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Simple Summary: More and more studies are suggesting the role of microbes in several diseases
in addition to the germline and environmental factors. F. nucleatum is recently being associated
with colorectal cancer and here, we aimed to identify important drug targets from the core genome
of colorectal cancer associated F. nucleatum through bioinformatics approach. We used one drug
target for further analysis and obtained natural product inhibitors against it. Finally, we validated
inhibition stability through dynamics simulation approach. We are hopeful that this study could
benefit researchers working on colorectal cancer, its microbiome and cure.

Abstract: Colorectal cancer (CRC) ranks third among all cancers in terms of prevalence. There is
growing evidence that gut microbiota has a role in the development of colorectal cancer. Fusobacterium
nucleatum is overrepresented in the gastrointestinal tract and tumor microenvironment of patients
with CRC. This suggests the role of F. nucleatum as a potential risk factor in the development of CRC.
Hence, we aimed to explore whole genomes of F. nucleatum strains related to CRC to predict potential
therapeutic markers through a pan-genome integrated subtractive genomics approach. In the current
study, we identified 538 proteins as essential for F. nucleatum survival, 209 non-homologous to a
human host, and 12 as drug targets. Eventually, riboflavin synthase (RiS) was selected as a therapeutic
target for further processing. Three different inhibitor libraries of lead-like natural products, i.e.,
cyanobactins (n = 237), streptomycins (n = 607), and marine bacterial secondary metabolites (n = 1226)
were screened against it. After the structure-based study, three compounds, i.e., CMNPD3609
(−7.63) > Malyngamide V (−7.03) > ZINC06804365 (−7.01) were prioritized as potential inhibitors
of F. nucleatum. Additionally, the stability and flexibility of these compounds bound to RiS were
determined via a molecular dynamics simulation of 50 ns. Results revealed the stability of these
compounds within the binding pocket, after 5 ns. ADMET profiling showed compounds as drug-like,
non-permeable to the blood brain barrier, non-toxic, and HIA permeable. Pan-genomics mediated
drug target identification and the virtual screening of inhibitors is the preliminary step towards
inhibition of this pathogenic oncobacterium and we suggest mouse model experiments to validate
our findings.

Keywords: pan-genome; F. nucleatum; colorectal cancer; riboflavin synthase; virtual screening;
computer aided drug design; natural products
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1. Introduction

Colorectal cancer (CRC) is the world’s third most common malignant neoplasm and
the fourth leading cause of cancer mortality, with a five-year survival rate of about 65% [1].
Statistically, the mortality rate of CRC has decreased in places with high level of healthcare
resources, while it has increased in areas with low levels of medical resources. Several
variables contribute to the development of colorectal cancer, including hereditary and
environmental factors such as diet and lifestyle [2–4]. The progression from precancerous
adenomatous polyps to adenocarcinoma generally takes about 10 years [5], and is con-
sidered to be the consequence of host mutations that accumulate over time. Improved
methods for detecting microorganisms and new insights into the human microbiome have
led to a new perspective on several diseases, including CRC [6–8]. According to recent
research, this cancer is linked with altered gut microbiota [9] and aided by the anaero-
bic gram-negative bacteria F. nucleatum [4,10–12]. It is often linked to advanced disease,
chemoresistance, distant metastases, and a poor prognosis [13–15]. Additional studies have
demonstrated that F. nucleatum promotes carcinogenesis, changes lymphocyte infiltration
of tumor-infiltrating lymphocytes, suppresses NK cell and tumor-infiltrating T cell death,
and enhances resistance to chemotherapy in colon cancer [7,15,16]. Fusobacteria linked to
CRC develops in the oral microbiome and reaches the colon through hematogenous rather
than gastrointestinal routes. It has been found in approximately 10–90% of CRC tissue
samples, with a higher prevalence in the distal colon than the proximal one. Baik et al. [17]
have identified IgA antibodies against the amyloid adhesin factor FadA of this bacterium
in the colorectal neoplasia. Cavallucci and colleagues [18] reported that F. nucleatum binds
Gal-GalNac disaccharide and CECAM-1 on the CRC tumor stem cells, leading to the acti-
vation of a MAP kinase. MAP kinase has an implied role in the CRC, therefore, this gives F.
nucleatum a strong linkage with CRC progression [19,20]. Gao et al. [21] have shown that F.
nucleatum asserts a positive impact on PD-L1 (an immune frontier point) by modifying an
oncogene IFIT1. This causes immunosuppression and tumor progression in the CRC [21].
Lacourse et al. [22] have also shown that the chemotherapeutic agent 5-fluorouracil is an
inhibitor of this oncomicrobe but if E. coli modifies this compound, then the growth of
tumor and this bacterium remains upward. This demonstrates the importance of targeting
bacteria alongside the tumor in CRC. Chen et al. [23] have explored CRC therapy options by
targeting microbiota, particularly F. nucleatum, as infected tumors have shown a significant
upsurge in the nitroreductase activity of this bacteria [23]. They instructed an enzyme
assembly to dissolve and dismantle tumors through this approach in a mouse model and
observed successful results.

In Saudi Arabia (SA), the age-standardized incidence rates (ASIR) and age-standardization
mortality rate (ASMR) for all cancers are 88.7 and 43.3, respectively, per 100,000 people.
After breast cancer (ASIR-27.3, ASMR-7.5), colorectal cancer (ASIR-13.1, ASMR-6.3) is
the second most frequent cancer in Saudi Arabia. According to the GLOBOCON 2018
report, the highest ASMR and ASIR were discovered in Qatar and Oman, respectively,
while the greatest ASIR was recorded in the UAE, Saudi Arabia, and Kuwait, according
to ICAR, WHO, and GLOBOCON 2018 [14,24,25]. To cope with this disease burden, new
therapeutic biomarkers and drug targets are required. New targets may have useful
mechanisms [26] that can be harnessed to render the bacteria inactive when bound by
drug. Next-generation sequencing (NGS) technology has made it simpler to acquire genetic
data of microbial species [8]. Previously, only a small number of genome sequences were
available, but now the complete genetic repertoire of organisms may be explored [8,27].
One of the best strategies in the drug development pipeline is to identify therapeutic targets
in pathogens using a bioinformatics approach. This is a swift method. Aside from being
expensive and time-consuming, conventional drug development in wet laboratories suffers
from other drawbacks. An organism’s whole genetic repertoire cannot be discerned by a
single genomic sequence, therefore the advancement of big data and data mining-based
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informatics approaches has a huge advantage [25,28,29]. Pan-genomic studies, which
account for the whole set of genes across all strains within a genus, have become possible
because of recent algorithmic and computational power developments [30]. Understanding
the evolution of a strain requires knowledge of its whole genome sequence, and information
of conserved fractions will also enable more specific targets for therapy and inhibitor
development. Recently, this has been implemented against gram-negative bacteria such as
Brachypodium hybridum [31], Klebsiella pneumoniae [32], and Shigella sp. [28,33]. Subtractive
genome analysis is an effective method of finding the gene or group of genes responsible
for a certain characteristic in an organism [34]. It helps discover the systemic variety in a
given organism by analyzing its full genomic array.

Therefore, to address the challenge of processing data from the wide range of F.
nucleatum genomes associated with CRC, we did a pan-genomic analysis and examined a
large number of F. nucleatum pathovar isolates linked with CRC (n = 14) to characterize the
core and accessory-genome subsets and prioritize therapeutic targets. To our knowledge,
this is the first pan-genome mediated study on numerous F. nucleatum species linked
with CRC, as well as the use of core gene data to investigate therapeutic targets in them.
Furthermore, three different libraries of natural products were used to identify potent
inhibitors that may be helpful to combat CRC-linked Fusobacterium sp.

2. Methodology
2.1. Data Retrieval

An extensive literature survey was performed to retrieve CRC-related F. nucleatum
genomes for pan-genome analysis. Fourteen F. nucleatum genomes were used in this study
(Table 1), derived either from the colon cancer site, tissue, or gut of the ailing person.
Sub-species included animalis, polymorphum, and vincentii. The Universal Protein Resource
(UniProt) database was used to download the human proteome. The significance of ther-
apeutic targets was examined using the Database of Essential Genes (DEG) [35] and the
Cluster of Essential Genes (CEG) [36]. The most recent 2022–3 edition of the DrugBank
database [37] was used to assess the potential for the druggability of the proteins. Addi-
tionally, for the structure-based virtual screening, the cyanobactins (n = 237), streptomycins
(n = 607), and marine bacterial secondary metabolites (n = 1226) were utilized.

Table 1. F. nucleatum genomes used in this study, either derived from colon cancer site, tissue, or gut
of the ailing person.

Serial
No. Name Biosample

Accession
Genome

Size (Mbp) Isolation Source Coding DNA
Sequences Reference

1. F. nucleatum Fn146CP SAMN20819806 2.082 Tissue 1949 [38]

2. F. nucleatum Fn10-CTX3 SAMN20819805 2.101 Tissue 2026 [38]

3. F. nucleatum Fn3760T SAMN20819808 2.299 Tissue 2234 [38]

4. F. nucleatum Fn173CP SAMN20819807 2.121 Tissue 2041 [38]

5. F. nucleatum FnS043-1 SAMN20819807 2.288 Tissue 2245 [38]

6. F. nucleatum subsp.
animalis strain THCT5A4 SAMN20819807 2.491 Gut 2360 [39]

7.
F. nucleatum subsp.

polymorphum strain
THCT15E1

SAMN18042967 2.526 Gut 2405 [39]

8. F. nucleatum subsp.
animalis strain THCT7A2 SAMN18042965 2.515 Gut 2339 [39,40]



Cancers 2022, 14, 6260 4 of 19

Table 1. Cont.

Serial
No. Name Biosample

Accession
Genome

Size (Mbp) Isolation Source Coding DNA
Sequences Reference

9.
F. nucleatum subsp.

polymorphum strain
THCT7E2

SAMN18042966 2.547 Gut 2420 [39]

10. F. nucleatum subsp.
vincentii strain THCT14A3 SAMN18042968 2.053 Gut 1903 [39]

11. F. nucleatum subsp.
animalis strain THCT6B3 SAMN18042964 2.269 Gut 2116 [39]

12. F. nucleatum subsp.
animalis strain P2_CP SAMN07448031 2.351 Colorectal primary

tumor 2346 [41]

13. F. nucleatum subsp.
animalis strain P2_LM SAMN07448032 2.346 Liver metastasis 2353 -

14. F. nucleatum CC53 SAMN02469329 2.070 Colon
adenocarcinoma 1879 [42]

2.2. Pan-Genome and Core Genome Analysis

The retrieved 14 CRC-related F. nucleatum strains were subjected to pan-genome profiling
to analyze the variation in the genome content (core genome and dispensable genome) using
the BGPA software version 1.2, with parameters described before [43]. A USEARCH clustering
algorithm was utilized to cluster only homologous genes detected in the pan-genome, with a
70% cut-off value. The genomes were aligned using the MUSCLE program [44] with default
settings, and the phylogenetic analysis and tree-building processes were carried out using
UPGMA. Following the classification of gene homologous sets, functional annotation was
carried out using the Cluster of Ortholog Groups (COG) [45].

2.3. Potential Drug Targets Identification

Therapeutic targets were discovered by subtractive genomic analysis, using the predicted
core genome of F. nucleatum. CD-HIT with a sequence identity cutoff of 0.8 (i.e., 80%) was per-
formed to identify paralogous or duplicate protein sequences. The non-paralogous sequences
of the F. nucleatum genome were removed from the core genome fraction of F. nucleatum.

These sequences were then subjected to BLASTP with an E-value cutoff of 10−4 [46]
against the whole human proteome. The proteins with an E-value less than 10−3 were
examined as potential targets. A gap penalty of 11 and a gap extension penalty of 1 were
both considered standard. To determine the uniqueness of our targets, 83 different species
of human microbial flora were compared to the usual gut flora. Based on extensive research,
an E-value cut-off of 10−2 was selected to differentiate non-homologous proteins [47].
Antibiotic-resistant drug molecules were a primary target since they were unable to interact
with human proteins. The non-homologous proteins to the human host and normal
intestinal flora proteins were utilized for further assessment.

Further functional characterization of the non-homologous core genome was carried
out. Essential genes were considered as those that have a substantial impact on the
pathogen’s ability to survive. Therefore, the obtained non-homologous proteins were
checked for their essentiality in the Database of Essential Gene (DEG) [35]. A BLAST search
with an E-value of 10−5 was performed on the non-homolog genes. Moreover, an essential
gene database (CEG) was used to look into the genes that had high similarities with DEG.
By validating essential genes based on both alignment and function, the CEG reduces
the likelihood of receiving false-positive findings from essentiality predictions based on
alignment. Overlapping the CEG and DEG essential gene lists allowed us to pick genes
with similar reports in both lists for further study.
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Using BLAST with an E-value of 10−5 against the whole DrugBank dataset [37] of
prokaryotes (which include drug targets), the obtained essential genes were analyzed to
determine the potential drug targets. For F. nucleatum, a list of essential, drug-like proteins
with less than 30% identity and more than 50% query coverage against the Drugbank
database was identified.

The virulent proteins among the druggable targets were also studied to identify the
genes responsible for producing the virulent components using a database called VFDB [48].
Bacterial virulence proteins facilitate bacterial colonization and penetration of host immune
cells, hence aiding in the destruction of the host immune system. A threshold of 10−3 was
used to compare the F. nucleatum proteins with the VFDB.

2.4. Structural Retrieval and Virtual Screening

A method of in silico structure prediction known as homology modeling may be
used to predict the three-dimensional structure of a selected protein, based on its primary
amino acid sequence. Drug design requires an understanding of proteins’ 3D structure and
function [49]. A selected protein 3-D structure was retrieved from the Alpha Fold server
using UniProt sequence ID. We uploaded its sequence to the STRING database online
server and found interactions with other proteins, (represented by FN0707).

Virtual screening was performed using lead-like cyanobactins (n = 237), streptomycins
(n = 607), and marine bacterial secondary metabolites (n = 1226) against the shortlisted drug
target riboflavin kinase. Protonation and energy reduction were used to get the compounds
ready for screening. Protein structure, on the other hand, was used as a receptor, while
compounds served as ligands. The screening was carried out using MOE version 2019.0102,
as described previously [28]. To do the screening, the triangle-matching method was used,
whereas London dG, affinity dG, and forcefield parameters were used for rescoring. S-score
was used to sort docked molecules. The compound with the lowest binding energy was
chosen as the top conformation and used for further investigation.

2.5. ADMET Profiling of Shortlisted Drug Candidates

The development of safe drugs is a major problem but the drug development time
and expenses may be halved if toxicological side effects can be detected early on. Screened
drug-like substances were examined using the SwissADME software [50] for pharmacoki-
netic properties such as Absorption, Distribution, Metabolism, and Excretion (ADME).
pkCSM [51] was used to analyze the compounds’ toxicity profile, minimal human side
effects, immunotoxicity, mutagenicity, teratogenicity, neurotoxicity, increased penetration,
and carcinogenicity. As a result, the most effective method of administration, the impact on
diverse species, and the elimination of drug properties in the human body were evaluated.

2.6. Dynamic Simulation Analysis

The complex interaction and stability of the ligand-protein complex were subsequently
studied in detail using molecular dynamic (MD) simulation of these molecules. The
GROMACS server v2020 [52] was the MD simulation program used, with GROMOS54A71
forcefield to rectify the topologies. The steepest energy minimization algorithm was used
to minimize the energy of the ligand topology files. To construct a simulation system, the
following parameters were used: size of the box with a 1.0 nm margin from the protein
atom border; dodecahedron box as a boundary condition; SPC216 as an accurate water
solvation model; Na+ ions were used to neutralize complexes and then simulated for 50
ns at a pressure of 1 atm and a temperature of 300 K. NPT and NVT were considered
as an ensemble class, containing 50,000 steps of NPT and NVT [53]. A post-simulation
examination of interactions was carried out.
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3. Results
3.1. Pan-Genome Analysis

To prioritize the potent therapeutic target against F. nucleatum, the pan-genome analy-
sis was applied to 14 strains. F. nucleatum strains consisted of >2230 DNA coding sequences.
Among these, 1193 genes were shared by all strains and classified as a core genome frac-
tion (i.e., 56% of pan-genome). The comparative study showed that the Fusobacterium
nucleatum subsp. animalis strain P2_CP consisted of the maximum number of accessory
genes (n = 1017), whereas the F. nucleatum subsp. polymorphum strain THCT15E1 strain
encompassed the maximum number of unique genes (n = 211). Only one unique gene was
present in the F. nucleatum subsp. animalis strain P2_CP while the minimum number of
accessory genes were in the strain F. nucleatum Fn10-CTX3 (n = 567). Additionally, 11 strains
were lacking several genes that were present in other strains (File S1). The pan-genome
curve represented the Bpan = 0.320 (i.e., <1) resulting in the open nature of the pathogen
(Figure 1). However, it is hypothesized that the pan-genome will continue to be accessible
to new bacterial species as long as evolution and horizontal gene transfers are there [34].

Figure 1. Pan-genome analysis of 14 F. nucleatum strains related to CRC.

All 14 strains were grouped together into a phylogenetic tree using data from the pan
and core genomes. There was a difference in distance between the pan and core genome-
based tree branches (Figure 2). Phylogenetic variation was also shown by cluster analysis
using both genomic fractions. In comparison with the pan-genome, the distance in the core
gene tree branches was much reduced.
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Figure 2. Phylogenetic tree depicting (A) Pan-genome phylogeny of 14 CRC related F. nucleatum
strains used in this study (B) Core genome phylogeny of studied F. nucleatum strains. 1 = F. nucleatum
CC53; 2 = F. nucleatum Fn10-CTX3; 3 = F. nucleatum Fn146CP; 4 = F. nucleatum Fn173CP; 5 = F. nucleatum
Fn3760T; 6 = F. nucleatum FnS0431; 7 = F. nucleatum subsp. animalis strain P2_CP; 8 = F. nucleatum
subsp. animalis strain P2_LM; 9 = F. nucleatum subsp. animalis strain THCT5A4; 10 = F. nucleatum
subsp. animalis strain THCT6B3; 11 = F. nucleatum subsp. animalis strain THCT7A2; 12 = F. nucleatum
subsp. polymorphum strain THCT7E2; 13 = F. nucleatum subsp. polymorphum strain THCT15E1;
14 = F. nucleatum subsp. vincentii strain THCT14A3.

3.2. Functional Annotation Studies

The COG functional analysis of the pan-genome was performed to look into the
conserved proteins related to their specific metabolic pathways. The COG functional anno-
tation for pan-genome analysis revealed that the core genome was found to be enriched in
metabolic pathways, i.e., information storage, processing, and metabolic related pathways
mainly enriched in amino acid transport metabolism, ribosomal, translational/biogenesis
pathways, and inorganic ions transport metabolism. The accessory genome was identified
to be highly involved in information storage, processing, and metabolic related pathways,
mainly enriched in amino acid transport metabolism, and having genes linked with general
function prediction. However, unique genes were mainly involved in information storage
and processing pathways and poorly characterized (functionally unknown) pathways, i.e.,
general function prediction, cell wall, cell membrane, and envelop biogenesis (Figure 3).
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Figure 3. Functional enrichment analysis of identified genome of F. nucleatum strains.

3.3. Potential Drug Target Identification

For the purpose of predicting genes necessary for metabolic pathways and the overall
survival of the F. nucleatum, a differential analysis of 1193 core protein-coding sequences
was performed. The non-paralogous proteins from the core genome were retrieved via
the CD-HIT tool. It resulted in the identification of 1190 proteins as non-paralogous while
three proteins were excluded as paralogous to F. nucleatum. These identified 1190 proteins
were further used for drug target identification.

Potentially useful and novel therapeutic treatment targets are those that have been
highly conserved throughout evolution and are found in almost all pathogen strains of a
genus. This explains why the study of such genes has long been a priority for researchers.
RNA transcript inhibition and gene knock-out techniques, which are similar to mutant
insertion for the loss of function in the gene, are usually used to verify the necessity of
genes [54]. In recent decades, it has been possible to integrate this kind of traditional
laboratory-based data into an online database, making the process more efficient, uniform,
and repeatable. In this study, we evaluated the F. nucleatum essential genes using two
databases, DEG and CEG. DEG predicts essential genes using a homology-based search
algorithm with ~30,000 genes collected from ~70 different species [35], while CEG makes
use of a forecasting technique using pre-determined homology-dependent clusters, which
allows for the depiction of preservation and the specificity of gene functions. The DEG
findings showed that 613 genes were crucial to the pathogen’s survival, whereas the
CEG study yielded 550 crucial genes; consequently, the predicted number of essential
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proteins shared by both sets of genes was 538. These crucial genes were retained for
future examination.

To prevent unwanted side effects, we need to ensure that the drug is selectively toxic
against F. nucleatum but not against human and microbial gut flora. This will prevent
the drug from binding to the active sites of the homologous proteins in the host [55]. All
538 of the obtained proteins resultant from the intersection of the DEG and CEG analysis
were subjected to BLASTP against the human and microbial gut flora proteome to identify
the non-homologous proteins. From a total of 538 proteins, BLAST determined 209 to
be dissimilar to the human proteome, whereas 48 were dissimilar to the proteome of the
human digestive tract microorganisms.

Furthermore, the druggability of these 48 essential, non-homologous proteins was
determined through the BLAST against the DrugBank database. It revealed that only
15 proteins had drug target likeability and can act as potential therapeutics against F.
nucleatum. Moreover, the virulent factors released from pathogenic proteins are mainly
involved in the infliction of infections. Around 12 virulent proteins responsible for the
pathogenic condition were identified.

3.4. Significant and Novel Drug Target Prediction

It has been reported that cytoplasmic proteins are an excellent therapeutic target
and may be readily targeted with drugs [56]. Additionally, ~70 percent FDA approved
medications are claimed to target enzymatic proteins because of their substantial par-
ticipation in numerous pathways. Finally, among 12 candidate therapeutic targets, one
protein was identified as an essential, non-homologous, druggable target against F. nu-
cleatum, i.e., riboflavin synthase (RiS). Based on their cytoplasmic subcellular distribution,
length > 100 amino acids, enzymatic nature, and role in important metabolic pathways,
this discovered protein was used for structure-based study.

Among these 12 proteins, the enzyme RiS was chosen as the intended target (Figure 4A).
Due to its lack of presence in humans, RiS is thought to be a promising therapeutic target
since microorganisms are reliant on this metabolic process. The enzyme (EC:2.5.1.9) is
essential in the bacterial secondary metabolite biosynthesis (Flavin Biosynthesis I). It cat-
alyzes the final step in the biosynthesis of vitamin B2, i.e., the conversion of two molecules
of 6,7-dimethyl-8-ribityllumazine to riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-
pyrimidinedione.

Figure 4. Representation of the selected drug target as a solo protein and part of its network (A) 3D
structure of RiS retrieved from AlphaFold (B) PPI analysis of RiS.
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Tutino et al. [57] show that CRC causes significant changes in the transcription and
translation of RFVTs. Additionally, L-methionine and riboflavin metabolisms were the most
prominent pathways affected in CRC cells as the cancer advances [58]. Moreover, this is not
only in colon cancer as riboflavin is reportedly involved in the onset of gastric cancer [59].
Nevertheless, it is also involved in numerous infectious diseases and is reported as a
potential marker for Candida albicans [59], Brucella spp. [60], and Aspergillus fumigatus [61].
While F. nucleatum has been linked to colon cancer before, it has never been investigated for
therapeutic targets.

Protein-protein interactions and their functional annotation form the backbone of
cellular machinery, which is responsible for regulating a plethora of biological activities [62].
To fully comprehend the PPI and its functional significance in the cell, it is necessary to
recognize the several interactions that take place and regulate their outcomes [63]. The
STRING analysis indicated that our prioritized protein likely interacted with many adjacent
proteins to carry out essential functions, suggesting that it is a hub protein. Since proteins
often work in groups, inhibiting this one may also impact the activity of its interactors. RiS
mediates interactions with other proteins nearby, such as FN1507 (probability score: 0.964),
ribH (probability score: 0.960), murJ (probability score: 0.918), FN0708 (probability score:
0.880), FN1506 (probability score: 0.851), cmk (probability score: 0.833), ileS (probability
score: 0.819), polA (probability score: 0.935), truB (probability score: 0.891), and whiA
(probability score: 0.827). The PPI results showed that isocitrate lyase had a total number
of 11 nodes, an average node number of 4.18, an average local clustering coefficient 0.79, a
PPI enrichment p-value 0.0266, and 15 expected numbers of edges, as shown in (Figure 4B).
Many essential processes rely on the presence of these proteins. If RiS is inhibited, the other
interactor proteins may eventually become dysfunctional. As a result, RiS may be presented
as a viable pharmacological target without apprehension about the repercussions.

3.5. Virtual Screening Studies

The 3D structure of RiS was retrieved from the Alphafold server with the identifier
ID: AF-Q8RFI9-F1, with 319 amino acids. The retrieved structure was further used for the
structure-based docking to prioritize potential inhibitors against it. Molecular docking
is an excellent method for determining how studied complexes interact with a biological
target, which is crucial in treatment. To comprehend the compounds-RiS interactions and
analyze the likely binding mechanism and energy, the produced complexes were studied
through the MOE tool. The docking analysis was performed for Ribityl (9-D-ribityl-1,3,7-
trihydropurine-2,6,8-trione) as a reference control where the RiS was utilized as a protein
receptor. The result showed the binding of the reference compound with the protein with
different conformations and orientations. We selected conformation 1 of the ligand based
on its binding affinity energy, i.e., −6.40 kcal/mol.

Three natural product libraries were taken and only lead-like compounds were re-
tained for screening, such as (i) cyanobactins (n = 237), (ii) streptomycins (n = 607), and
(iii) marine bacterial secondary metabolites (n = 1226), using rigorous docking to the active
site of RiS having residues as Gly4, Leu5, Val6, Glu7, Glu8, Lys30, Arg137, Ala143, Ser144,
Leu145, Thr146, Val157, Ser158, Leu159, Ile160, His162, Thr163, Lys166, and Ile167. It gave
several docked configurations of compounds that were defined by docking scores. Lower
binding affinity compounds (i.e., those with a binding affinity less than or comparable to
−6 kcal/mol) were excluded from assessment as potential hit candidates. Due to their lower
binding affinity than the Ribityl inhibitor, only three compounds (one from each library)
were chosen for further study in this work because of their significant inhibitory effect
against RiS, i.e., CMNPD3609 (Marine), Malyngamide V (Cyanobactin), and ZINC06804365
(Streptomycin metabolite) to inhibit F. nucleatum.

3.6. Interaction Analysis of Shortlisted Compounds

Shortlisted compounds were examined using post-molecular docking interaction anal-
ysis to better understand RiS pharmacological activity and its binding mechanism. Each
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ligand had several interactions with the receptor in this molecular docking research. CM-
NPD3609 (−7.63) > Malyngamide V (−7.03) > ZINC06804365 (−7.01) is the docking rank
order based on docking score. The hydroxyl group of the CMNPD3609 site chain mediates
two hydrogen bonds with Lys30, and Val6, each with a bond distance of 3.18 Å and 2.94 Å
along with an energy of −0.8 and −1.8 kcal/mol, correspondingly (Figure 5A). Malyn-
gamide V, through its aromatic ring-OH, mediates two hydrogens bind with Val6 having a
bond distance of 3.07 Å and an energy of −1.2–2.8 kcal/mol (Figure 5B). ZINC06804365
showed two pi-hydrogen interactions between Leu5, Thr163, and the aromatic ring medi-
ates, with a bond distance of 4.28–4.44 Å and an energy range of −1.6 to −0.5 kcal/mol
(Figure 5C). The control compound docked with RiS at −6.40 kcal/mol formed six hydro-
gen bonds with Ser158, Thr163, Val6, Leu159, Ile160, and Thr146 whereas its aromatic ring
mediates a single pi-hydrogen bond with the Leu145 residue (Figure 5D). A description
of binding interactions formed inside the RiS active cavity by the selected compounds is
shown in Table 2.

Figure 5. Molecular docking analysis of (A) RiS-CMNPD3609, (B) RiS-Malyngamide V, (C) RiS-
ZINC06804365, and (D) RiS-control.
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Table 2. Docking scores and identified bond types predicted through MOE tool for shortlisted
compounds within the binding cavity of RiS.

S. No. Ligand Receptor Interaction Distance E (kcal/mol) S Value (kcal/mol)

1

Ribityl control

−6.40

N 2 O SER 158 H-donor 2.87 −5.9

N 4 OG1 THR 163 H-donor 3.06 −2.0

O 21 O VAL 6 H-donor 2.91 −1.4

O 9 CA LEU 159 H-acceptor 3.43 −0.5

O 9 N ILE 160 H-acceptor 3.22 −2.8

O 10 N THR 146 H-acceptor 2.95 −2.5

5-ring CA LEU 145 pi-H 4.49 −1.0

2
CMNPD3609

−7.63O 27 O LYS 30 H-donor 3.18 −0.8

O 56 O VAL 6 H-donor 2.94 −1.8

3
Malyngamide V

−7.03N 13 O VAL 6 H-donor 3.08 −2.8

O 7 N VAL 6 H-acceptor 3.07 −1.2

4
ZINC06804365

−7.015-ring CA LEU 5 pi-H 4.44 −1.6

5-ring CG2 THR 163 pi-H 4.28 −0.5

3.7. ADMET Profiling of Shortlisted Drug Candidates

To avoid drug adverse reactions and toxicity, the computational evaluation of ADMET
properties is one of the crucial steps to investigate the drug safety assessment at the initial
step of a drug candidate. The shortlisted four compounds (three natural products and
one standard) were found to be non-inhibitors of CYP2C19 and CYP2D6, with significant
permeability to skin and Caco2. Only CMNPD3609 was identified as a non-inhibitor while
the other two compounds were identified as P-glycoprotein inhibitors, whereas all three
prioritized compounds were impermeable to the BBB.

The ADMET characterization is a significant part of the drug discovery process since it
reduces costs and development times in clinical trials [64]. When categorizing compounds
for analogies to drugs, the Lipinski rule of five was used as a preliminary step. Ideally,
drug-like molecules would have lipophilicity values (LogP) below five, hydrogen bond
acceptor sites below ten, and a molecular weight of 500 amu or less. This is the ideal
molecular weight range for orally administered drugs and chemicals, as suggested by
RO5. This resulted in the finding that all three compounds precisely adhered to the RO5
guidelines as shown in Table 3.

Additionally, the Ames mutagenesis study used the pkcsm tool to identify the chemi-
cals and predict their toxicity, Max. tolerated dose (human), Minnow toxicity, T. Pyriformis
toxicity, Oral Rat Acute Toxicity (LD50), Hepatotoxic, and Skin Sensitization evaluation.
Consequently, all compounds showed a negative Ames test except CMNPD3609. This
means that these molecules do not cause mutagenicity. Only ZINC6804365 showed hep-
atoxicity while all compounds were observed to have no skin sensitization. T. pyriformis
showed the maximum tolerance to Malyngamide-V (0.575 log ug/L), while less tolerance
was seen for the remaining compounds. The detailed information is shown in Table 3.
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Table 3. Three shortlisted compounds as possible drug candidates against RiS along with their
ADMET properties.

Compounds ID CMNPD3609 Malyngamide-V ZINC6804365

Compound Name Isomacrolactic Acid Malyngamide-V 34M (PDB ID)

Structure

GI absorption 100 92.819 98.36

Caco2 1.317 1.076 1.242

Water solubility −0.102 −4.386 −3.651

Skin permeability −2.282 −2.827 −2.735

BBB permeant No

Lipinski Yes

Binding Affinity (kcal/mol) −7.63 −7.03 −5.9

Radar

Ames Yes No No

Max. tolerated dose (human) 0.959 0.21 0.805

Hepatotoxicity No No Yes

Skin sensation No No No

T.Pyriformis toxicity −0.964 0.575 0.286

Minnow toxicity 4.806 0.929 −2.353

3.8. MD Simulation of Protein-Ligand Complex

The MD simulation was performed for the shortlisted inhibitors to validate the com-
plex interactions and flexibility. The GROMACS server was used to find the movements
of molecules and atoms of protein complexes at 50 ns. All the compounds showed mild
to moderate fluctuations within the range of 1.5–2 Å while all compounds were observed
to be stable after 5 ns (Figure 6A). The RMSF and Rg for all four compounds highlights
the identical patterns of protein and its binding pocket stability (Figure 6B,C). Impor-
tantly, the binding pattern of these compounds showed that the control mediated five
hydrogen bonds, CMNPD3609 made four hydrogen bonds, while Malymgamide V and
ZINC06804365 mediated three to four hydrogen bonds throughout the 50 ns simulations
(Figure 6D). CMNPD3609 was observed to have high to moderate fluctuation in terms
of RMSD, and a radius of gyration, while Malymgamide V and ZINC06804365 formed a
stable complex throughout the simulation.
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Figure 6. MD simulation for shortlisted compounds, depicting (A) RMSD (B) RMSF (C) Radius of
gyration and (D) Hydrogen bonds.

4. Discussion

CRC is a pressing health issue worldwide [65], with a proportion of 9.2% among
various cancer diagnoses and the second highest fatality rate of any cancer type [66]. The
underlying mechanism of CRC malignancy is still to be determined but inflammation has
been recognized as an essential risk factor for colorectal cancer, which is produced by a
complex interaction of environmental, dietary, behavioral, and hereditary variables. The
anaerobic, gram-negative bacillus F. nucleatum lives in species-specific reservoirs throughout
the human body, including the mouth, gastrointestinal system, and other sites. Analysis
of the 16S ribosomal ribonucleic acid (rRNA) gene sequence and the use of metagenomic
sequencing techniques revealed a strong association between F. nucleatum and CRC [67].
Compared with the control group, it was significantly higher in patients with CRC [68].
Additionally, F. nucleatum was associated with a worse prognosis for CRC patients and
likely aided in the development of chemoresistance [69].

Since pan-genomics has evolved as a standard for understanding the molecular
evolution of bacterial populations in respect to the ever-increasing diversity of bacterial
genomes [70], we analyzed pan-genomes to study species specific variations in F. nuclea-
tum. The analysis of the 14 F. nucleatum genomes isolated from the CRC patients revealed
the presence of various numbers of unique genes and accessory genes, with a shared
core genome amounting to 1193 genes. Among the identified 12 potential therapeutic
markers of F. nucleatum related to CRC, the RiS was selected as a novel and promiscuous
drug/therapeutic prognostic target/marker involved in the biosynthesis of the secondary
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metabolite Vitamin B12. Its reported role in CRC makes it a highly relatable therapeutic
marker and drug target for CRC control. Tutino et al. [57] have shown that CRC causes
significant changes in the transcription and translation of riboflavin transporters [57]. Ad-
ditionally, L-methionine and riboflavin metabolisms were the most prominent pathways
affected in CRC cells as the cancer advances [58]. Riboflavin synthase has also been pre-
viously earmarked as a drug target in several pathogenic bacteria [71–73], with an effect
on the host’s immune response. Since F. nucleatum is generally linked with immune sup-
pression in CRC, inhibiting it with RiS binding of drugs can escalate the host cell pathogen
clearance. Therefore, RiS inhibition can be a two-pronged approach, where both pathogen
and host immunity can be targeted through simultaneous bactericidal activity and mitiga-
tion of host cell inflammation. Therefore, virtual screenings of lead-like natural products
from various sources were performed to prioritize a new potent drug candidate against
RiS, using Ribityl (9-D-ribityl-1,3,7-trihydropurine-2,6,8-trione) as a reference control. It
resulted in the shortlisting of three drug candidates as potential binders, i.e., CMNPD3609
(Marine), Malyngamide V (Cyanobactin), and ZINC06804365 (Streptomycin metabolite)
to inhibit F. nucleatum. The ZINC06804365 has been tested and reported as a potential
inhibit for many signaling pathways such as Wnt-3a and also as having inhibitory activity
against the Tankyrase-2 enzyme which reportedly has anti-cancer activities [74]. Malyn-
gamide V has been widely studied for its anti-inflammatory and antinociceptive role [75]
and CMNPD3609 possesses several antibacterial activities [76]. The diverse role of these
compounds in different cancer and antimicrobial activities makes them a possible drug
candidate to curb CRC caused by F. nucleatum. However, the discovery of these compounds
as drug candidates for CRC or F. nucleatum infections needs further experimental studies to
validate their function. Furthermore, MD simulation was performed for these shortlisted
compounds for 50 ns, to identify whether the binding and inhibition would be long lasting
or transitory. It showed stable binding of all complexes (fluctuation within the range of
1.5–2 Å) after the initial phase of ~5 ns.

Eventually, the current computational pipeline will help in the identification of natural
therapeutic products against the targets prioritized by the high throughput screening of
the F. nucleatum core genome. Assuming the hefty cost, coupled with the small success rate
in drug discovery and development, repurposing available compounds or the screening
of natural product libraries against new targets and diseases is an important venture. It
has lower development budgets and shorter screening periods, saving cost and time. Since
natural products have been used in traditional medicine for hundreds of years, they are
ideal for drug repositioning due to their medicinal value. However, this approach is best
for prioritization although limitations exist. Therefore, we suggest extensive lab analysis in
model organisms followed by clinical trials.

5. Conclusions

Cancer rate is increasing and complications associated with it, including role of mi-
crobes is a complex science. We need to maneuver the intricacies of the diseases like CRC,
through swift approaches that are based on computation and artificial intelligence, both by
understanding the mechanisms and finding cure for it. Bioinformatics based subtractive
genomic approach is a state of the art method for identifying drug targets from genome
sequences. Herein, we utilized this approach for finding out the therapeutic proteins from
the CRC related oncomicrobe F. nucleatum genomes. MOE was then used for screening
out inhibitors from natural product libraries against the selected target riboflavin synthase.
Although, we got quick results but other parallel approaches may also be used for screening
inhibitors and compare to our findings. The procedure could be further improved to Kdi
or MIC evaluation of these inhibitors using artificial intelligence algorithms. Shortlisted
natural product inhibitors may further be tested in the laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14246260/s1, File S1.
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