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Simple Summary: Pathologic cervical lymph nodes (LN) in head and neck squamous cell carcinoma
(HNSCC) deteriorate prognosis. Current radiologic criteria for LN-classification are primarily shape-
based. Radiomics is an emerging data-driven technique that aids in extraction, processing and
analyzing features and is potentially capable of LN-classification. Currently available sets of features
are too complex for clinical applicability. We identified the combination of sparse discriminant
analysis and genetic algorithms as a potentially useful algorithm for eliminative feature selection.
In this retrospective, cohort-study, from 252 LNs with over extracted 30,000 features, this algorithm
retained a classification accuracy of up to 90% with only 10% of the original number of features. From
a clinical perspective, the selected features appeared plausible and potentially capable of correctly
classifying LNs. Both the identified algorithm and features need further exploration of their potential
as prospective classifiers for LNs in HNSCC.

Abstract: In head and neck squamous cell carcinoma (HNSCC) pathologic cervical lymph nodes (LN)
remain important negative predictors. Current criteria for LN-classification in contrast-enhanced
computed-tomography scans (contrast-CT) are shape-based; contrast-CT imagery allows extraction of
additional quantitative data (“features”). The data-driven technique to extract, process, and analyze
features from contrast-CTs is termed “radiomics”. Extracted features from contrast-CTs at various
levels are typically redundant and correlated. Current sets of features for LN-classification are too
complex for clinical application. Effective eliminative feature selection (EFS) is a crucial preprocessing
step to reduce the complexity of sets identified. We aimed at exploring EFS-algorithms for their
potential to identify sets of features, which were as small as feasible and yet retained as much accuracy
as possible for LN-classification. In this retrospective cohort-study, which adhered to the STROBE
guidelines, in total 252 LNs were classified as “non-pathologic” (n = 70), “pathologic” (n = 182) or
“pathologic with extracapsular spread” (n = 52) by two experienced head-and-neck radiologists based
on established criteria which served as a reference. The combination of sparse discriminant analysis
and genetic optimization retained up to 90% of the classification accuracy with only 10% of the
original numbers of features. From a clinical perspective, the selected features appeared plausible and
potentially capable of correctly classifying LNs. Both the identified EFS-algorithm and the identified
features need further exploration to assess their potential to prospectively classify LNs in HNSCC.
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1. Introduction

In head and neck squamous cell carcinoma (HNSCC), both the presence and the
localization of pathologic cervical lymph nodes (LNs) with or without extracapsular spread
(ECS) remain important negative prognostic factors in terms of overall survival [1–4]. Faisal
et al. observed in a review including 531 oral HNSCC-patients the clinical presence of
pathologic cervical LNs to be a significant prognosticator affecting overall survival [3]. In
terms of LN localization, Meccariello et al. explored the role of selective neck dissection
on regional disease control in a retrospective study including 60 oropharyngeal HNSCC-
patients and observed that involvement of LNs in the latero-cervical neck levels (i.e.,
level V) correlates with staging and prognosis; these LNs should therefore be considered
specifically [4].

Current criteria to diagnose pathologic LNs or ECS in contrast-enhanced computer
tomography scans (contrast-CTs) are shape-based [5–7]. Mainly, and without further
quantification, head and neck radiologists primarily consider LN maximum diameter and
margins [5–7]. However, significantly more quantitative information about shape, texture,
and intensity is contained within contrast-CTs that could be exploited for aiding clinical
decision-making.

Radiomic analysis [8,9] is an emerging, data-driven technique aiming at extracting,
processing and analyzing quantitative image-based information to help answer particular
clinical questions. The core idea is to treat medical imaging data of patients as data-
mineable sources of information for diagnosis. The typical radiomic workflow starts with
data acquisition as part of the clinical diagnostic process, followed by manual or semi-
supervised segmentation of clinically interesting features within the radiologic data sets.
These extracted features may aid clinical decisions by providing quantitative measures on
base of the available imaging data. This analysis can provide appropriate clinical metrics
for staging and prognosis by regression and classification of radiologic data.

The most challenging and time-consuming part of this approach is the choice of quan-
titative features that best comply with the diagnostic concepts of head and neck oncology.
Typically, hundreds of candidate features are extractable from contrast-CT images—many
of which are highly redundant and highly correlated (e.g., LN’s diameter and volume or
uniformity and entropy) so that for clinical usefulness the most discriminative combination
of features needs to be identified.

Feature extraction is a well-explored problem in machine learning and radiomics [10–12].
Howard et al. applied machine learning to identify HNSCC-patients with intermediate-risk
who could benefit from primary concurrent radio-chemotherapy (RCT). In this cohort
study including 33,526 HNSCC-patients RCT was recommended in 44–52% of the patients.
Machine learning was found to bear potential to improve selection of intermediate-risk
HNSCC-patients in need of trimodal therapy [12]. However, there is a fine distinction
between aiming to apply machine learning to solve a classification task most accurately in
a black-box manner and picking a subset of (raw) features that may work well in clinical
prediction in combination with a more conventional human-driven statistical analysis of
the problem at hand. The clear trend in the first approach is to skip hand-crafted low- and
intermediate level features and to learn data driven representations with powerful models
(e.g., Convolutional Neural Networks (CNNs) [13]. These algorithms can provide state-of-
the-art accuracy with good generalization power, even with superhuman performance in
some tasks [14,15], but are often sample-inefficient and their internal representations are
hard to interpret [16]. Furthermore, the collection of a large number of supervised samples
in medical datasets is often prohibitively expensive. All this impedes acceptance in the
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medical diagnostic domain. Radiomics, the second approach, uses simple but effective
data-mining techniques that might not produce state-of-the-art accuracies. However, this
second approach could provide insight into the structure of the problem of clinical image
processing and clinically relevant feature selection [17].

In this retrospective data-driven cohort study problem-aware radiomic feature extrac-
tion and identification of “underlying” structures from typical small-scale clinical datasets
were investigated. The specific objective of this study of this the clinical problem of LN-
classification in HNSCC-patients, was to explore eliminative feature selection algorithms
(EFS-algorithms) for their potential to identify as small as feasible sets of features and yet
to retain as much clinical “accuracy” as possible.

2. Materials and Methods
2.1. Patient Population

This retrospective cohort study adhered to the “Strengthening the Reporting of Obser-
vation studies in Epidemiology” (STROBE) guidelines [18]. From 2008 until 2020 patients
of the institutional head and neck cancer registry at the Department of Otorhinolaryngol-
ogy, Head and Neck Surgery, Medical University of Innsbruck, Austria, that had incident,
histologically confirmed, advanced HNSCC (UICC III or IV) were eligible. All eligible
patients were treated with primary RCT. Contrast-CTs for staging (“staging-CT”), planning
of RCT (“planning-CT”) and restaging after RCT (“restaging-CT”) were available for all
eligible patients. Exclusion criteria were nasopharyngeal carcinoma, other cancers than
HNSCC, or curative surgery as part of the first-line treatment.

From 1100 potentially eligible patients 823 did not meet the inclusion criteria. From the
remaining 287 patients a representative random sample of 28 patients (~10%) was drawn
with SPSS 27 (IBM, Armonk, NY, USA). The study flow diagram and patient inclusion,
modified according to STARD criteria [19], is depicted in Figure 1.
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Figure 1. Study flow and patient inclusion modified according to STARD criteria [19]. A total of
1110 patients were potentially eligible, of which 823 did not meet the inclusion criteria. Of 287 eligible
patients a representative random sample of 28 patients (~10%) was drawn. The clinical characteristics
of the 28 included patients are presented in Table 1.

The mean (±standard deviation) patient age was 67 ± 10 years, ranging from 42 to
87 years; seven patients were female. The mean time between diagnostic- and planning-CT
acquisitions was 20 days (±11 days; range 6–87 days). The mean time-interval between
planning- and restaging-CT acquisitions was 110 days (±26 days; range 41–87 days). Mean
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overall survival from initial diagnosis was 35 months (±32 months; range 2–87 months).
The clinical characteristics of the 28 included patients are presented in Table 1.

Table 1. Clinical characteristics of the 28 included HNSCC-patients.

Sex
male 20

female 8

Age

≤50 years 1
51–60 years 9
61–70 years 9
71–80 years 8
≥80 years 2

p16 Status 1
Negative 14
Positive 6

Unknown 8

Primary Tumor Site

oral cavity 6
oropharynx 6

hypopharynx 6
larynx 6
CUP 2 4

Clinical T-stage

T1 0
T2 7
T3 6
T4 11

Clinical N-stage 3

N0 0
N1 4
N2 19
N3 5

1 p16 was also assessed in several non-oropharyngeal HNSCC; 2 carcinoma of unknown primary; 3 initial N-stage
and label of LN not necessarily match, since the head and neck radiologists were blinded to the written report.

2.2. Contrast-Enhanced Computed Tomography Scans

Staging- and restaging contrast-CTs adhered to the head and neck CT imaging proto-
cols of the Department of Radiology (Medical University of Innsbruck) and were acquired
with a Light Speed VCT or a Light Speed 16 CT scanner (GE Medical Systems, Vienna,
Austria). The scan volume ranged from the frontal sinus to the upper mediastinum with
a resolution of 512 × 512 pixels, 2 mm slice thickness, collimation of 24 × 1.2 mm, and
0.45 pitch. Sagittal and coronal images were reconstructed form the axial images. As
contrast agent, Jopamiro 370 (Bracco Austria GmbH, Vienna, Austria) was administered
intravenously adjusted to the patient’s body weight.

Planning CT scans were subsequently acquired at the Department of Radiation Oncol-
ogy, Medical University of Innsbruck. For all included patients imaging protocols were
strictly adhered to. CT scans were exported in DICOM-format from the IMPAX EE PACS
system (Agfa HealthCare, Bonn, Germany) and the PowerChart Hospital Information
System Cerner, Kansas City, MI, USA).

2.3. Segmentation and Classification of Lymph Nodes

All diagnostic-, planning- and restaging-CTs were imported to the segmentation
software (Elements, BrainLab, Munich, Germany). For each patient the three largest
LNs were manually segmented in all data sets slice-by-slice in the axial plane using the
“paint on slices” tool provided by the software. All segmented LNs were examined by
two experienced, board certified head and neck radiologists with more than 15 years of
clinical experience in head and neck CT reporting. The segmented LNs were classified as
“pathologic” (Figure 2), “pathologic with ECS” (Figure 3) or “non-pathologic” (Figure 4),
complying with current CT reading criteria for LN-malignancy [5–7].
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Figure 2. Example of a LN classified as “pathologic” in a staging-CT of a 55-year-old, male HNSCC
patient with a tumor of the oral cavity staged cT4a cN2b cM0. Original segmentation in the axial
plane (A); sagittal (B) and coronal (C) reformatted views and three-dimensional rendering (D) of the
LN are provided by the software. Dashed arrows show central necrosis; no soft tissue infiltration and
irregular LN capsule was observed.

LNs were classified “pathologic” in staging- and planning CTs, if axial diameters were
>10 mm, LN margins were poorly defined, capsular contrast agent enhancement and/or
central necrosis was observed [5]. LNs were classified “pathologic” if in restaging-CTs
(i.e., after primary concurrent RCT), the maximum short axis LN diameters was >10 mm,
focal LN abnormalities (lucencies, contrast-enhancement or eccentric LN bulging) were
observed, and/or if an increase of the maximum short axis LN diameter of >2 mm in
restaging-CTs was observed [6] (Figure 2).

LNs were classified “pathologic with ECS” if in staging-, planning- or restaging-
CTs, in addition to the criteria mentioned above [5,6], apparent fat/soft-tissue infiltration,
infiltration of the sternocleidomastoid muscle, the internal jugular vein, or the carotid
artery was observed [7]. Consequently, all LNs classified as “pathologic with ECS” were
considered “pathologic”, too, but not all “pathologic” LNs were classified “pathologic with
ECS” (Figure 3).

LNs were classified “non-pathologic” if in staging-, planning- or restaging-CT neither
the criteria for malignancy [5,6] nor for ECS [7] were observed (Figure 4).

Since all patients enrolled in this retrospective cohort-study were treated with primary
concurrent RCT no histological or cytological verifications of the segmented LNs were
available, except for four patients diagnosed with carcinoma of unknown primary (Table 1).
In these four patients, ultrasound-guided core-needle biopsies of only the largest suspect
cervical LN were performed to histologically confirm the diagnosis of HNSCC. In the
remaining patients the diagnosis HNSCC was histologically confirmed by obtaining tissue
samples from the primary tumor during staging panendoscopy [20]. As recommended
by the National Comprehensive Cancer Network [21] no additional ultrasound-guided
core-needle biopsies of any of the suspect cervical LNs were performed in these patients.
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This diagnostic approach aimed at preventing the small yet existing chance of tumor
seeding [22].

Consequently, the classification of the segmented LNs in “pathologic” (Figure 2),
“pathologic with ECS” (Figure 3) and “non-pathologic” (Figure 4) by the two experienced
head-and-neck-radiologists based on established criteria [5–7] was defined as reference.
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male HNSCC-patient of the oral cavity staged cT2 cN3b cM0. Manual segmentation in the axial
plane (A); sagittal (B), coronal (C) reformatted views and three-dimensional rendering (D) of the LN
are provided by the software. Solid arrows show soft tissue infiltration and an irregular LN capsule.
Dashed arrows show central necrosis.

2.4. Export of Segmented Lymph Nodes for Feature Extraction

All segmented LNs from all contrast-CTs with their respective classifications were
exported from the BrainLab system in DICOM format. Segmentation boundaries were
converted into binary volumes and saved as “Nearly Raw Raster Data” (NRRD) label
volumes [23]; original CT images were saved as NRRD intensity volumes [23]. The open
source PyRadiomics library [24,25] allows extraction of 120 different radiomic features,
including intensity based, shape-based and texture-based features for each segmented LN
(Supplemental Table S1).

2.5. Feature Selection

Various supervised and unsupervised wrapper-type feature selection variants [26] to
reduce the number of features (without recombination into new features) were explored.
This allows easier interpretation of the selected features by avoiding feature extractors
that use dense recombination of features (e.g., principal component analysis or factor
analysis [27]).

The primary aim of this retrospective cohort study was to identify at least one EFS-
algorithm for each of the LN-classifications “pathologic” (Figure 2), “pathologic with ECS”
(Figure 3) and “non-pathologic” (Figure 4), capable of maintaining a classification accuracy
>80% with a reduced number of active features p to ≈10.
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Figure 4. Example of a LN classified as “non-pathologic” in a staging-CT of a 65-year-old, female
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the axial plane (A); sagittal (B), coronal (C) reformatted views and three-dimensional rendering (D) of
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The standard radiomic features extracted from CT datasets tend to be highly corre-
lated and are prone to multi-collinearity (e.g., [28]). This may hinder the effectiveness of
choosing features with a generally good performance as diagnostic radiomic signals. From
a machine-learning perspective, a high correlation between clusters of features can have a
negative effect on some classifiers [29] and their associated supervised feature reduction
techniques [30].

A set of simple linear discriminant analysis (LDA) classifiers [31] was trained on
all available features for all available binary labels in the dataset to establish a baseline
of feature selection. The motivation for this is twofold: for small datasets in which the
number of data points is only a few times the number of features, almost any further
increase in model complexity can lead to overfitting [17]. Additionally, linear classifiers
have a straightforward metric to estimate relative feature importance and are simple to use
within wrapper-type feature selection algorithms. Neither generalization performance nor
absolute accuracy of the classifiers are considered at this stage. Simply, different feature
selector candidates are evaluated on base of their relative performance.

The performance of a feature selector Sa is considered to be better than that of a feature
selector Sb, if for a fixed p << |
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mains fixed. The question to answer is how to efficiently select a subset of features Ƒs from 
Ƒ such that Ƒs still retains as much of the original classification accuracy as possible. Ƒ 

2.6. Candidate Feature Selection Algorithms 
Two main classes of algorithms were considered: the first class were explicit para-

metric algorithms, where the exact number of the desired dimension count is set. Exam-
ples for explicit parametric algorithms are recursive feature elimination (RFE), subclass 
discriminant analysis (SDA) and genetic algorithm (GA). The second class were implicit 
parametric algorithms, where a specific hyperparameter determines the final dimension-
ality based on the data. Examples for implicit parametric algorithms are highly correlated 
feature removal (HCFR) and recursive feature elimination with cross-validation (RFE-
CV). Additionally, random feature selection [10,11,17] was evaluated. 

All supervised techniques use an LDA classifier at each step to determine the achiev-
able accuracy and the relative importance of each independent feature. Given the model 
weights {wi} and input features {xj}, both ∈ ℝ , label y is given by: 
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The (relative) importance of the feature 𝑓j ∈ Ƒ is assumed to correspond to |𝜔j|. 

2.6.1. Highly-Correlated-Feature Removal (HCFR) 
Highly-Correlated Feature Removal (HCFR) is an unsupervised, implicitly para-

metrized technique, that samples a set of minimally correlated features. A maximum cor-
relation threshold S is given as a parameter defining the maximum allowed correlation 
between any two features in the selected feature set. The threshold is enforced by agglom-
erative clustering [32], with an affinity between features 𝑓 , 𝑓 , q ∈ Ƒ defined as 𝑎𝑓𝑓(𝑓p, 𝑓q): 
= 1 − abs(𝑐𝑜𝑟𝑟(𝑓p, 𝑓q)). Then the selected feature set is assembled by sampling a random 
feature from each cluster. The resulting feature set will be stochastic and decorrelated 
within the constraints of the original data and feature-set. 

2.6.2. Recursive Feature Elimination (RFE) 
RFE is a supervised, explicit, greedy feature selection technique that iteratively de-

creases the number of features by repeatedly fitting the classifier and removing the least 
important n features, typically n = 1, until the target number of features, p, is reached 
[10,11]. When used with linear classifiers such as support vector machines (SVM) or LDA 
as classifiers in form (1), relative feature importance is determined by the magnitude of 
weight 𝜔j associated with feature i [10,11]. 

Combining RFE with k-fold cross-validation (FRE-CV) may be useful for finding fea-
tures that are more generic. At each evaluation step a complete k-fold cross validation of 
the classifier is executed with the current set of features. This yields means and standard 
deviations of classification accuracies as well as feature weights from k executions per 
step, reducing the effect of singular weight inconsistencies and allowing stable evaluation 
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explicit parametric algorithms are recursive feature elimination (RFE), subclass discriminant
analysis (SDA) and genetic algorithm (GA). The second class were implicit parametric
algorithms, where a specific hyperparameter determines the final dimensionality based on
the data. Examples for implicit parametric algorithms are highly correlated feature removal
(HCFR) and recursive feature elimination with cross-validation (RFE-CV). Additionally,
random feature selection [10,11,17] was evaluated.

All supervised techniques use an LDA classifier at each step to determine the achiev-
able accuracy and the relative importance of each independent feature. Given the model
weights {wi} and input features {xj}, both ∈ Ri, label y is given by:

y = f (ω·x) =
(

∑
j

ωT
j xj

)
(1)

f (x) =
{

1 i f x > S, S being a su f f icient treshold
0 otherwise

(2)

The (relative) importance of the feature f j ∈
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2.6.1. Highly-Correlated-Feature Removal (HCFR)

Highly-Correlated Feature Removal (HCFR) is an unsupervised, implicitly parametrized
technique, that samples a set of minimally correlated features. A maximum correla-
tion threshold S is given as a parameter defining the maximum allowed correlation
between any two features in the selected feature set. The threshold is enforced by ag-
glomerative clustering [32], with an affinity between features fp, fq, q ∈
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defined as
a f f ( f p, f q): = 1 − abs(corr( f p, f q)). Then the selected feature set is assembled by sam-
pling a random feature from each cluster. The resulting feature set will be stochastic and
decorrelated within the constraints of the original data and feature-set.

2.6.2. Recursive Feature Elimination (RFE)

RFE is a supervised, explicit, greedy feature selection technique that iteratively de-
creases the number of features by repeatedly fitting the classifier and removing the least
important n features, typically n = 1, until the target number of features, p, is reached [10,11].
When used with linear classifiers such as support vector machines (SVM) or LDA as classi-
fiers in form (1), relative feature importance is determined by the magnitude of weight ωj
associated with feature i [10,11].

Combining RFE with k-fold cross-validation (FRE-CV) may be useful for finding
features that are more generic. At each evaluation step a complete k-fold cross validation of
the classifier is executed with the current set of features. This yields means and standard
deviations of classification accuracies as well as feature weights from k executions per step,
reducing the effect of singular weight inconsistencies and allowing stable evaluation of step
accuracy. RFE is considered a supervised but implicitly parametrized feature extraction
algorithm, because the optimal number of features is selected based on a predefined
accuracy/feature count trade-off predefined by the algorithm [10,11].

2.6.3. Sparse Discriminant Analysis (SDA)

Clemmensen et al. proposed sparse discriminant analysis (SDA) [33], which applies
elastic net regularization on the weight matrix β in the form:

minβ

{
‖γ− Xβ‖2 + λ‖β‖1 + γ‖β‖2

}
(3)

Hyperparameters λ and γ control the accuracy-sparsity trade-off and enforce sparsity
of the features for larger values; X is the data vector. Careful tuning of these hyperparame-
ters ensures that exactly p features have non-zero weights. LDA classifiers are trained on
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the features selected in the SDA analysis to provide the final classification accuracy. In the
proposed form SDAp can be seen as an explicit and supervised feature reduction method.

2.6.4. Genetic Algorithms (GA)

GA are often applied to solve the problem of feature selection (e.g., [34]); and are a
combinatorial approach for optimization problems where from the original set of features
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is sought and two main objectives are expected to be optimal simultaneously:
the first objective depends on the number of features, c1(|P|), while the second measures
the performance of the classifier when using the selected subset of features c2(P, x, y). This
is typical for multi-objective genetic algorithms (MOGA) [35,36].

When using a weighted-sum combination c = ∑i={1,2} λici(·) for some user-specified
importance factors λi, i.e., setting a limit on the number of features p, the problem simplifies
and can be solved with single-objective GA optimization. Following a weighted-sum
representation with λ1 = λ2 = 1, c1(|P|): = min(|P| − p, 0), and c2(P, x, y): = the negative
balanced accuracy (BACC) reached by LDA classification on the dataset x with labels y
when using features P; c(·) is minimized. This ensures Pareto domination [37] to feature
configurations with smaller feature counts given no advantage in terms of BACC as long
as the feature count is over the targeted limit. GAp can be considered a “soft” explicit,
supervised feature reduction algorithm, as the desired number of features p is explicitly
defined, but the final number of proposed features may deviate from the exact value of p.

2.6.5. Random Feature Selection (RND)

Random feature selection is a trivial yet sometimes surprisingly effective explicit
unsupervised algorithm to reduce the number of input features for classification [10,11,17].
A uniformly randomly selected subset of size p from the set of all input features
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is used
for classification. Although its variance is large, this method can give a good reference
to evaluate more advanced feature selectors and can provide an efficient best-of-N type
feature selection algorithm when enough samples are considered [10,11].

2.6.6. Dual-Phase Feature Elimination

Additionally, dual-phase feature elimination was also considered: the first phase
reduces the feature dimensions to a moderate number (~50) using non-combinatorial
techniques such as SDA or RFE. The second phase uses genetic optimization for further
reducing feature dimensionality to the desired target count. The two versions are termed
SDAqGAp and RFEqGAp.

2.6.7. RFE with Highly Anti-Weighted Feature Elimination Filter (HAFF) Preprocessing

While in general the heuristic of linear weight as feature importance can be considered
effective, it has some drawbacks [38]. When the original feature set has subsets of highly
correlated feature pairs (f i, f j), ωij = corr(f i, f j) > T, T ≈ 0.95, and heavily anti-weighted
feature pairs (f k, f l), ωkl: = corr(f k, f l) < −T, T ≈ 0.95 (ωkl << 0 << ωij) linear classifiers
may reach degenerate solutions. Highly anti-weighted feature pairs distort the feature
importance statistics, because at least one of the feature pairs (i, j) is typically much less
important for a good classification than its feature magnitude would imply and a more
important feature might be removed from the set. RFE is particularly vulnerable to this
phenomenon; removing highly anti-weighted feature pairs in a preprocessing step can
have positive effects on candidate feature selection methods. We propose RFE-HAFF as
an alternative form of RFE. At each feature removal step, instead of the least important
feature, the highest anti-weighted features (HAF) with an absolute correlation above a
specified threshold S are removed. RFE-HAFF terminates when all HAFs are eliminated
and feature elimination proceeds in the usual manner. Therefore, HAFF performs a greedy,
unsupervised elimination of some features at the preprocessing stage prior to executing the
main feature selector algorithm.
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2.7. Candidate Feature Selection Procedure

First, LDA performance was established as a baseline against which to assess the
performance of the different feature reduction methods. LDA was trained on the LN-
classifications “pathologic”, “pathologic with ECS” and “non-pathologic” for all 252 LNs
with all 120 features.

In the first evaluation step, the performance of the classifiers was evaluated after an
approximate 50 percent reduction in feature count. Both definite- and indefinite feature
selectors were executed with p = 51 as the desired feature count. Final results may differ for
indefinite selectors. The exception is RFE-CV, where p does not need to be specified. For
two-phase algorithms a 50 percent reduction in the feature count was targeted in the first
phase, followed by an approximate 80 percent reduction (with a maximum of p = 10) in the
second phase.

3. Results
3.1. Classification of Lymph Nodes and Feature Extraction

A total of 28 patients and with 252 LNs were classified based on established crite-
ria [5,6] by two independent head and neck radiologists (Table 1). Of these, 182 LNs were
classified as “pathologic” [5,6] and further 52 of these were classified as “pathologic with
ECS” [7]. No new LNs with ECS developed neither from “pathologic” LNs between acquisi-
tions of staging- and planning-CTs nor between planning- and restaging-CTs. Seventy LNs
did not meet the criteria for malignancy [5,6] or ECS [7] and were labeled “non-pathologic”.

From the 252 segmented LNs a total of 30,240 features were extracted. 4788 were
first order statistics features, 4032 three-dimensional shape-based features, 2520 two-
dimensional shape-based features, 6048 grey level co-occurrence matrix features, 4032 grey
level run length matrix features, 4032 grey level size zone matrix features, 1260 neighbor-
ing gray tone difference matrix features, and 3528 gray level dependence matrix features
(Supplemental Table S1).

3.2. Candidate Feature Selection Algorithms

For each of the LN-classifications “pathologic”, “pathologic with ECS” and “non-
pathologic” results are presented in the following figures. In each figure, the boxplots show
the distribution of the BACC of LDA classifiers trained on the features selected by the
used selection algorithm. Each figure shows the performance of the baseline LDA classifier
trained on all available features as a dash-dotted horizontal line for reference. The naming
convention for single phase algorithms and for dual-phase algorithms is Firstphasealgo-
rithmFirstphasetargetfeaturecount_(haff|nohaff)_ (|BACC) and FirstphasealgorithmFirst-
phasetargetfeaturecountSecondphasealgorithmSecondphasetargetfeaturecount_(haff|noh
aff)_BACC, respectively.

First phase algorithms refer to RFE, SDA and RNF where the target feature count
defines the number of target features to be reached by the first phase algorithm. Labels
“haff” or “no-haff” indicate whether highly anti-correlated feature filtering heuristic was
applied prior to the first phase or not.

3.3. EFS-Algorithm for LN-Label “Pathologic”, “Pathologic with ECS”, and “Non-Pathologic”

Balanced accuracy distributions of EFS-algorithms trained and evaluated on the LN-
label “pathologic” (Figure 5), “pathologic with ECS” (Figure 6) and “non-pathologic”
(Figure 7) are depicted below. For each of the figures, the BACC of the LDA classifier with-
out featre count reduction is shown as dashed-dotted green horizontal line, for reference.
For additional detail please refer to the individual figure legends.
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of the features.

From a clinical perspective, the selected features for the LN-label “pathologic with
ECS” appeared plausible and potentially capable of classifying LNs (Table 2).
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Table 2. The 10 most frequently selected features by the EFS-algorithm SDA50GA10_HAFF_BACC
after 100 repetitions for classification of LNs labeled “pathologic with ECS”.

Type 1 Name 2 Number 3

Shape surface-to-volume ratio 100/100

Intensity first order statistics median 80/100
first order statistics skewness 100/100

Texture

gray level co-occurrence matrix inverse difference moment 95/100
gray level co-occurrence matrix inverse difference normalized 45/100

gray level dependence matrix low gray level emphasis 75/100
gray level run length matrix long run gray level emphasis 30/100

gray level run length matrix run entropy 70/100
gray level run length matrix short run emphasis 35/100

gray level size zone matrix zone entropy 100/100
1 Type refers type of radiomic feature (i.e., shape, intensity or texture); 2 Name refers to the specific name of the
individual feature; 3 Number refers to number of times features were selected per 100 repetitions.

4. Discussion

In HNSCC both the presence and the localization of pathologic LNs with or without
ECS remain an important negative prognostic factor [1–4]. The latter was observed to
correlate with the specific LN involvement of the laterocervical neck level (i.e., level V) [4].
Current criteria to diagnose pathologic cervical LNs in contrast-CTs are primarily shape-
based [5–7]. Radiomic analysis provides numerous, additional quantitative information,
including texture and intensity features [8,9]. One of the most challenging parts of ra-
diomic analysis is the choice of features that best comply with the diagnostic concepts
explored [10,11]. Machine learning has been applied for this task in a large patient co-
hort study recently [10–12] and it might have the potential to improve intermediate-risk
HNSCC-patient selection for trimodal therapy [12]. In this retrospective cohort-study EFS-
algorithms were explored for their potential to correctly classify LNs with sets of features
as compact as possible and yet retaining as much clinical accuracy as possible.

The primary aim was to identify at least one EFS-algorithm for each of the LN-
classifications (Figures 2–4), which was capable of maintaining a classification accuracy
>80% with a reduced number of active features p ≈ 10. The observations of the present
study suggest for LNs classified as “pathologic” the combination of RFE and GA, for
“pathologic with ECS” and “non-pathologic” the combination of SDA and GA to be the
potentially most useful EFS-algorithms, retaining a diagnostic accuracy of >80% (Figure 5),
90% (Figure 6) and 83% (Figure 7), respectively.

There are several different aspects to assess the performance of the different EFS-
algorithms against each other. Probably the most important factor is the BACC for the
classifier at a given number of features to be retained. The results show that for most cases
decreasing the number of input features decreases the BACC of the LDA classifier. It is
clear that reducing features to 10 percent of the original amount is a much harder task and
only well-engineered feature selectors can significantly outperform random selection in this
range. The advantage is not that obvious for the middle reduction range (50 percent feature
reduction). While in theory due to the peaking phenomenon [10,11] the classification
performance may not reach its maximum when all features from
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creases the number of features by repeatedly fitting the classifier and removing the least 
important n features, typically n = 1, until the target number of features, p, is reached 
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the classifier is executed with the current set of features. This yields means and standard 
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are used, on our dataset
LDA has achieved the best classification accuracies for all labels when all extracted radiomic
features were available to it. Iterative feature removal algorithms have shown a monotonic
decrease in classification accuracy.

It is evident from the results that the unsupervised, implicitly parametrized HCFR
(0.303) algorithm had an underwhelming performance even when compared to random
feature selection in the 10 percent range. Label awareness seems to be crucial to find the
most discriminative features.
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The cross-validation variant of RFE (RFE-CV) performed inferior to dual-phase GA
variants by frequently yielding inferior accuracies with more features than the competing
methods [10,11,38].

When inspected in the medium range of feature reduction (approx. 50 features, or
50 percent feature reduction for our study), all single-phase variants (SDA, RFE, GA)
consistently seem to outperform random feature selection for all labels. However, the
difference is relatively small and overall no clear advantage could be observed for any
variant. In this evaluation regime, the HAFF heuristic was inconclusive; different trends
were observed for different label types.

For the 10 percent features to be retained (i.e., 10 features in the present study) the
greedy selection strategy of RFE, a single-phase algorithm, seems to break down performing
similar to or worse than RND. Single phase algorithms SDA and GA on the other side
produce robust results. The HAFF heuristic significantly improves RFE’s performance on
two of the three available label sets (“pathologic with ECS” and “non-pathologic”), but still
cannot reach the performance of SDA, GA, or dual phase methods.

GA10—as a single-phase algorithm—provides a robust performance in this range.
Slight improvements can be observed when using the dual SDA50GA10 variant, which
reduces the variance of the achieved classification accuracy and may reach higher absolute
accuracies with repeated executions.

Overall—if enough computational power and time are available—the combinatorial
optimization with genetic algorithms, GAp, seems to be the simplest and most robust
approach for feature selection. This is not surprising due to the combinatorial nature of the
problem. In practice, though, a dual phase algorithm that first reduces the number of initial
features to an intermediate range (50 percent) and then starts a combinatorial search on
this reduced set can be a practical and efficient approach. In these scenarios, SDA seems to
outperform RFE for most of the cases.

From a clinical perspective the selected features especially for the LN-label “patho-
logic with ECS” appeared plausible and potentially capable of classifying LNs. The
SDA50GA10_HAFF_BACC EFS-algorithm most frequently selected shape, intensity and
texture as individual features from 100 repetitions. These specific features (Table 2) should
further be explored for their potential to prospectively classify LNs as pathologic with ECS.

Certain limitations of the present study need to be addressed. Firstly, this was a
retrospective study executed on a single, moderately sized clinical cohort, with only three
different labels. From the 1100 potentially eligible patients only 287 met the inclusion
criteria. In addition, to reduce the high workload of manually segmenting LNs the sample
size was reduced by randomly sampling 28 patients (Figure 1 and Table 1). More data
diversity would allow stronger conclusions about the general differences in the power of
the evaluated feature selectors. The complexity of the classification model was kept as low
as possible (linear) for the study in order to improve clinical applicability. Changing model
complexity may affect both relative and absolute performance of the benchmarked methods.

Secondly, all patients enrolled in this study were treated with primary concurrent RCT
(Table 1). Histopathologic confirmation of HNSCC was performed on tissue samples from
the primary tumor staging panendoscopy [20] without additional ultrasound-guided core-
needle biopsies. Four patients diagnosed with carcinoma of unknown primary (Table 1)
received an ultrasound-guided core-needle biopsy of the largest suspect cervical LN to
confirm diagnosis HNSCC.

Although this diagnostic approach is in line with the recommendations by the Na-
tional Comprehensive Cancer Network [21], from a research perspective a histological or
cytological verification of the segmented LNs would have improved the study’s quality.
However, the risk of bleeding for ultrasound-guided core-needle biopsies is ~1% with a risk
of tumor seeding of ~0.001% [22]. Moreover, three ultrasound-guided core-needle biopsies
per patient and CT-scan would have been required to define the histopathologic result as
reference method, multiplying the risk of adverse events. Lastly, classification “pathologic
with ECS” (Figure 3) is frequently based on established radiologic criteria [7]. ECS can be
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confirmed histopathologically by removing the suspect LN in toto (e.g., via selective neck
dissection); ultrasound guided core-needle biopsies cannot provide this information.

Ultrasound-guided fine-needle aspirations with known significant lower risk of bleed-
ing and tumor seeding [22] of suspect cervical LNs was discussed for the patients of this
study. While the number of ultrasound-guided fine-needle aspirations is the same, non-
diagnostic aspirations of up to 7% and inconclusive cytological findings of up to 12% have
been described and make this method less reliable a reference method [39].

Consequently, in this study, ultrasound-guided core needle biopsies or fine-needle
aspirations were not used; instead, classification of segmented LNs as “pathologic with
ECS” (Figure 2), “pathologic” (Figure 3) and “non-pathologic” (Figure 4) was completed by
two experienced readers in head-and-neck-radiology based on established criteria [5–7] and
was defined as the reference method. While there might be a risk of incorrect classification
this was considered the safest approach for the patients.

It is to be emphasized that only HNSCC-patients treated with primary concurrent RCT
were enrolled in this retrospective cohort study. Consequently, translating the findings
of this study to HNSCC patients treated primarily with surgery needs great caution. Ad-
dressing this limitation in future studies appears necessary. Including patients undergoing
surgical treatment was also considered for this study. However, during the conceptu-
alization of the study it became clear that it might be difficult to identify resected LNs
with preoperatively segmented LNs. Limiting the number of potentially segmented LNs
might be a possible solution to this dilemma, e.g., by limiting patients to be included to
HNSCC-patients with LN persistency after primary radiochemotherapy who frequently
present one single persistent LN [40]. Unfortunately, this reduces the number of potentially
eligible patients and therefore and does not allow conducting sufficiently powered studies.
Consequently, in the present study the decision was made to include HNSCC-patients
treated with primary concurrent RCT only.

In terms of external validity, the number of studies exploring the capability of radiomic
analysis in classification of LNs in HNSCC-patients is sparse [41]. To best of our knowledge,
only one similar study has been previously performed [41] that identified 89 features to dif-
ferentiate pathologic from non-pathologic LNs and four features to differentiate pathologic
LNs with ECS from pathologic LNs without ECS. This study employed magnetic resonance
imaging of the neck, hampering comparability with our study [41]. In addition, no EFS-
algorithms were explored. Even if a diagnostic accuracy of >80% was reported, a total of
89 features to correctly classify LNs appears too complex for daily clinical practice [41].

5. Conclusions

In conclusion, SDA, GA and their combinations are algorithms that can reduce the
number of features significantly, while retaining sufficient discriminative power even
for clinical datasets with small sample sizes and many highly correlated features. These
methods might provide the necessary tools to prune abundant radiomic features prior to a
more thorough manual analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14030477/s1, Supplemental Table S1: Summary of all 120 radiomic features extracted
using the open-source PyRadiomics library [24,25].
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