
Table 4 shows selected clinical trials of anti-TACA CAR-T cells.

Table 4. Selected clinical trials of CAR-T cells targeting tumor glycans.

Target Drug Candidate Phase Cancer Type Status/Period CT ID
Refs

GD2
1RG-CART +

Cyclophosphamide +
Fludarabine

I
Relapsed or
refractory

Neuroblastoma

Completed
February

2016–December 2020

NCT02761915
[313]

4SCAR-GD2 I Neuroblastoma Suspended January
2016–December 2022

NCT02765243
[314]

GD2-CART01 I/II
Neuroblastoma and
GD2 positive solid

tumors

Recruiting May
2018–December 2027

NCT03373097
[315]

GD2-CAR NKT cells
(GINAKIT) I Neuroblastoma Recruiting

1/2018–8/2034
NCT03294954

[316,317]

MUC1/MUC1-Tn
MUC1-CAR+/PD-1-

T cells I/II NSCLC Recruiting
2/2018–1/2022

NCT03525782
[321]

huMNC2-CAR44 I Metastatic breast
cancer

Active
1/2020–1/2035

NCT04020575
[322]

CART-TnMUC1 I

NSCLC, Ovarian
cancer, Fallopian tube

cancer, Triple
negative breast
cancer, Multiple

myeloma, Pancreatic
ductal

adenocarcinoma

Recruiting
10/2019–10/2036 NCT04025216

CAR-T cells targeting
PSCA, MUC1, TGFβ,

HER2, Mesothelin,
LeY, GPC3, AXL,

EGFR, Claudin18.2,
or B7-H3

I Lung cancer Recruiting
7/2017–8/2023 NCT03198052

7.2. CAR-T Cells Targeting MUC1/MUC1-Tn

CAR-T cell strategies targeting MUC1/MUC1-Tn have demonstrated encouraging
results in preclinical studies using different in vivo cancer models. Since Wikie et al. demon-
strated, for the first time, that anti-MUC1 CAR-T cells generated from the scFv of HMFG2
antibody present in vivo antitumor activity in a breast cancer xenograft [323], a growing
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number of reports show that this is an active and promising clinical investigation field.
A CAR-T MUC1-Tn constructed by the scFv of 5E5 mAb demonstrated potent antitumor
activity in preclinical xenograft models of T cell leukemia and pancreatic cancer [324].
Moreover, an interesting study demonstrated that second-generation CAR-T cells targeting
MUC1 (derived from HMFG2 antibody) could efficiently suppress tumor growth in a
patient derived xenograft (PDX) mouse model of NSCLC expressing MUC1 [325]. A phase
I clinical trial using two different constructs of anti-MUC1 CAR-T cells derived from the
SM3 antibody exhibited serum cytokine responses and no side-effects in a patient with
metastatic seminal vesicle cancer [326]. Indeed, one of the CAR-T MUC1s used in this
study effectively caused tumor necrosis, confirming the effectiveness of this therapeutic
approach. Furthermore, CAR-T with the same specificity (SM3 scFv) but engineered PD-1
KO was evaluated in NSCLC (NCT03525782), demonstrating that the treatment is safe and
well tolerated [321].

Another study explored the antitumor activity of two CAR-T MUC1 cells of second and
fourth generation, including the last one the expression of IL-22. Both CAR-T cells, derived
from an anti-MUC1 scFv (VH: HMFG2, VL: SM3), exhibited specific antitumor activity in a
head and neck squamous cell carcinoma xenograft mouse model [327]. Considering that
the immunosuppressive tumor microenvironment is one of the challenges that must be
overcome in CAR-T therapy, a strategy for remodeling it could be CAR-T cells’ anti-MUC1
derived from HMFG2 antibody and expressing the costimulatory receptor TR2.41BB [328].
In vivo experiments show that this approach enhances the expansion, persistence, and
antitumor activity of the anti-MUC1 CAR-T cells in a triple-negative breast cancer xenograft
mouse model. Recently, a second-generation CAR γδ T cell using anti-MUC1-Tn scFv
PG926 was reported, displaying significantly enhanced antigen-specific antitumor potency,
both in vitro and in vivo, in a gastric carcinoma human model [329]. Another CAR-T
MUC1 currently in clinical evaluation is huMNC2-CAR44, targeting MUC1*, the extra
cellular domain of the cleaved form of MUC1, present on a large percentage of solid
tumors, including breast cancer (NCT04020575). The investigators propose to evaluate
safety and preliminary antitumor activity in patients with metastatic MUC1*-positive
breast cancer [322]. Moreover, a multicentric clinical trial is evaluating a CART-TnMUC1
immunotherapy in solid tumors (triple-negative breast cancer, epithelial ovarian cancer,
pancreatic cancer, and non-small cell lung cancer) and TnMUC1 positive multiple myeloma,
designed to identify the dose and regimen at which CART-TnMUC1 cells can be safely
administered intravenously following lymphodepletion (NCT04025216) [330]. In a second
expansion phase enrolling 72 more patients, efficacy is due to be assessed. Finally, third-
generation CAR-T cells targeting MUC1 but also multiple other targets (PSCA, TGFβ,
HER2, Mesothelin, LeY, GPC3, AXL, EGFR, Claudin18.2, or B7-H3) were constructed,
and clinical studies will be performed to test the anticancer function of these individual
or combination CAR-T cells for immunotherapy in human cancer. This is an interesting
strategy that could help overcome cancer heterogeneity, and it is currently being evaluated
in lung cancer in an ongoing clinical trial (NCT03198052).

7.3. CAR-T Cells Targeting STn

The first CAR against STn was reported by Hombach et al. more than 20 years
ago, and few years later, McGuiness et al. demonstrated that first generation of CAR-
T cells targeting STn presented antitumoral activity in two murine xenograft models of
endometrial and colon adenocarcinoma [331,332]. More recently, a dual-specific CAR,
containing an antagonist anti-CD30 scFv derived from the HRS3 antibody and an anti-STn
scFv, presented high levels of cytotoxic activity on LS-C colon cancer cells in vitro [333].
Antitumor activity of second-generation STn CAR-T cells, constructed with the humanized
antibody CC49, was evaluated in xenograft models of peritoneal ovarian cancers [334].
In this study, regional intraperitoneal delivery of TAG72-BBζ CAR-T cells significantly
reduced tumor growth and improved overall survival of mice. The strategy of targeting
multiple antigens to improve effectiveness was evaluated by Shu et al. by generating
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dual CAR-T cells targeting STn and CD47 (overexpressed in multiple cancer types and
expressed on many normal cells). In order to minimize the killing of heathy cells, they
designed a truncated anti-CD47 CAR, devoid of intracellular signaling domain (∆CD47),
and a second generation anti-STn CAR derived from the antibody CC49 [335]. The CD47
CAR facilitates binding to CD47 positive cancer cells, increasing the chances of TAG72
positive cancer cells’ elimination via STn CAR. They used two ovarian cancer xenograft
models, OVCAR-3 and MESOV, with high and low expressions of STn, respectively, but
both cell lines expressed high levels of CD47. In these preclinical models, single STn CAR-T
cell therapy was effective in delaying tumor growth in the OVCAR-3 cancer model, but it
was unable to delay tumor growth in the MESOV cancer model. However, tumor growth
was delayed in the MESOV cancer model using dual STn + ∆CD47 CAR-T cells [335].

In 2017, Hege et al. published the results of the first human clinical trials of CAR-T
cells in the treatment of solid tumors, reporting data from two studies using first-generation
CAR-T cells targeting STn in metastatic colorectal cancer patients [336]. Both studies lack
clear evidence of on-target/off-tumor toxicity, but no clinical responses were observed.
The authors also reported the trafficking to tumor tissue of CAR-T cells in one of three
patients, and some patients induced an interfering antibody to the STn binding domain
of humanized CC49, associated with rapid clearance of subsequent CAR-T cell infusions,
suggesting the potential benefit of incorporating co-stimulatory domains in the CAR design.

8. Concluding Remarks and Perspectives

The glycan pattern expressed in cancer cells has a significant effect on tumor behav-
ior. Different TACAs are established biomarkers, with recognized usefulness in clinical
oncology. TACA overexpression on a wide range of cancer cells is an attractive target for
immunotherapy developments. The main conclusions emerging from this review highlight
that immunotherapy strategies targeting TACAs can be approved for cancer therapy, such
as anti-GD2 antibodies in neuroblastoma treatment. While some TACAs are excellent
tumor biomarkers, the development of immunotherapies targeting them is a major diffi-
culty. Although some progress has been made in this field, no TACA-based vaccine has
been approved thus far by the FDA. Thus, there remains a great need to improve the
immunogenicity of TACAs, which is critical for cancer therapy, because they are unable to
induce T cell-dependent immune responses by themselves. As well as improving strategies
for TACA coupling to peptide epitopes that are able to be recognized by T cells, as well as
novel polyvalent vaccine development and the characterization of strong and safe immune
adjuvants, a promising approach could be vaccine developments based on chemically
modified TACAs [337]. Some examples include an oxime-linked Tn analogue [338], a
fluoro-substituted Sialyl-Tn [339], and a MUC1-β-TF [340].

Monoclonal antibodies represent one the most effective classes of biopharmaceuticals
for cancer treatment. A variety of diverse and innovative approaches continue to be
developed, based on the generation/modification of anti-TACA antibodies to obtain new
and more effective antibody-based therapies (Figure 1). In addition to the usefulness of
different naked mAbs in immunotherapy, other emerging promising approaches are bi-
specific antibodies, antibody–drug conjugates, and CAR-T cells. Antibody engineering is a
great opportunity for the discovery and development of novel therapeutic tools. One of
the main limitations of anti-glycan antibodies is their low affinity for antigen recognition,
but genetic engineering allows us to increase this affinity, improving antitumoral activity.
For example, by using a yeast surface display, novel antibodies with increased affinity
and better specificity were generated from mAb anti-SLeA, improving binding to human
pancreatic and colon cancer cell lines and complement-dependent therapeutic efficacy [341].
This strategy could allow for improvements to the antitumor therapeutic potential of
different anti-TACAs antibodies. In addition to antigen specificity, mAbs comprise Fc-
mediated effector functions, such as the ADCC- and ADCP-activating Fcγ receptor (FcγR),
which are of major importance for the therapeutic efficacy of mAbs. FcγR-mediated
effector functions, optimized by strategies such as point mutations, altered glycosylation
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patterns, combinations of different Fc subclasses (cross isotypes), and Fc-truncation of the
mAb, can address important improvements regarding clinical safety and efficacy [342].
Recently, the Fc of an anti-sialyl-di-LeA antibody was modified to incorporate mechanisms
of tumor death in murine anti-glycan antibodies. Murine IgG3 mAbs targeting glycans
often induce direct cell killing in the absence of immune effector cells, or complement, via a
proinflammatory mechanism resembling oncotic necrosis. By identifying the key residues
within mouse IgG3 responsible for noncovalent Fc interactions and transferring them into
human IgG1, a chimeric human IgG1 was created, which exhibited increased in vitro and
in vivo antitumor activity [343]. Following this strategy, the antitumor activity of different
anti-TACA mAbs can also be improved.
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New perspectives are ready for exploration in cancer therapy; for example, by re-
moving some glycans from the cancer cell surface, we can improve its susceptibility to
immunotherapy. Considering sialic acid residue involvement in tumor immune-evasion
mechanisms, the laboratory of Carolyn Bertozzi developed a strategy to eliminate sialic
acids of HER2+ breast cancer cells. Using mAb trastuzumab (anti-HER2), they developed
an antibody–sialidase conjugate that was able to enhance cancer cell susceptibility to ADCC
by selective desialylation of the glycocalyx of the targeted tumor cell [344]. Sialidase conju-
gation to trastuzumab also enhanced ADCC in tumor cells expressing moderate levels of
HER2, suggesting a therapeutic strategy for cancer patients with lower levels of HER2 or
trastuzumab resistance [344]. More recently, the authors found that removal of sialoglycans
from cancer cells by this strategy could improve the antitumor immune response in mice
through a siglec-E-dependent mechanism [345].

Many approaches that are effective in cancer treatment are based on the aberrant
glycosylation of tumor cells. The expanding knowledge of cancer glycobiology and access
to novel biotechnological tools determine that dynamic achievements in the field have
growing clinical impact. In this review, we only analyzed aspects related to TACA targeting.
Whatever the treatment options, they must be used in synergy with other anti-tumor
strategies for the adequate personalization of therapy.
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